1
|
Wang J, Li H, Kulkarni A, Anderson JL, Upadhyay P, Onyekachi OV, Arantes LMRB, Banerjee H, Kane LP, Zhang X, Bruno TC, Bao R, Ferris RL, Vujanovic L. Differential impact of TIM-3 ligands on NK cell function. J Immunother Cancer 2025; 13:e010618. [PMID: 39773563 PMCID: PMC11748930 DOI: 10.1136/jitc-2024-010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3+ natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3+ NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions. METHODS Single-cell RNA sequencing and flow cytometry were used to study the prevalence, phenotypes and function of TIM-3+ NK cells in HNSCC patient tumors and blood. In vitro killing, proliferation and cytokine production assays were implemented to evaluate whether the four TIM-3 ligands differentially modulate TIM-3+ NK cell functions, and whether disruption of TIM-3/ligand interaction can enhance NK cell-mediated antitumor effector mechanisms. Finally, The Cancer Genome Atlas survival analysis and digital spatial profiling were employed to study the potential impact of etiology-associated differences on patients with HNSCC outcomes. RESULTS We demonstrate that TIM-3 is highly prevalent on circulating and tumor-infiltrating NK cells. It co-expresses with CD44 and marks NK cells with heightened effector potential. Among the four putative TIM-3 ligands, galectin-9 most consistently suppresses NK cell-mediated cytotoxicity and proliferation through TIM-3 and CD44 signaling, respectively, but promotes IFN-γ release in a TIM-3-dependent manner. Among patients with HNSCC, an elevated intratumoral TIM-3+ NK cell gene signature associates with worse outcomes, specifically in those with human papillomavirus (HPV)+ disease, potentially attributable to higher galectin-9 levels in HPV+ versus HPV- patients. CONCLUSIONS Our findings underscore the complex functional impact of TIM-3 ligand signaling, which is consistent with recent clinical trials suggesting that targeting TIM-3 alone is suboptimal as an immunotherapeutic approach for treating malignancies.
Collapse
Affiliation(s)
- Juncheng Wang
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Housaiyin Li
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aditi Kulkarni
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Anderson
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Pragati Upadhyay
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Onyedikachi Victor Onyekachi
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lidia M R B Arantes
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Barretos Cancer Hospital, Barretos, Brazil
| | - Hridesh Banerjee
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lawrence P Kane
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xin Zhang
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, North Carolina, USA
| | - Lazar Vujanovic
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
3
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer 2023; 23:173-188. [PMID: 36456755 PMCID: PMC9992112 DOI: 10.1038/s41568-022-00531-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
Targeted immunotherapy has improved patient survival in head and neck squamous cell carcinoma (HNSCC), but less than 20% of patients produce a durable response to these treatments. Thus, new immunotherapies that consider all key players of the complex HNSCC tumour microenvironment (TME) are necessary to further enhance tumour-specific T cell responses in patients. HNSCC is an ideal tumour type in which to evaluate immune and non-immune cell differences because of two distinct TME aetiologies (human papillomavirus (HPV)-positive and HPV-negative disease), multiple anatomic sites for tumour growth, and clear distinctions between patients with locally advanced disease and those with recurrent and/or metastatic disease. Recent technological and scientific advancements have provided a more complete picture of all cellular constituents within this complex TME and have evaluated the interplay of both immune and non-immune cells within HNSCC. Here, we include a comprehensive analysis of the complete ecosystem of the HNSCC TME, performed utilizing data-rich resources such as The Cancer Genome Atlas, and cutting-edge techniques, such as single-cell RNA sequencing, high-dimensional flow cytometry and spatial multispectral imaging, to generate improved treatment strategies for this diverse disease.
Collapse
Affiliation(s)
- Ayana T Ruffin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Housaiyin Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Genetics and Developmental Biology (MGDB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Chen S, Chai X, Wu X. Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infiltration in development of endometriosis. BMC Genom Data 2022; 23:20. [PMID: 35303800 PMCID: PMC8932180 DOI: 10.1186/s12863-022-01036-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Background This study explored the key genes related to immune cell infiltration in endometriosis. Results The Gene Expression Omnibus (GEO) datasets (GSE7305, GSE7307, and GSE11691), containing a total of 37 endometriosis and 42 normal tissues, were retrieved and analyzed to determine the differentially expressed genes (DEGs). Gene ontology (GO) annotations and Kyoto Encyclopedia of Genes (KEGG) analysis were performed to identify the pathways that were significantly enriched. The xCell software was used to analyze immune cell infiltration and correlation analyses were performed to uncover the relationship between key genes and immune cells. The analysis identified 1031 DEGs (581 upregulated and 450 downregulated DEGs), while GO analysis revealed altered extracellular matrix organization, collagen-containing extracellular matrix, and glycosaminoglycan binding and KEGG enrichment showed genes related to metabolic pathways, pathways in cancer, phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling, proteoglycans in cancer, and the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, the protein–protein interaction network revealed 10 hub genes, i.e., IL6, FN1, CDH1, CXCL8, IGF1, CDK1, PTPRC, CCNB1, MKI67, and ESR1. The xCell analysis identified immune cells with significant changes in all three datasets, including CD4+ and CD8+ T cells, CD8+ Tem, eosinophils, monocytes, Th1 cells, memory B-cells, activated dendritic cells (aDCs), and plasmacytoid dendritic cells (pDCs). These 10 hub genes were significantly associated with at least three types of immune cells. Conclusions Aberrant gene expression was related to abnormal infiltration of different immune cells in endometriosis and was associated with endometriosis development by affecting the tissue microenvironment and growth of ectopic endometrial cells.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xianqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
5
|
Li F, Sheng Y, Hou W, Sampath P, Byrd D, Thorne S, Zhang Y. CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency. J Immunother Cancer 2021; 8:jitc-2019-000131. [PMID: 32098828 PMCID: PMC7057442 DOI: 10.1136/jitc-2019-000131] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells have potent antitumor activities. Nevertheless, adoptive transfer therapy of NK cells has gained very limited success in patients with solid tumors as most infused NK cells remain circulating in the peripheral blood instead of entering tumor sites. Chemokines and their receptors play important roles in NK cell distribution. Enhancing chemokine receptors on immune cells to match and be driven to tumor-specific chemokines may improve the therapeutic efficacy of NK cells. METHODS The CCR5-CCL5 axis is critical in NK cell homing to tumor sites. Thus, we analyzed CCR5 expression on NK cells from patients with cancer and healthy donors. We then upregulated CCR5 and CCL5 with lentiviruses and oncolytic viruses in NK and tumor cells, respectively. Animal experiments were also carried out to test the efficacy of the combination of oncolytic virus with NK cells. RESULTS In NK cells from patients with various solid tumors or healthy subjects, CCR5 was expressed at low levels before and after expansion in vitro. CCR5-engineered NK cells showed enhanced tumor infiltration and antitumor effects, but no complete regressions were noted in the in vivo tumor models. To further improve therapeutic efficacy, we constructed CCL5-expressing oncolytic vaccinia virus. In vitro data demonstrated that vaccinia virus can produce CCL5 in tumor cells while infectivity remained unaffected. Supernatants from tumor cells infected by CCL5-modified vaccinia virus enhanced the directional movement of CCR5-overexpressed NK cells but not green fluorescent protein (GFP)-expressing cells. More importantly, NK cells were resistant to the vaccinia virus and their functions were not affected after being in contact. In vivo assays demonstrated that CCL5-expressing vaccinia virus induced a greater accumulation of NK cells within tumor lesions compared with that of the prototype virus. CONCLUSION Enhancement of matched chemokines and chemokine receptors is a promising method of increasing NK cell homing and therapeutic effects. Oncolytic vaccinia viruses that express specific chemokines can synergistically augment the efficacies of NK cell-based therapy.
Collapse
Affiliation(s)
- Feng Li
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuqiao Sheng
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weizhou Hou
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Padma Sampath
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniel Byrd
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen Thorne
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China .,Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
6
|
Conversion of AML-blasts to leukemia-derived dendritic cells (DCleu) in 'DC-culture-media' shifts correlations of released chemokines with antileukemic T-cell reactions. Immunobiology 2021; 226:152088. [PMID: 33838552 DOI: 10.1016/j.imbio.2021.152088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DC) and T-cells are mediators of CTL-responses. Autologous (from patients with acute myeloid leukaemia (AML) or myelodysplasia (MDS)) or allogeneic (donor)-T-cells stimulated by DCleu, gain an efficient lysis of naive blasts, although not in every case. CXCL8, -9, -10, CCL2, -5 and Interleukin (IL-12) were quantified by Cytometric Bead Array (CBA) in supernatants from 5 DC-generating methods and correlated with AML-/MDS-patients' serum-values, DC-/T-cell-interactions/antileukemic T-cell-reactions after mixed lymphocyte culture (MLC) and patients' clinical course. The blast-lytic activity of T-cells stimulated with DC or mononuclear cells (MNC) was quantified in a cytotoxicity assay. Despite great variations of chemokine-levels, correlations with post-stimulation (after stimulating T-cells with DC in MLC) improved antileukemic T-cell activity were seen: higher released chemokine-values correlated with improved T-cells' antileukemic activity (compared to stimulation with blast-containing MNC) - whereas with respect to the corresponding serum values higher CXCL8-, -9-, and -10- but lower CCL5- and -2-release correlated with improved antileukemic activity of DC-stimulated (vs. blast-stimulated) T-cells. In DC-culture supernatants higher chemokine-values correlated with post-stimulation improved antileukemic T-cell reactivity, whereas higher serum-values of CXCL8, -9, and -10 but lower serum-values of CCL5 and -2 correlated with post-stimulation improved antileukemic T-cell-reactivity. In a context of 'DC'-stimulation (vs serum) this might point to a change of (CCL5 and -2-associated) functionality from a more 'inflammatory' or 'tumor-promoting' to a more 'antitumor'-reactive functionality. This knowledge could contribute to develop immune-modifying strategies that promote antileukemic (adaptive) immune-responses.
Collapse
|
7
|
Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 2021; 1:287-357. [PMID: 22737604 PMCID: PMC3382861 DOI: 10.4161/onci.18628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendritic cell (DC) immunotherapy has shown a promising ability to promote anti-tumor immunity in vitro and in vivo. Many trials have tested single epitopes and single antigens to activate single T cell specificities, and often CD8(+) T cells only. We previously found that determinant spreading and breadth of antitumor immunity correlates with improved clinical response. Therefore, to promote activation and expansion of polyclonal, multiple antigen-specific CD8(+) T cells, as well as provide cognate help from antigen-specific CD4(+) T cells, we have created an adenovirus encoding three full length melanoma tumor antigens (tyrosinase, MART-1 and MAGE-A6, "AdVTMM"). We previously showed that adenovirus (AdV)-mediated antigen engineering of human DC is superior to peptide pulsing for T cell activation, and has positive biological effects on the DC, allowing for efficient activation of not only antigen-specific CD8(+) and CD4(+) T cells, but also NK cells. Here we describe the cloning and testing of "AdVTMM2," an E1/E3-deleted AdV encoding the three melanoma antigens. This novel three-antigen virus expresses mRNA and protein for all antigens, and AdVTMM-transduced DC activate both CD8(+) and CD4(+) T cells which recognize melanoma tumor cells more efficiently than single antigen AdV. Addition of physiological levels of interferon-α (IFNα) further amplifies melanoma antigen-specific T cell activation. NK cells are also activated, and show cytotoxic activity. Vaccination with multi-antigen engineered DC may provide for superior adaptive and innate immunity and ultimately, improved antitumor responses.
Collapse
Affiliation(s)
- Leeann T Blalock
- Department of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells. Cancers (Basel) 2020; 12:cancers12123575. [PMID: 33265951 PMCID: PMC7761052 DOI: 10.3390/cancers12123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Natural killer (NK)-cells are known to have antitumor potential. Cold physical plasma generates ROS exogenously to be utilized as a novel anticancer agent, especially in skin cancer. However, it is unknown whether plasma-treated skin cancer cells promote or inhibit NK-cell-mediated toxicity. To this end, we analyzed NK-cell-activating receptors on plasma-treated skin cancer cells and demonstrated an enhanced NK-cell activity augmenting tumor cell death upon plasma treatment. Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Collapse
|
9
|
Funck F, Pahl J, Kyjacova L, Freund L, Oehrl S, Gräbe G, Pezer S, Hassel JC, Sleeman J, Cerwenka A, Schäkel K. Human innate immune cell crosstalk induces melanoma cell senescence. Oncoimmunology 2020; 9:1808424. [PMID: 32939325 PMCID: PMC7470184 DOI: 10.1080/2162402x.2020.1808424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mononuclear phagocytes and NK cells constitute the first line of innate immune defense. How these cells interact and join forces against cancer is incompletely understood. Here, we observed an early accumulation of slan+ (6-sulfo LacNAc) non-classical monocytes (slanMo) in stage I melanoma, which was followed by an increase in NK cell numbers in stage III. Accordingly, culture supernatants of slanMo induced migration of primary human NK cells in vitro via the chemotactic cytokine IL-8 (CXCL8), suggesting a role for slanMo in NK cell recruitment into cancer tissues. High levels of TNF-α and IFN-γ were produced in co-cultures of TLR-ligand stimulated slanMo and NK cells, whereas much lower levels were contained in cultures of slanMo and NK cells alone. Moreover, TNF-α and IFN-γ concentrations in slanMo/NK cell co-cultures exceeded those in CD14+ monocyte/NK cell and slanMo/T cell co-cultures. Importantly, TNF-α and IFN-γ that was produced in TLR-ligand stimulated slanMo/NK cell co-cultures induced senescence in different melanoma cell lines, as indicated by reduced melanoma cell proliferation, increased senescence-associated β-galactosidase expression, p21 upregulation, and induction of a senescence-associated secretory phenotype (SASP). Taken together, we identified a role for slanMo and NK cells in a collaborative innate immune defense against melanoma by generating a tumor senescence-inducing microenvironment. We conclude that enhancing the synergistic innate immune crosstalk of slanMo and NK cells could improve current immunotherapeutic approaches in melanoma.
Collapse
Affiliation(s)
- Felix Funck
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Pahl
- Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lukas Freund
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Galina Gräbe
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvia Pezer
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany.,, National Center for Tumor Diseases, Heidelberg, Germany
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience MI3, Mannheim, Germany
| | - Adelheid Cerwenka
- Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience MI3, Mannheim, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Hipolito J, Peretz-Soroka H, Zhang M, Yang K, Karimi-Abdolrezaee S, Lin F, Kung SK. A New Microfluidic Platform for Studying Natural Killer Cell and Dendritic Cell Interactions. MICROMACHINES 2019; 10:mi10120851. [PMID: 31817408 PMCID: PMC6952968 DOI: 10.3390/mi10120851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022]
Abstract
The importance of the bi-directional natural killer–dendritic cell crosstalk in coordinating anti-tumour and anti-microbial responses in vivo has been well established. However, physical parameters associated with natural killer–dendritic cell interactions have not been fully elucidated. We have previously used a simple “Y” shaped microfluidic device to study natural killer cell-migratory responses toward chemical gradients from a conditioned medium of dendritic cells. There are, however, limitations of the Y-shaped microfluidic devices that could not support higher throughput analyses and studies of cell–cell interactions. Here, we report two novel microfluidic devices (D3-Chip, T2-Chip) we applied in advanced studies of natural killer-cell migrations and their interactions with dendritic cells in vitro. The D3-Chip is an improved version of the previously published Y-shaped device that supports high-throughput analyses and docking of the cells of interest in the migration assay before they are exposed to a chemical gradient. The T2-Chip is created to support analyses of natural killer–dendritic cell cell–cell interactions without the requirement of promoting a natural killer cell to migrate long distances to find a loaded dendritic cell in the device. Using these two microfluidic platforms, we observe quantitative differences in the abilities of the immature and lipopolysaccharide-activated mature dendritic cells to interact with activated natural killer cells. The contact time between the activated natural killer cells and immature dendritic cells is significantly longer than that of the mature dendritic cells. There is a significantly higher frequency of an immature dendritic cell coming into contact with multiple natural killer cells and/or making multiple simultaneous contacts with multiple natural killer cells. To contrast, an activated natural killer cell has a significantly higher frequency of coming into contact with the mature dendritic cells than immature dendritic cells. Collectively, these differences in natural killer–dendritic cell interactions may underlie the differential maturation of immature dendritic cells by activated natural killer cells. Further applications of these microfluidic devices in studying natural killer–dendritic cell crosstalk under defined microenvironments shall enrich our understanding of the functional regulations of natural killer cells and dendritic cells in the natural killer–dendritic cell crosstalk.
Collapse
Affiliation(s)
- Jolly Hipolito
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | - Manli Zhang
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
| | - Ke Yang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | | | - Francis Lin
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (F.L.); (S.K.P.K.); Tel.: +1-204-474-9895 (F.L.); +1-204-480-1301 (S.K.P.K.)
| | - Sam K.P. Kung
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Correspondence: (F.L.); (S.K.P.K.); Tel.: +1-204-474-9895 (F.L.); +1-204-480-1301 (S.K.P.K.)
| |
Collapse
|
11
|
Molecular Cloning and Expression Analysis of Interleukin-8 and -10 in Yellow Catfish and in Response to Bacterial Pathogen Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9617659. [PMID: 31317044 PMCID: PMC6601492 DOI: 10.1155/2019/9617659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an important economic freshwater aquaculture species in Asia. However, little is known about its immune response to bacterial pathogen infection. Here, two cytokines, the proinflammatory cytokine interleukin-8 (IL-8) and the anti-inflammatory cytokine interleukin-10 (IL-10), were identified and characterized in the yellow catfish for the first time. We found that the full length of the IL-8 cDNA was 784 bp and contained an open reading frame (ORF) of 336 bp, while the IL-10 gene was 973 bp in length with a 549 bp of ORF. In addition, both the IL-8 and the IL-10 had similar tissue-specific expression patterns. They were more abundant in the spleen and lowest expressed in the liver. Furthermore, IL-10 but not IL-8 was significantly upregulated in the intestine of yellow catfish by feed supplementation of Clostridium butyricum (CB). More importantly, the expression levels of intestinal IL-10 and IL-8 were up- and downregulated by pathogen Aeromonas punctata stimuli with the presence of CB, respectively. Collectively, these results suggest that IL-10 and IL-8 mediate important roles in the immunity of yellow catfish, and feed supplementation of CB may able to reduce the intestinal inflammation caused by bacteria infections through regulating the expression of IL-10 and IL-8.
Collapse
|
12
|
Butterfield LH, Vujanovic L, Santos PM, Maurer DM, Gambotto A, Lohr J, Li C, Waldman J, Chandran U, Lin Y, Lin H, Tawbi HA, Tarhini AA, Kirkwood JM. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J Immunother Cancer 2019; 7:113. [PMID: 31014399 PMCID: PMC6480917 DOI: 10.1186/s40425-019-0552-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Cancer vaccines are designed to promote systemic antitumor immunity and tumor eradication. Cancer vaccination may be more efficacious in combination with additional interventions that may build on or amplify their effects. Methods Based on our previous clinical and in vitro studies, we designed an antigen-engineered DC vaccine trial to promote a polyclonal CD8+ and CD4+ T cell response against three shared melanoma antigens. The 35 vaccine recipients were then randomized to receive one month of high-dose IFNα or observation. Results The resulting clinical outcomes were 2 partial responses, 8 stable disease and 14 progressive disease among patients with measurable disease using RECIST 1.1, and, of 11 surgically treated patients with no evidence of disease (NED), 4 remain NED at a median follow-up of 3 years. The majority of vaccinated patients showed an increase in vaccine antigen-specific CD8+ and CD4+ T cell responses. The addition of IFNα did not appear to improve immune or clinical responses in this trial. Examination of the DC vaccine profiles showed that IL-12p70 secretion did not correlate with immune or clinical responses. In depth immune biomarker studies support the importance of circulating Treg and MDSC for development of antigen-specific T cell responses, and of circulating CD8+ and CD4+ T cell subsets in clinical responses. Conclusions DC vaccines are a safe and reliable platform for promoting antitumor immunity. This combination with one month of high dose IFNα did not improve outcomes. Immune biomarker analysis in the blood identified several predictive and prognostic biomarkers for further analysis, including MDSC. Trial registration NCT01622933. Electronic supplementary material The online version of this article (10.1186/s40425-019-0552-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Patricia M Santos
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Deena M Maurer
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| | - Chunlei Li
- UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Tsinghua University School of Medicine, Beijing, China
| | - Jacob Waldman
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huang Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein A Tawbi
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmad A Tarhini
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,Present address: Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - John M Kirkwood
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA
| |
Collapse
|
13
|
Vujanovic L, Chuckran C, Lin Y, Ding F, Sander CA, Santos PM, Lohr J, Mashadi-Hossein A, Warren S, White A, Huang A, Kirkwood JM, Butterfield LH. CD56 dim CD16 - Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol 2019; 10:14. [PMID: 30761123 PMCID: PMC6361792 DOI: 10.3389/fimmu.2019.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16− NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16− NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16− NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16− NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Lin
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fei Ding
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cindy A Sander
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia M Santos
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sarah Warren
- NanoString Technologies, Seattle, WA, United States
| | - Andy White
- NanoString Technologies, Seattle, WA, United States
| | - Alan Huang
- NanoString Technologies, Seattle, WA, United States
| | - John M Kirkwood
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lisa H Butterfield
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Van Acker HH, Beretta O, Anguille S, De Caluwé L, Papagna A, Van den Bergh JM, Willemen Y, Goossens H, Berneman ZN, Van Tendeloo VF, Smits EL, Foti M, Lion E. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells. Oncotarget 2017; 8:13652-13665. [PMID: 28099143 PMCID: PMC5355127 DOI: 10.18632/oncotarget.14622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Ottavio Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Lien De Caluwé
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Angela Papagna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Johan M Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maria Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
15
|
Poznanski SM, Lee AJ, Nham T, Lusty E, Larché MJ, Lee DA, Ashkar AA. Combined Stimulation with Interleukin-18 and Interleukin-12 Potently Induces Interleukin-8 Production by Natural Killer Cells. J Innate Immun 2017. [PMID: 28633138 DOI: 10.1159/000477172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.
Collapse
Affiliation(s)
- Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC, Gibson GA, Storkus WJ, Butterfield LH. Tumor-Derived α-Fetoprotein Directly Drives Human Natural Killer-Cell Activation and Subsequent Cell Death. Cancer Immunol Res 2017; 5:493-502. [PMID: 28468916 DOI: 10.1158/2326-6066.cir-16-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/22/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) patients with reduced natural killer (NK)-cell numbers and function have been shown to have a poor disease outcome. Mechanisms underlying NK-cell deficiency and dysfunction in HCC patients remain largely unresolved. α-Fetoprotein (AFP) is an oncofetal antigen produced by HCC. Previous studies demonstrated that tumor-derived AFP (tAFP) can indirectly impair NK-cell activity by suppressing dendritic cell function. However, a direct tAFP effect on NK cells remains unexplored. The purpose of this study was to examine the ability of cord blood-derived AFP (nAFP) and that of tAFP to directly modulate human NK-cell activity and longevity in vitro Short-term exposure to tAFP and, especially, nAFP proteins induced a unique proinflammatory, IL2-hyperresponsive phenotype in NK cells as measured by IL1β, IL6, and TNF secretion, CD69 upregulation, and enhanced tumor cell killing. In contrast, extended coculture with tAFP, but not nAFP, negatively affected long-term NK-cell viability. NK-cell activation was directly mediated by the AFP protein itself, whereas their viability was affected by hydrophilic components within the low molecular mass cargo that copurified with tAFP. Identification of the distinct impact of circulating tAFP on NK-cell function and viability may be crucial to developing a strategy to ameliorate HCC patient NK-cell functional deficits. Cancer Immunol Res; 5(6); 493-502. ©2017 AACR.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Elizabeth C Stahl
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania
| | - Angela D Pardee
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pennsylvania
| | - David A Geller
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Allan Tsung
- University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Gregory A Gibson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pennsylvania
| | - Walter J Storkus
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania.,Department of Dermatology, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| | - Lisa H Butterfield
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pennsylvania. .,Department of Medicine, University of Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Department of Surgery, University of Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Petrackova M, Hamsikova E, Duskova M, Ptackova P, Klamova H, Humlova Z, Vonka V. Predictive value of serum cytokine levels in chronic myeloid leukemia patients. Immunol Lett 2016; 179:61-67. [PMID: 27637765 DOI: 10.1016/j.imlet.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
Serum samples taken at diagnosis in 28 chronic myeloid leukemia patients were tested for the presence of 20 cytokines by a magnetic bead-based Bio-plex immunoassay. According to complete cytogenetic remission achieved at 12 months of treatment, patients were divided into groups with either optimal or non-optimal outcome. Patients with increased cytokine levels tended to react optimally to the therapy more frequently than those others. TGF-β3 was a notable exception; its levels were significantly higher in patients with non-optimal outcomes. Further analysis enabled us to define two combinations of cytokine cut-off levels - namely low TGF-β3 and either high IL-8 or high MCP-1-each of which corresponded to therapy outcome better than either Sokal or EUTOS scores.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers
- Cytokines/blood
- Female
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Martina Petrackova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | - Eva Hamsikova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Duskova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavlina Ptackova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Klamova
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Humlova
- Department of Immunology and Microbiology, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Vladimir Vonka
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
18
|
Butterfield LH. Lessons learned from cancer vaccine trials and target antigen choice. Cancer Immunol Immunother 2016; 65:805-12. [PMID: 26842127 DOI: 10.1007/s00262-016-1801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023]
Abstract
A wide variety of tumor antigens have been targeted in cancer immunotherapy studies. Traditionally, the focus has been on commonly overexpressed antigens shared across many patients and/or tumor types. As the field has progressed, the identity of human tumor rejection antigens has broadened. Immunologic monitoring of clinical trials has slowly elucidated candidate biomarkers of immune response and clinical response, and conversely, of immune dysfunction and suppression. We have utilized MART-1/Melan-A in our melanoma studies and observed a high frequency of immune responses and several significant clinical responses in patients vaccinated with this melanosomal protein. Alpha-fetoprotein is a shared, overexpressed tumor antigen and secreted glycoprotein that we have tested in hepatocellular cancer vaccines. Our recent studies have identified immunosuppressive and immune-skewing activities of this antigen. The choice of target antigen and its form can have unexpected effects.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Departments of Medicine, Surgery and Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Liu F, Qin J, Zhang H, Li N, Shan M, Lan L, Wang Y. IP-10 and fractalkine induce cytotoxic phenotype of murine NK cells. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pardee AD, Yano H, Weinstein AM, Ponce AAK, Ethridge AD, Normolle DP, Vujanovic L, Mizejewski GJ, Watkins SC, Butterfield LH. Route of antigen delivery impacts the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer 2015. [PMID: 26199728 PMCID: PMC4509479 DOI: 10.1186/s40425-015-0077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Dendritic cells (DC) are uniquely equipped to capture, process, and present antigens from their environment. The context in which an antigen is acquired by DC helps to dictate the subsequent immune response. Cancer vaccination promotes antitumor immunity by directing an immune response to antigens expressed by tumors. We have tested the tumor-associated antigen alpha-fetoprotein (AFP) as an immunotherapy target. The majority of hepatocellular carcinomas (HCC) upregulate and secrete this oncofetal antigen. Methods To develop cancer vaccines for HCC capable of promoting potent tumor-specific T cell responses, we tested adenovirally-encoded synthetic AFP, with or without its signal sequence, as well as protein forms of AFP and compared intracellular routing and subsequent antigen-specific CD8+ and CD4+ T cell responses. Results Surprisingly, the secreted form of antigen was superior for both CD4+ and CD8+ T cell activation. We also examined the mechanism through which AFP protein is endocytosed and trafficked in human DC. We identify the mannose receptor (MR/CD206) as the primary uptake pathway for both normal cord blood-derived AFP (nAFP) and tumor-derived AFP (tAFP) proteins. While in healthy donors, nAFP and tAFP were cross-presented to CD8+ T cells similarly and CD4+ T cell responses were dependent upon MR-mediated uptake. In HCC patient cells, tAFP was more immunogenic, and CD4+ T cell responses were not MR-dependent. Conclusions Secreted, cytoplasmically retained, and endocytosed forms of AFP utilize unique uptake and processing pathways, resulting in different immunologic responses from the induced antigen-specific CD4+ and CD8+ T cells and between healthy donors and HCC patients. Collectively, these data elucidate pathways of spontaneous and induced anti-tumor immunity in HCC patients to this secreted antigen. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0077-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hiroshi Yano
- Departments of Medicine, Pittsburgh, PA 15261 USA
| | | | | | | | | | - Lazar Vujanovic
- Departments of Medicine, Pittsburgh, PA 15261 USA ; Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Gerald J Mizejewski
- Non-paid Advisor at the Wadsworth Center, New York State Department of Health, Albany, NY 12201 USA
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Lisa H Butterfield
- Departments of Medicine, Pittsburgh, PA 15261 USA ; Departments of Surgery, Pittsburgh, PA 15261 USA ; Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA ; University of Pittsburgh Cancer Institute, Hillman Cancer Center 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213 USA
| |
Collapse
|
21
|
Vujanovic L, Shi J, Kirkwood JM, Storkus WJ, Butterfield LH. Molecular mimicry of MAGE-A6 and Mycoplasma penetrans HF-2 epitopes in the induction of antitumor CD8 + T-cell responses. Oncoimmunology 2014; 3:e954501. [PMID: 25960935 DOI: 10.4161/21624011.2014.954501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
A promising vaccine strategy for the treatment of cancer involves the use of vaccines incorporating tumor antigen-derived synthetic peptides that can be coordinately recognized by specific CD4+ and CD8+ T-cells. Previously, we reported that a MAGE-A6-derived peptide (MAGE-A6172-187) and its highly-immunogenic and cross-reactive homolog derived from Mycoplasma penetrans HF-2 permease (HF-2216-229) are promiscuously presented by multiple HLA-DR alleles to responder CD4+ T-cells obtained from healthy donors and melanoma patients. Here, we investigated whether these same peptides could concomitantly stimulate cross-reactive MAGE-A6-specific CD8+ T-cell responses in vitro using cells isolated from HLA-A*0201 (HLA-A2)+ healthy individuals and patients with melanoma. We now show that MAGE-A6172-187 and, even more so, HF-2216-229, induce memory CD8+ T cells that recognize HLA-A2+ MAGE-A6+ tumor target cells. The immunogenicity of these peptides was at least partially attributed to their embedded MAGE-A6176-185 and HF-2220-229 "homologous" sequences. The functional avidity of HF-2216-229 peptide-primed CD8+ T cells for the MAGE-A6172-187 peptide was more than 100-fold greater than that of CD8+ T cells primed with the corresponding MAGE-A6 peptide. Additionally, these 2 peptides were recognized in interferon γ (IFNγ) and granzyme B ELISPOT assays by CD8+ T-cell clones displaying variable T-cell receptor (TCR) Vβ usage. These data suggest that the immune cross-reactivity of the MAGE-A6172-187 and HF-2216-229 peptides extends to CD8+ T cells, at least in HLA-A2+ donors, and supports the potential translational utility of these epitopes in clinical vaccine formulations and for immunomonitoring of cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- AdV, recombinant adenoviral vector
- CD8+ T-cell
- CTL, cytotoxic T lymphocyte
- EBV, Epstein-Barr virus
- FBS, fetal bovine serum
- HD, healthy donor
- HLA, human leukocyte antigen
- HPLC, high-performance liquid chromatography
- IVS, in vitro stimulation
- MACS, Magnetic-Activated Cell Sorting
- MAGE-A6
- MOI, multiplicity of infection
- Mycoplasma penetrans
- PBMC, peripheral blood mononuclear cell
- PFU, plaque forming units
- RT-PCR, reverse transcription polymerase chain reaction
- TAA, tumor associated antigen
- TCM, T cell media
- TCR, T-cell receptor
- epitope mimic
- iDC, immature dendritic cells
- mDC, mature dendritic cells
- melanoma
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - Jian Shi
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA
| | - Walter J Storkus
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Immunology ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Dermatology ; Pittsburgh, PA USA
| | - Lisa H Butterfield
- University of Pittsburgh Cancer Institute ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Medicine ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Immunology ; Pittsburgh, PA USA ; University of Pittsburgh School of Medicine; Department of Surgery ; Pittsburgh, PA USA
| |
Collapse
|
22
|
Comet NR, Aguiló JI, Rathoré MG, Catalán E, Garaude J, Uzé G, Naval J, Pardo J, Villalba M, Anel A. IFNα signaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology 2014; 3:e948705. [PMID: 25960930 DOI: 10.4161/21624011.2014.948705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ-/-) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity ex vivo. Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset. In the present work, we sought to analyze whether interleukin-15 (IL-15) and/or interferon-α (IFNα) mediate PKC-θ-dependent antitumor NK cell function. We found that IL-15 improves NK cell viability, granzyme B expression, degranulation capacity and interferon-γ (IFNγ) secretion independently of PKC-θ. In contrast, we found that IFNα improves the degranulation capability of NK cells against target cancer cells in a PKC-θ-dependent fashion both ex vivo and in vivo. Furthermore, IFNα induces PKC-θ auto-phosphorylation in NK cells, in a signal transduction pathway involving both phosphatidylinositol-3-kinase (PI3K) and phospholipase-C (PLC) activation. PKC-θ dependence was further implicated in IFNα-induced transcriptional upregulation of chemokine (C-X-C motif) ligand 10 (CXCL10), a signal transducer and activator of transcription-1 (STAT-1)-dependent target of IFNα. The absence of PKC-θ did not affect IFNα-induced STAT-1 Tyr701 phosphorylation but affected the increase in STAT-1 phosphorylation on Ser727, attenuating CXCL10 secretion. This connection between IFNα and PKC-θ in NK cells may be exploited in NK cell-based tumor immunotherapy.
Collapse
Key Words
- CDK8, cyclin-dependent kinase 8
- CXCL10
- CXCL10, (C-X-C motif) ligand 10/CXCL10
- FCS, fetal calf serum
- IFN-α, IL-15
- IFNA1
- IFNα, interferon-α
- IFNγ, interferon-γ, IFNG
- IL-15, interleukin-15/IL15
- MACS, magnetic cell separation
- MEF, murine embryonic fibroblast
- MHC-I, major histocompability complex class I/MHC-I
- NK cells
- NK, natural killer
- PI3K, phosphatidylinositol-3-kinase
- PKC-θ
- PKC-θ, protein kinase C-θ, PRKCQ
- PLC, phospholipase-C
- Poly I:C, poly-inosinic:cytidilic acid
- RT-PCR, real-time polymerase chain reaction
- STAT-1, signal transducer and activator of transcription-1/STAT1.
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Natalia R Comet
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Juan Ignacio Aguiló
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Moeez G Rathoré
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Elena Catalán
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Johan Garaude
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Gilles Uzé
- CNRS UMR 5235; Université de Montpellier II; Place Eugene Bataillon ; Montpellier, France
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group; IIS Aragón; Biomedical Research Center of Aragón (CIBA); Nanoscience Institute of Aragon (INA); Zaragoza, Spain ; Aragón I+D Foundation (ARAID) ; Zaragoza, Spain
| | - Martín Villalba
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France ; Institut de Recherche en Biothérapie (IRB); CHU Montpellier ; Montpellier, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| |
Collapse
|
23
|
Pardee AD, Shi J, Butterfield LH. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5723-32. [PMID: 25355916 DOI: 10.4049/jimmunol.1400725] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several tumor-derived factors have been implicated in dendritic cell (DC) dysfunction in cancer patients. α-fetoprotein (AFP) is an oncofetal Ag that is highly expressed in abnormalities of prenatal development and several epithelial cancers, including hepatocellular carcinoma (HCC). In HCC patients exhibiting high levels of serum AFP, we observed a lower ratio of myeloid/plasmacytoid circulating DCs compared with patients with low serum AFP levels and healthy donors. To test the effect of AFP on DC differentiation in vitro, peripheral blood monocytes from healthy donors were cultured in the presence of cord blood-derived normal AFP (nAFP) or HCC tumor-derived AFP (tAFP), and DC phenotype and function were assessed. Although the nAFP and tAFP isoforms only differ at one carbohydrate group, low (physiological) levels of tAFP, but not nAFP, significantly inhibited DC differentiation. tAFP-conditioned DCs expressed diminished levels of DC maturation markers, retained a monocyte-like morphology, exhibited limited production of inflammatory mediators, and failed to induce robust T cell proliferative responses. Mechanistic studies revealed that the suppressive activity of tAFP is dependent on the presence of low molecular mass (LMM) species that copurify with tAFP and function equivalently to the LMM fractions of both tumor and nontumor cell lysates. These data reveal the unique ability of tAFP to serve as a chaperone protein for LMM molecules, both endogenous and ubiquitous in nature, which function cooperatively to impair DC differentiation and function. Therefore, novel therapeutic approaches that antagonize the regulatory properties of tAFP will be critical to enhance immunity and improve clinical outcomes.
Collapse
Affiliation(s)
- Angela D Pardee
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jian Shi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
24
|
Mahmood S, Nandagopal S, Sow I, Lin F, Kung SKP. Microfluidic-based, live-cell analysis allows assessment of NK-cell migration in response to crosstalk with dendritic cells. Eur J Immunol 2014; 44:2737-48. [DOI: 10.1002/eji.201344244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Sajid Mahmood
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Saravanan Nandagopal
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Ibrahim Sow
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Francis Lin
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Sam K. P. Kung
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
25
|
Naveh HP, Vujanovic L, Butterfield LH. Cellular immunity induced by a recombinant adenovirus- human dendritic cell vaccine for melanoma. J Immunother Cancer 2013; 1:19. [PMID: 24829755 PMCID: PMC4019908 DOI: 10.1186/2051-1426-1-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022] Open
Abstract
Background Human Adenoviral vectors (HAdV) are immunogenic vectors which have been tested in many vaccination and gene therapy settings. Dendritic cells (DC) transduced by genetically engineered HAdV-5 (HAdV-5/DC), are investigational cancer vaccines being tested clinically. We have previously examined immune responses to HAdV-5 -encoded melanoma tumor antigens. Here, we determined whether the HAdV-5/DC also present immunogenic HAdV-5 vector-derived antigens, and characterized the cellular immune response to the viral as well as encoded melanoma tumor antigens. Methods Both CD4+ and CD8+ HAdV-5-specific T cell responses were examined in vitro, with cells from both 8 healthy donors (HD) and 2 melanoma patients. PBMC were stimulated weekly with HAdV-5/DC and responses were examined after each stimulation. We also tested HAdV-5 neutralizing antibody levels and natural killer (NK) cell and regulatory T cell (Treg) activation and expansion in vitro. Results HAdV-5/DC rapidly induced a high frequency of type 1 cytokine producing HAdV-5-specific CD8+ and CD4+ T cells. IFNγ and TNFα-producing T cells predominate. Those with pre-existing cellular memory to HAdV-5 had more robust responses to the HAdV-5 as well as tumor-associated antigens. NK cells are activated while Treg are only minimally and transiently expanded. Conclusions This study demonstrates that HAdV-5/DC promote strong type I cellular immunity to viral vector-derived antigens as well as to the encoded tumor antigens. The cytokine and chemokine milieu produced by HAdV-5/DC and the activated HAdV-5-specific T cells may enhance responses to encoded tumor antigens as well. These properties make HAdV-5/DC a cancer vaccine capable of activating type 1 virus and tumor antigen-specific immunity in a cooperative way.
Collapse
Affiliation(s)
- Hadas Prag Naveh
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| | - Lisa H Butterfield
- Department of Medicine, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; Department of Surgery, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; Department of Immunology, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA ; University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells. Cancer Gene Ther 2013; 20:469-77. [PMID: 23846252 PMCID: PMC3775601 DOI: 10.1038/cgt.2013.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/15/2013] [Indexed: 12/20/2022]
Abstract
Murine dendritic cells (DC) transduced to express the Type-1 transactivator T-bet (i.e. mDC.Tbet) and delivered intratumorally as a therapy are superior to control wild-type DC in slowing the growth of established subcutaneous MCA205 sarcomas in vivo. Optimal antitumor efficacy of mDC.Tbet-based gene therapy was dependent on host natural killer (NK) cells and CD8(+) T cells, and required mDC.Tbet expression of major histocompatibility complex class I molecules, but was independent of the capacity of the injected mDC.Tbet to produce proinflammatory cytokines (interleukin-12 family members or interferon-γ) or to migrate to tumor-draining lymph nodes based on CCR7 ligand chemokine recruitment. Conditional (CD11c-DTR) or genetic (BATF3(-/-)) deficiency in host antigen-crosspresenting DC did not diminish the therapeutic action of intratumorally delivered wild-type mDC.Tbet. Interestingly, we observed that intratumoral delivery of mDC.Tbet (versus control mDC.Null) promoted the acute infiltration of NK cells and naive CD45RB(+) T cells into the tumor microenvironment (TME) in association with elevated expression of NK- and T-cell-recruiting chemokines by mDC.Tbet. When taken together, our data support a paradigm for extranodal (cross)priming of therapeutic Type-1 immunity in the TME after intratumoral delivery of mDC.Tbet-based gene therapy.
Collapse
|
27
|
Wong JL, Berk E, Edwards RP, Kalinski P. IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment. Cancer Res 2013; 73:4653-62. [PMID: 23761327 DOI: 10.1158/0008-5472.can-12-4366] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokine-driven interactions of immune cells are essential for effective antitumor immunity. Human natural killer (NK) cells can be primed by the interleukin (IL)-1-related proinflammatory cytokine IL-18 for unique helper activity, which promotes dendritic cell (DC) activation and DC-mediated induction of type-1 immune responses against cancer. Here, we show that such IL-18-primed "helper" NK cells produce high levels of the immature DC (iDC)-attracting chemokines CCL3 and CCL4 upon exposure to tumor cells or the additional inflammatory signals IFN-α, IL-15, IL-12, or IL-2. These "helper" NK cells potently attract iDCs in a CCR5-dependent mechanism and induce high DC production of CXCR3 and CCR5 ligands (CXCL9, CXCL10, and CCL5), facilitating the subsequent recruitment of type-1 effector CD8(+) T (Teff) cells. Using cells isolated from the malignant ascites of patients with advanced ovarian cancer, we show that "helper" NK cell-inducing factors can be used to enhance local production of Teff cell-recruiting chemokines. Our findings reveal the unique chemokine expression profile of "helper" NK cells and highlight the potential for using two-signal-activated NK cells to promote homing of type-1 immune effectors to the human tumor environment.
Collapse
Affiliation(s)
- Jeffrey L Wong
- Department of Surgery, University of Pittsburgh, Hillman Cancer Center, UPCI Research Pavilion, Room 1.46, 5117 Center Avenue, Pittsburgh, PA 15213-1863, USA
| | | | | | | |
Collapse
|
28
|
Ott PA, Henry T, Baranda SJ, Frleta D, Manches O, Bogunovic D, Bhardwaj N. Inhibition of both BRAF and MEK in BRAF(V600E) mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties. Cancer Immunol Immunother 2013; 62:811-22. [PMID: 23306863 PMCID: PMC11028975 DOI: 10.1007/s00262-012-1389-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAF(V600) mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAF(V600) mutant melanoma. METHODS We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib. RESULTS Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAF(V600E) mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations. CONCLUSIONS BRAF(V600E) mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.
Collapse
Affiliation(s)
- Patrick A Ott
- New York University Cancer Institute, New York University School of Medicine, 522 First Avenue, SRB 1303, New York, NY, 10016, USA.
| | | | | | | | | | | | | |
Collapse
|