1
|
Ahmedna T, Khela H, Weber-Levine C, Azad TD, Jackson CM, Gabrielson K, Bettegowda C, Rincon-Torroella J. The Role of γδ T-Lymphocytes in Glioblastoma: Current Trends and Future Directions. Cancers (Basel) 2023; 15:5784. [PMID: 38136330 PMCID: PMC10741533 DOI: 10.3390/cancers15245784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.
Collapse
Affiliation(s)
- Taha Ahmedna
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Harmon Khela
- Department of Biology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Public Health Studies, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Tej D. Azad
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Roato I, Mauceri R, Notaro V, Genova T, Fusco V, Mussano F. Immune Dysfunction in Medication-Related Osteonecrosis of the Jaw. Int J Mol Sci 2023; 24:ijms24097948. [PMID: 37175652 PMCID: PMC10177780 DOI: 10.3390/ijms24097948] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is multifactorial and there is a substantial consensus on the role of antiresorptive drugs (ARDs), including bisphosphonates (BPs) and denosumab (Dmab), as one of the main determinants. The time exposure, cumulative dose and administration intensity of these drugs are critical parameters to be considered in the treatment of patients, as cancer patients show the highest incidence of MRONJ. BPs and Dmab have distinct mechanisms of action on bone, but they also exert different effects on immune subsets which interact with bone cells, thus contributing to the onset of MRONJ. Here, we summarized the main effects of ARDs on the different immune cell subsets, which consequently affect bone cells, particularly osteoclasts and osteoblasts. Data from animal models and MRONJ patients showed a deep interference of ARDs in modulating immune cells, even though a large part of the literature concerns the effects of BPs and there is a lack of data on Dmab, demonstrating the need to further studies.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Vincenzo Notaro
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Vittorio Fusco
- Medical Oncology Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
- Department of Integrated Research Activity and Innovation (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Federico Mussano
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
3
|
Roe K. Treatment alternatives for multidrug-resistant fungal pathogens. Drug Discov Today 2023; 28:103596. [PMID: 37086779 DOI: 10.1016/j.drudis.2023.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Several fungal pathogens are becoming resistant to conventional fungal infection treatments, and some fungal pathogens have become multidrug resistant. Alternative treatments include fungal vaccines, natural or synthetic monoclonal antibody (mAb) injections, or potentially natural or synthetic mAbs produced in vivo by packaged mRNA. Specifically synthesized proteins can mask distinctive pathogenic fungal surface proteins and target pathogenic fungal proteins to stop fungal infections. Treatments could use direct injections or injections of packaged mRNA with instructions for patient synthesis of either the natural or synthetic mAbs. These alternative treatments offer potentially significant advantages compared with existing treatments for fungal pathogens. Teaser: New fungal pathogen treatment approaches can use natural or synthetic monoclonal antibodies to activate immune cells and treat specific fungal infections that are now multidrug resistant to conventional antifungal drugs.
Collapse
|
4
|
Abstract
Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.
Collapse
|
5
|
In Vitro Expansion of Vδ1+ T Cells from Cord Blood by Using Artificial Antigen-Presenting Cells and Anti-CD3 Antibody. Vaccines (Basel) 2023; 11:vaccines11020406. [PMID: 36851283 PMCID: PMC9961230 DOI: 10.3390/vaccines11020406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
γδ T cells have the potential for adoptive immunotherapy since they respond to bacteria, viruses, and tumors. However, these cells represent a small fraction of the peripheral T-cell pool and require activation and proliferation for clinical benefits. In cord blood, there are some γδ T cells, which exhibit a naïve phenotype, and mostly include Vδ1+ T cells. In this study, we investigated the effect of CD3 signaling on cord blood γδ T-cell proliferation using K562-based artificial antigen presenting cells expressing costimulatory molecules. There were significantly more Vδ1+ T cells in the group stimulated with anti-CD3 antibody than in the group without. In cultured Vδ1+ T cells, DNAM-1 and NKG2D were highly expressed, but NKp30 and NKp44 showed low expression. Among various target cells, Vδ1+ T cells showed the highest cytotoxicity against U937 cells, but Daudi and Raji cells were not susceptible to Vδ1+ T cells. The major cytokines secreted by Vδ1+ T cells responding to U937 cells were Granzyme B, IFN-γ, and sFasL. Cytotoxicity by Vδ1+ T cells correlated with the expression level of PVR and Nectin of DNAM-1 ligands on the surface of target cells. Compared to Vδ2+ T cells in peripheral blood, cord blood Vδ1+ T cells showed varying cytotoxicity patterns depending on the target cells. Here, we determined the ideal conditions for culturing cord blood Vδ1+ T cells by observing that Vδ1+ T cells were more sensitive to CD3 signals than other subtypes of γδ T cells in cord blood. Cultured cord blood Vδ1+ T cells recognized target cells through activating receptors and secreted numerous cytotoxic cytokines. These results are useful for the development of tumor immunotherapy based on γδ T cells.
Collapse
|
6
|
Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102040. [PMID: 36297474 PMCID: PMC9610635 DOI: 10.3390/pharmaceutics14102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive positron emission tomography (PET) imaging of immune cells is a powerful approach for monitoring the dynamics of immune cells in response to immunotherapy. Despite the clinical success of many immunotherapeutic agents, their clinical efficacy is limited to a subgroup of patients. Conventional imaging, as well as analysis of tissue biopsies and blood samples do not reflect the complex interaction between tumour and immune cells. Consequently, PET probes are being developed to capture the dynamics of such interactions, which may improve patient stratification and treatment evaluation. The clinical efficacy of cancer immunotherapy relies on both the infiltration and function of cytotoxic immune cells at the tumour site. Thus, various immune biomarkers have been investigated as potential targets for PET imaging of immune response. Herein, we provide an overview of the most recent developments in PET imaging of immune response, including the radiosynthesis approaches employed in their development.
Collapse
|
7
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Weimer P, Wellbrock J, Sturmheit T, Oliveira-Ferrer L, Ding Y, Menzel S, Witt M, Hell L, Schmalfeldt B, Bokemeyer C, Fiedler W, Brauneck F. Tissue-Specific Expression of TIGIT, PD-1, TIM-3, and CD39 by γδ T Cells in Ovarian Cancer. Cells 2022; 11:cells11060964. [PMID: 35326415 PMCID: PMC8946192 DOI: 10.3390/cells11060964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Phenotypic characterization of γδ T cells in the MALs (malignant ascites lymphocytes), TILs (tumor infiltrating lymphocytes), and PBLs (peripheral blood lymphocytes) of ovarian cancer (OvCA) patients is lacking. Therefore, we quantified γδ T cell prevalence in MAL, TIL, and PBL specimens from n = 18 OvCA patients and PBL from age-matched healthy donors (HD, n = 14). Multicolor flow cytometry was performed to evaluate the expression of inhibitory receptors (TIGIT, PD-1 and TIM-3), stimulatory receptors (Ox40), and purinergic ectoenzymes (CD39 and CD73) on γδ T cell subsets. We identified an abundant infiltration of Vδ1 T cells in the MALs and TILs. These cells varied in their differentiation: The majority of Vδ1 TILs displayed an effector memory (EM) phenotype, whereas Vδ1 MALs had a more mature phenotype of terminally differentiated effector memory cells (TEMRA) with high CD45RA expression. TIGIT and TIM-3 were abundantly expressed in both MALs and PBLs, whereas Vδ1 TILs exhibited the highest levels of PD-1, CD39, and Ox40. We also observed specific clusters on mature differentiation stages for the analyzed molecules. Regarding co-expression, Vδ1 TILs showed the highest levels of cells co-expressing TIGIT with PD-1 or CD39 compared to MALs and PBLs. In conclusion, the Vδ1 T cell population showed a high prevalence in the MALs and primary tumors of OvCA patients. Due to their (co-)expression of targetable immune receptors, in particular TIGIT with PD-1 and CD39 in TILs, Vδ1 T cell-based approaches combined with the inhibition of these targets might represent a promising strategy for OvCA.
Collapse
Affiliation(s)
- Pauline Weimer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- Correspondence: (J.W.); (F.B.)
| | - Tabea Sturmheit
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- 2cureX GmbH, 20251 Hamburg, Germany;
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Stephan Menzel
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | | | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (L.O.-F.); (Y.D.); (B.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (P.W.); (T.S.); (M.W.); (C.B.); (W.F.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Correspondence: (J.W.); (F.B.)
| |
Collapse
|
9
|
Tissue-resident immunity in the female and male reproductive tract. Semin Immunopathol 2022; 44:785-799. [PMID: 35488095 PMCID: PMC9053558 DOI: 10.1007/s00281-022-00934-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The conception of how the immune system is organized has been significantly challenged over the last years. It became evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune cells continuously reside in tissues until being reactivated, e.g., by a recurring pathogen or other stimuli. Consequently, the concept of tissue-resident immunity has emerged, and substantial evidence is now available to support its pivotal function in maintaining tissue homeostasis, sensing challenges and providing antimicrobial protection. Surprisingly, insights on tissue-resident immunity in the barrier tissues of the female reproductive tract are sparse and only slowly emerging. The need for protection from vaginal and amniotic infections, the uniqueness of periodic tissue shedding and renewal of the endometrial barrier tissue, and the demand for a tailored decidual immune adaptation during pregnancy highlight that tissue-resident immunity may play a crucial role in distinct compartments of the female reproductive tract. This review accentuates the characteristics of tissue-resident immune cells in the vagina, endometrium, and the decidua during pregnancy and discusses their functional role in modulating the risk for infertility, pregnancy complications, infections, or cancer. We here also review data published to date on tissue-resident immunity in the male reproductive organs, which is still a largely uncharted territory.
Collapse
|
10
|
Brauneck F, Weimer P, Schulze Zur Wiesch J, Weisel K, Leypoldt L, Vohwinkel G, Fritzsche B, Bokemeyer C, Wellbrock J, Fiedler W. Bone Marrow-Resident Vδ1 T Cells Co-express TIGIT With PD-1, TIM-3 or CD39 in AML and Myeloma. Front Med (Lausanne) 2021; 8:763773. [PMID: 34820398 PMCID: PMC8606547 DOI: 10.3389/fmed.2021.763773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background: γδ T cells represent a unique T cell subpopulation due to their ability to recognize cancer cells in a T cell receptor- (TCR) dependent manner, but also in a non-major histocompatibility complex- (MHC) restricted way via natural killer receptors (NKRs). Endowed with these features, they represent attractive effectors for immuno-therapeutic strategies with a better safety profile and a more favorable anti-tumor efficacy in comparison to conventional αβ T cells. Also, remarkable progress has been achieved re-activating exhausted T lymphocytes with inhibitors of co-regulatory receptors e.g., programmed cell death protein 1 (PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT) and of the adenosine pathway (CD39, CD73). Regarding γδ T cells, little evidence is available. This study aimed to immunophenotypically characterize γδ T cells from patients with diagnosed acute myeloid leukemia (AML) in comparison to patients with multiple myeloma (MM) and healthy donors (HD). Methods: The frequency, differentiation, activation, and exhaustion status of bone marrow- (BM) derived γδ T cells from patients with AML (n = 10) and MM (n = 11) were assessed in comparison to corresponding CD4+ and CD8+ T cells and peripheral blood- (PB) derived γδ T cells from HDs (n = 16) using multiparameter flow cytometry. Results: BM-infiltrating Vδ1 T cells showed an increased terminally differentiated cell population (TEMRAs) in AML and MM in comparison to HDs with an aberrant subpopulation of CD27−CD45RA++ cells. TIGIT, PD-1, TIM-3, and CD39 were more frequently expressed by γδ T cells in comparison to the corresponding CD4+ T cell population, with expression levels that were similar to that on CD8+ effector cells in both hematologic malignancies. In comparison to Vδ2 T cells, the increased frequency of PD-1+-, TIGIT+-, TIM-3+, and CD39+ cells was specifically observed on Vδ1 T cells and related to the TEMRA Vδ1 population with a significant co-expression of PD-1 and TIM-3 together with TIGIT. Conclusion: Our results revealed that BM-resident γδ T cells in AML and MM express TIGIT, PD-1, TIM-3 and CD39. As effector population for autologous and allogeneic strategies, inhibition of co-inhibitory receptors on especially Vδ1 γδ T cells may lead to re-invigoration that could further increase their cytotoxic potential.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pauline Weimer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Leypoldt
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Fritzsche
- University Cancer Center Hamburg (UCCH)-Biobank, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
12
|
Current Perspectives on the Use of off the Shelf CAR-T/NK Cells for the Treatment of Cancer. Cancers (Basel) 2021; 13:cancers13081926. [PMID: 33923528 PMCID: PMC8074108 DOI: 10.3390/cancers13081926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CAR T cells are a type of immunotherapy whereby a patient’s own cells are genetically modified to recognise and kill the patient’s own cancer cells. Currently, each patient has CAR T cells made from their own blood cells. This type of therapy has had a big impact on the treatment of blood cancers, however making an individual treatment from each patient is expensive and labour intensive. This review discusses the potential of making CAR T cells more widely available by producing them in large numbers from healthy donors. Abstract CAR T cells have revolutionised the treatment of haematological malignancies. Despite this, several obstacles still prohibit their widespread use and efficacy. One of these barriers is the use of autologous T cells as the carrier of the CAR. The individual production of CAR T cells results in large variation in the product, greater wait times for treatment and higher costs. To overcome this several novel approaches have emerged that utilise allogeneic cells, so called “off the shelf” CAR T cells. In this Review, we describe the different approaches that have been used to produce allogeneic CAR T to date, as well as their current pre-clinical and clinical progress.
Collapse
|
13
|
Shyr DC, Zhang BM, Saini G, Madani ND, Schultz LM, Patel S, Kristovich K, Fernandez-Vina M, Bertaina A. HLA-haplotype loss after TCRαβ/CD19-depleted haploidentical HSCT. Bone Marrow Transplant 2020; 56:733-737. [PMID: 33070150 DOI: 10.1038/s41409-020-01081-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022]
Affiliation(s)
- David C Shyr
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopin Saini
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Nahid D Madani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liora M Schultz
- Department of Pediatrics, Division of Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Shabnum Patel
- Department of Medicine, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Karen Kristovich
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Alice Bertaina
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Roe K. A proposed treatment for pathogenic enveloped viruses having high rates of mutation or replication. Scand J Immunol 2020; 92:e12928. [PMID: 32640050 PMCID: PMC7361161 DOI: 10.1111/sji.12928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023]
Abstract
Several enveloped viruses, particularly some RNA viruses, have high rates of mutation or replication, which can make them virulent pathogens in humans and other mammals. A proposed treatment could use synthesized proteins to mask pathogenic viral surface proteins to quickly induce an immune attack on specific enveloped viruses by using existing immune cells. One treatment could inject dual‐protein ligand masks into patients' bloodstreams to mask pathogenic surface proteins used to infect mammalian cells. The mammalian immune system already uses an analogous, more complex structure called a pentraxin to neutralize some pathogens by connecting their surface proteins to immune cells. And several types of antiviral peptides have already experimentally demonstrated effectiveness in blocking various viral pathogen infections. These treatments offer advantages, especially for currently untreatable viral pathogens. Furthermore, using dual‐protein ligands and the antigenic memory of some sub‐populations of NK cells would also allow the creation of defacto vaccines based on a host's NK cells, instead of vaccines utilizing CD4 and CD8 α:β T cells, which are limited by the requirement of MHC presentation of the target antigens to α:β T cells. Targeted NK cell vaccines could attack host cells latently or actively infected by intracellular pathogens, even host cells having pathogen downregulated MHC antigen presentation. Eight postulates concerning the effects of pathogen mutation, or change in phenotype from genetic recombination or rearrangement, and replication rates on pathogen vs host dominance are also listed, which should be applicable to viral and non‐viral pathogens.
Collapse
|
15
|
Takimoto R, Miyashita T, Mizukoshi E, Kamigaki T, Okada S, Ibe H, Oguma E, Naitoh K, Yasumoto K, Makita K, Tomita K, Goto S. Identification of prognostic factors for γδT cell immunotherapy in patients with solid tumor. Cytotherapy 2020; 22:329-336. [PMID: 32303429 DOI: 10.1016/j.jcyt.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Activated γδT cells have been shown to exhibit cytotoxicity against tumor cells. However, the efficacy of γδT cell immunotherapy for a large number of patients with solid tumors remains unclear. In this study, we examined the efficacy of γδT cell immunotherapy using in vitro-activated γδT lymphocytes in combination with standard therapies in terms of the survival of patients with solid tumors, and determined prognostic factor for γδT cell immunotherapy. METHODS 131 patients enrolled in this study received γδT cell immunotherapy with or without standard therapies. Their overall survival was analyzed by the Kaplan-Meier with log-rank test and Cox regression methods. Immunological analysis was performed by flow cytometry (FCM) before and after six cycles of γδT cell immunotherapy. RESULTS Multivariable analysis revealed that patients who showed stable disease (SD) and partial response (PR) to γδT cell immunotherapy showed better prognosis than those with a progressive disease (PD) (P = 0.0269, hazard ratio [HR], 0.410, 95% confidence interval [CI], 0.190-0.901). Furthermore, when immunological parameters were examined by FCM, the high Vγ9/γδT ratio (i.e., the high purity of the Vγ9 cells within the adoptively transferred γδT cells) before treatment was found to be a good prognostic factor for γδT cell immunotherapy (P = 0.0142, HR, 0.328, 95% CI, 0.125-0.801). No serious adverse events were reported during γδT cell immunotherapy. CONCLUSION Thus, γδT cell immunotherapy might extend the survival of patients with solid tumors.
Collapse
Affiliation(s)
- Rishu Takimoto
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan.
| | | | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Kamigaki
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | - Shigenori Goto
- Seta Clinic Group, Tokyo, Japan; Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Baumeister SHC, Rambaldi B, Shapiro RM, Romee R. Key Aspects of the Immunobiology of Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:191. [PMID: 32117310 PMCID: PMC7033970 DOI: 10.3389/fimmu.2020.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell transplantation from a haploidentical donor is increasingly used and has become a standard donor option for patients lacking an appropriately matched sibling or unrelated donor. Historically, prohibitive immunological barriers resulting from the high degree of HLA-mismatch included graft-vs.-host disease (GVHD) and graft failure. These were overcome with increasingly sophisticated strategies to manipulate the sensitive balance between donor and recipient immune cells. Three different approaches are currently in clinical use: (a) ex vivo T-cell depletion resulting in grafts with defined immune cell content (b) extensive immunosuppression with a T-cell replete graft consisting of G-CSF primed bone marrow and PBSC (GIAC) (c) T-cell replete grafts with post-transplant cyclophosphamide (PTCy). Intriguing studies have recently elucidated the immunologic mechanisms by which PTCy prevents GVHD. Each approach uniquely affects post-transplant immune reconstitution which is critical for the control of post-transplant infections and relapse. NK-cells play a key role in haplo-HCT since they do not mediate GVHD but can successfully mediate a graft-vs.-leukemia effect. This effect is in part regulated by KIR receptors that inhibit NK cell cytotoxic function when binding to the appropriate HLA-class I ligands. In the context of an HLA-class I mismatch in haplo-HCT, lack of inhibition can contribute to NK-cell alloreactivity leading to enhanced anti-leukemic effect. Emerging work reveals immune evasion phenomena such as copy-neutral loss of heterozygosity of the incompatible HLA alleles as one of the major mechanisms of relapse. Relapse and infectious complications remain the leading causes impacting overall survival and are central to scientific advances seeking to improve haplo-HCT. Given that haploidentical donors can typically be readily approached to collect additional stem- or immune cells for the recipient, haplo-HCT represents a unique platform for cell- and immune-based therapies aimed at further reducing relapse and infections. The rapid advancements in our understanding of the immunobiology of haplo-HCT are therefore poised to lead to iterative innovations resulting in further improvement of outcomes with this compelling transplant modality.
Collapse
Affiliation(s)
- Susanne H C Baumeister
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Benedetta Rambaldi
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Bone Marrow Transplant Unit, Clinical and Experimental Sciences Department, ASST Spedali Civili, University of Pavia, Brescia, Italy
| | - Roman M Shapiro
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rizwan Romee
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
17
|
Roe K. A Proposed Treatment Approach to Treat Lethal Mutating Cancers. Pharm Res 2020; 37:54. [PMID: 32060647 DOI: 10.1007/s11095-020-2776-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
A proposed treatment using dual-peptide ligand masks, that are functional extensions to existing analogous mammalian immune system structures, to bind to cancer cell surface proteins and stop mutating cancers that could evade presently used engineered immune cell therapies. One treatment injects the dual-peptide ligand masks into the blood stream of patients, and another treatment injects the dual-peptide ligand masks into localized cancers to bind to cancer cell surface proteins. The mammalian immune system has long used analogous, but more complex structures called pentraxins to physically link various types of pathogens to immune cells for neutralization. This treatment approach offers potential advantages in increased binding adaptability to mutations in the surface proteins of cancer cells, and potentially lower treatment cost compared to engineered immune cell treatments against cancer, especially against mutating cancer cells, even compared to extremely specific and costly monoclonal antibody treatments or engineered T cell treatments.
Collapse
|
18
|
Baker FL, Bigley AB, Agha NH, Pedlar CR, O'Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ. Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Front Immunol 2020; 10:3082. [PMID: 32038628 PMCID: PMC6993603 DOI: 10.3389/fimmu.2019.03082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
TCR-gamma delta (γδ) T-cells are considered important players in the graft-vs.-tumor effect following allogeneic hematopoietic cell transplantation (alloHCT) and have emerged as candidates for adoptive transfer immunotherapy in the treatment of both solid and hematological tumors. Systemic β-adrenergic receptor (β-AR) activation has been shown to mobilize TCR-γδ T-cells to the blood, potentially serving as an adjuvant for alloHCT and TCR-γδ T-cell therapy. We investigated if systemic β-AR activation, using acute dynamic exercise as an experimental model, can increase the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells isolated from the blood of healthy humans. We also sought to investigate the β-AR subtypes involved, by administering a preferential β1-AR antagonist (bisoprolol) and a non-preferential β1 + β2-AR antagonist (nadolol) prior to exercise as part of a randomized placebo controlled cross-over experiment. We found that exercise mobilized TCR-γδ cells to blood and augmented their ex vivo expansion by ~182% compared to resting blood when stimulated with IL-2 and ZOL for 14-days. Exercise also increased the proportion of CD56+, NKG2D+/CD62L-, CD158a/b/e+ and NKG2A- cells among the expanded TCR-γδ cells, and increased their cytotoxic activity against several tumor target cells (K562, U266, 221.AEH) in vitro by 40-60%. Blocking NKG2D on TCR-γδ cells in vitro eliminated the augmented cytotoxic effects of exercise against U266 target cells. Furthermore, administering a β1 + β2-AR (nadolol), but not a β1-AR (bisoprolol) antagonist prior to exercise abrogated the exercise-induced enhancement in TCR-γδ T-cell mobilization and ex vivo expansion. Furthermore, nadolol completely abrogated while bisoprolol partially inhibited the exercise-induced increase in the cytotoxic activity of the expanded TCR-γδ T-cells. We conclude that acute systemic β-AR activation in healthy donors markedly augments the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells and that some of these effects are due to β2-AR signaling and phenotypic shifts that promote a dominant activating signal via NKG2D. These findings highlight β-ARs as potential targets to favorably alter the composition of allogeneic peripheral blood stem cell grafts and improve the potency of TCR-γδ T-cell immune cell therapeutics.
Collapse
Affiliation(s)
- Forrest L. Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Austin B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Nadia H. Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Daniel P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children's National Health System and the George Washington University, Washington, DC, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Kamijo H, Miyagaki T, Norimatsu Y, Awaji K, Oka T, Suga H, Sugaya M, Sato S. Primary cutaneous γδ T-cell lymphoma with unusual immunophenotype: A case report and review of published work. J Dermatol 2020; 47:300-305. [PMID: 31912565 DOI: 10.1111/1346-8138.15215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Abstract
Primary cutaneous γδ T-cell lymphoma (CGD-TCL) is a rare form of primary cutaneous lymphoma. The histopathological features of CGD-TCL are still unclear because of its rarity. Here, we report a case of a 77-year-old Japanese man who presented with a 9-month history of erythematous plaques on his left forearm. Skin biopsy specimens revealed the infiltration of atypical medium/large-sized lymphocytes from the epidermis to the deep dermis. Atypical lymphocytes were positive for CD3, CD5, CD8 and Vδ1, and negative for CD4, CD7, CD56, EBER-ISH, intracellular antigen-1, granzyme B and perforin. CD30 was partially expressed. We also reviewed 246 cases of CGD-TCL from the published work. CD4- CD8- double-negative cases were 113 of 196 cases (57.6%), followed by CD4- CD8+ cases (52/196, 26.5%). CD5 was expressed in 25.8% of the cases (34/132). At least one cytotoxic molecule marker was expressed in 150 of 160 cases (93.8%). Some cases showed an indolent clinical course, especially in mycosis fungoides-like CGD-TCL cases. CD5 positivity and lack of cytotoxic molecule expression could be associated with a better prognosis. In addition, CD30 expression was found in approximately half of CGD-TCL cases (51/112 cases), suggesting that brentuximab vedotin could be a good treatment option for such patients. Further studies with more cases with detailed clinical and pathological information are necessary to elucidate the etiology and prognostic markers of this entity.
Collapse
Affiliation(s)
- Hiroaki Kamijo
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Yurie Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomonori Oka
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiraku Suga
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.,Department of Dermatology, International University of Health and Welfare, Chiba, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Fedorova L, Mudry P, Pilatova K, Selingerova I, Merhautova J, Rehak Z, Valik D, Hlavackova E, Cerna D, Faberova L, Mazanek P, Pavelka Z, Demlova R, Sterba J, Zdrazilova-Dubska L. Assessment of Immune Response Following Dendritic Cell-Based Immunotherapy in Pediatric Patients With Relapsing Sarcoma. Front Oncol 2019; 9:1169. [PMID: 31799177 PMCID: PMC6868036 DOI: 10.3389/fonc.2019.01169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte-derived dendritic cell (DC)-based vaccines loaded with tumor self-antigens represent a novel approach in anticancer therapy. We evaluated DC-based anticancer immunotherapy (ITx) in an academic Phase I/II clinical trial for children, adolescent, and young adults with progressive, recurrent, or primarily metastatic high-risk tumors. The primary endpoint was safety of intradermal administration of manufactured DCs. Here, we focused on relapsing high-risk sarcoma subgroup representing a major diagnosis in DC clinical trial. As a part of peripheral blood immunomonitoring, we evaluated quantitative association between basic cell-based immune parameters. Furthermore, we describe the pattern of these parameters and their time-dependent variations during the DC vaccination in the peripheral blood immunograms. The peripheral blood immunograms revealed distinct patterns in particular patients in the study group. As a functional testing, we evaluated immune response of patient T-cells to the tumor antigens presented by DCs in the autoMLR proliferation assay. This analysis was performed with T-cells obtained prior to DC ITx initiation and with T-cells collected after the fifth dose of DCs, demonstrating that the anticancer DC-based vaccine stimulates a preexisting immune response against self-tumor antigens. Finally, we present clinical and immunological findings in a Ewing's sarcoma patient with an interesting clinical course. Prior to DC therapy, we observed prevailing CD8+ T-cell stimulation and low immunosuppressive monocytic myeloid-derived suppressor cells (M-MDSC) and regulatory T-cells (Tregs). This patient was subsequently treated with 19 doses of DCs and experienced substantial regression of metastatic lesions after second disease relapse and was further rechallenged with DCs. In this patient, functional ex vivo testing of autologous T-cell activation by manufactured DC medicinal product during the course of DC ITx revealed that personalized anticancer DC-based vaccine stimulates a preexisting immune response against self-tumor antigens and that the T-cell reactivity persisted for the period without DC treatment and was further boosted by DC rechallenge. Trial Registration Number: EudraCT 2014-003388-39.
Collapse
Affiliation(s)
- Lenka Fedorova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Pilatova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Iveta Selingerova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Jana Merhautova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdenek Rehak
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia.,Department of Nuclear Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Dalibor Valik
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Dasa Cerna
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Faberova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Mazanek
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Jaroslav Sterba
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Lenka Zdrazilova-Dubska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czechia.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
21
|
Roe K. Dual-peptide ligand masks: a proposed treatment approach to stop prion disease dementias. Drug Discov Today 2019; 25:15-21. [PMID: 31560948 DOI: 10.1016/j.drudis.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
Prion disease dementias are currently not practically treatable. However, a proposed treatment approach using specifically targeted dual-peptide ligand masks can mask prion surface proteins and treat specific prion diseases. Different approaches might be used to treat these prion diseases. One treatment introduces genetically modified cells into the gastrointestinal tract or other locations to produce dual-peptide ligand masks; and another treatment introduces only the dual-peptide ligand masks into the center of prion infections to mask prion surface proteins. An independent group introduced genetically modified therapeutic bacteria into large numbers of mammals, including several human volunteers, with safe and effective experimental results, without long-term colonization by the bacteria, which experimentally supports the feasibility of the first treatment. These approaches offer several advantages compared with other potential treatments against prion diseases in humans.
Collapse
|
22
|
Vitamin C promotes the proliferation and effector functions of human γδ T cells. Cell Mol Immunol 2019; 17:462-473. [PMID: 31171862 PMCID: PMC7192840 DOI: 10.1038/s41423-019-0247-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
γδ T cells are of interest as effector cells for cellular immunotherapy due to their HLA-non-restricted lysis of many different tumor cell types. Potential applications include the adoptive transfer of in vitro-expanded γδ T cells. Therefore, it is important to optimize the culture conditions to enable maximal proliferative and functional activity. Vitamin C (L-ascorbic acid) is an essential vitamin with multiple effects on immune cells. It is a cofactor for several enzymes, has antioxidant activity, and is an epigenetic modifier. Here, we investigated the effects of vitamin C (VC) and its more stable derivative, L-ascorbic acid 2-phosphate (pVC), on the proliferation and effector function of human γδ T cells stimulated with zoledronate (ZOL) or synthetic phosphoantigens (pAgs). VC and pVC did not increase γδ T-cell expansion within ZOL- or pAg-stimulated PBMCs, but increased the proliferation of purified γδ T cells and 14-day-expanded γδ T-cell lines in response to γδ T-cell-specific pAgs. VC reduced the apoptosis of γδ T cells during primary stimulation. While pVC did not prevent activation-induced death of pAg-restimulated γδ T cells, it enhanced the cell cycle progression and cellular expansion. Furthermore, VC and pVC enhanced cytokine production during primary activation, as well as upon pAg restimulation of 14-day-expanded γδ T cells. VC and pVC also increased the oxidative respiration and glycolysis of γδ T cells, but stimulus-dependent differences were observed. The modulatory activity of VC and pVC might help to increase the efficacy of γδ T-cell expansion for adoptive immunotherapy.
Collapse
|
23
|
T-cell frequencies of CD8 + γδ and CD27 + γδ cells in the stem cell graft predict the outcome after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 54:1562-1574. [PMID: 30723262 DOI: 10.1038/s41409-019-0462-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 11/08/2022]
Abstract
The impact of intra-graft T cells on the clinical outcome after allogeneic hematopoietic cell transplantation has been investigated. Most previous studies have focused on the role of αβ cells while γδ cells have received less attention. It has been an open question whether γδ cells are beneficial or not for patient outcome, especially with regards to graft versus host disease. In this study, graft composition of γδ cell subsets was analyzed and correlated to clinical outcome in 105 recipients who underwent allogeneic hematopoietic cell transplantation between 2013 and 2016. We demonstrate for the first time that grafts containing higher T-cell proportions of CD8+γδ cells were associated with increased cumulative incidence of acute graft versus host disease grade II-III (50% vs 22.6%; P = 0.008). Additionally, graft T-cell frequency of CD27+γδ cells was inversely correlated with relapse (P = 0.006) and CMV reactivation (P = 0.05). We conclude that clinical outcome after allogeneic hematopoietic cell transplantation is influenced by the proportions of distinct γδ cell subsets in the stem cell graft. We also provide evidence that CD8+γδ cells are potentially alloreactive and may play a role in acute graft versus host disease. This study illustrates the importance of better understanding of the role of distinct subsets of γδ cells in allogeneic hematopoietic cell transplantation.
Collapse
|
24
|
Peters C, Kabelitz D, Wesch D. Regulatory functions of γδ T cells. Cell Mol Life Sci 2018; 75:2125-2135. [PMID: 29520421 PMCID: PMC11105251 DOI: 10.1007/s00018-018-2788-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
γδ T cells share characteristics of innate and adaptive immune cells and are involved in a broad spectrum of pro-inflammatory functions. Nonetheless, there is accumulating evidence that γδ T cells also exhibit regulatory functions. In this review, we describe the different phenotypes of regulatory γδ T cells in correlation with the identified mechanisms of suppression.
Collapse
MESH Headings
- Animals
- Genes, cdc/physiology
- Humans
- Immune System Phenomena/physiology
- Immune Tolerance
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Arnold-Heller Strasse 3, Haus 17, 24105, Kiel, Germany.
| |
Collapse
|
25
|
Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells. Oncotarget 2018; 8:45928-45942. [PMID: 28521284 PMCID: PMC5542238 DOI: 10.18632/oncotarget.17498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells.
Collapse
|
26
|
Yue C, Yang K, Dong W, Hu F, Zhao S, Liu S. γδ T Cells in Peripheral Blood of Glioma Patients. Med Sci Monit 2018; 24:1784-1792. [PMID: 29582851 PMCID: PMC5884064 DOI: 10.12659/msm.905932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Glioma is a common brain malignancy, but the effects of the γδ T cells and their subsets in peripheral blood in patients with glioma have not been reported. Material/Methods Flow cytometry was used to analyze the functions and expressions of δ T cells and their subsets in peripheral blood in healthy controls and patients with glioma. The Vδ2 T cells and the activation of killing function-related signaling pathway were analyzed by Western blot assay; the immunosuppressive functions of Vδ1 T cells were detected by CFSE proliferation assay; and the Vδ2 T cell killing functions were detected by killing assay. Results Compared with the healthy controls, the ratio of Vδ1 T cells was significantly increased and the ratio of Vδ2 T cells was significantly decreased. After in vitro culture and anti-TCR γδ antibody stimulation and in the presence of IL-2, in the patients with glioma, the Vδ1 T cells dominated and Vδ2 T cells were scarce. Flow cytometry staining showed that expression of immunosuppression-related molecules on the Vδ1 T cell surface was significantly increased, while the expression of killing function-related molecules and the activation of killing function-related signaling pathway in the Vδ2 T cells were significantly decreased. Functional test results showed that the immunosuppressive function of Vδ1T cells was enhanced and the killing function of Vδ1T cells was reduced. Conclusions The ratio and function changes of Vδ1 T cells and Vδ2 T cells are possibly associated with the pathogenesis of glioma.
Collapse
Affiliation(s)
- Changbo Yue
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Kai Yang
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Wanqing Dong
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Fengxia Hu
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Shoumei Zhao
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| | - Shiqin Liu
- Department of Neurosurgery, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
27
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
28
|
Bhat J, Sosna J, Fritsch J, Quabius ES, Schütze S, Zeissig S, Ammerpohl O, Adam D, Kabelitz D. Expression of non-secreted IL-4 is associated with HDAC inhibitor-induced cell death, histone acetylation and c-Jun regulation in human gamma/delta T-cells. Oncotarget 2018; 7:64743-64756. [PMID: 27556516 PMCID: PMC5323112 DOI: 10.18632/oncotarget.11462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023] Open
Abstract
Previously, the expression of a non-secreted IL-4 variant (IL-4δ13) has been described in association with apoptosis and age-dependent Th2 T-cell polarization. Signaling pathways involved in this process have so far not been studied. Here we report the induction of IL-4δ13 expression in human γδ T-cells upon treatment with a sublethal dose of histone deacetylase (HDACi) inhibitor valproic acid (VPA). Induction of IL-4δ13 was associated with increased cytoplasmic IL-4Rα and decreased IL-4 expression, while mRNA for mature IL-4 was concomitantly down-regulated. Importantly, only the simultaneous combination of apoptosis and necroptosis inhibitors prevented IL-4δ13 expression and completely abrogated VPA-induced global histone H3K9 acetylation mark. Further, our work reveals a novel involvement of transcription factor c-Jun in the signaling network of IL-4, HDAC1, caspase-3 and mixed lineage kinase domain-like protein (MLKL). This study provides novel insights into the effects of epigenetic modulator VPA on human γδ T-cell differentiation.
Collapse
Affiliation(s)
- Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Justyna Sosna
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany.,Current address: Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Sebastian Zeissig
- Department of Internal Medicine I, Christian-Albrechts-University, Kiel, Germany.,Current address: Department of Medicine I, University Medical Center Dresden, Technical University Dresden, Dresden, Germany.,Current address: Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Medical Center Schleswig-Holstein Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
29
|
de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S, Lameris R, Stam AG, Sebestyen Z, Kuball J, Molthoff CFM, Hooijberg E, Roovers RC, Santo JPD, van Bergen En Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 2017; 7:e1375641. [PMID: 29296532 DOI: 10.1080/2162402x.2017.1375641] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022] Open
Abstract
Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France.,Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anita G Stam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rob C Roovers
- Department of Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Peipp M, Wesch D, Oberg HH, Lutz S, Muskulus A, van de Winkel JGJ, Parren PWHI, Burger R, Humpe A, Kabelitz D, Gramatzki M, Kellner C. CD20-Specific Immunoligands Engaging NKG2D Enhance γδ T Cell-Mediated Lysis of Lymphoma Cells. Scand J Immunol 2017; 86:196-206. [PMID: 28708284 DOI: 10.1111/sji.12581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/25/2017] [Indexed: 02/02/2023]
Abstract
Human γδ T cells are innate-like T cells which are able to kill a broad range of tumour cells and thus may have potential for cancer immunotherapy. The activating receptor natural killer group 2 member D (NKG2D) plays a key role in regulating immune responses driven by γδ T cells. Here, we explored whether recombinant immunoligands consisting of a CD20 single-chain fragment variable (scFv) linked to a NKG2D ligand, either MHC class I chain-related protein A (MICA) or UL16 binding protein 2 (ULBP2), could be employed to engage γδ T cells for tumour cell killing. The two immunoligands, designated MICA:7D8 and ULBP2:7D8, respectively, enhanced cytotoxicity of ex vivo-expanded γδ T cells against CD20-positive lymphoma cells. Both Vδ1 and Vδ2 γδ T cells were triggered by MICA:7D8 or ULBP2:7D8. Killing of CD20-negative tumour cells was not induced by the immunoligands, indicating their antigen specificity. MICA:7D8 and ULBP2:7D8 acted in a dose-dependent manner and induced cytotoxicity at nanomolar concentrations. Importantly, chronic lymphocytic leukaemia (CLL) cells isolated from patients were sensitized by the two immunoligands for γδ T cell cytotoxicity. In a combination approach, the immunoligands were combined with bromohydrin pyrophosphate (BrHPP), an agonist for Vδ2 γδ T cells, which further enhanced the efficacy in target cell killing. Thus, employing tumour-directed recombinant immunoligands which engage NKG2D may represent an attractive strategy to enhance antitumour cytotoxicity of γδ T cells.
Collapse
Affiliation(s)
- M Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - D Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - H-H Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - S Lutz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - A Muskulus
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - J G J van de Winkel
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Genmab, Utrecht, The Netherlands
| | - P W H I Parren
- Genmab, Utrecht, The Netherlands.,Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - R Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - A Humpe
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - D Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - M Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - C Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Wang J, Lin C, Li H, Li R, Wu Y, Liu H, Zhang H, He H, Zhang W, Xu J. Tumor-infiltrating γδT cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. Oncoimmunology 2017; 6:e1353858. [PMID: 29147601 DOI: 10.1080/2162402x.2017.1353858] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose : Tumor-infiltrating γδT cells (γδTILs) have different prognostic value and functions among various cancers. The aim of the present study was to evaluate the effect of γδTILs in gastric cancer. Patients and methods : A discovery set (n = 190) and a validation set (n = 273) were involved in this study. Patients with TNM II and III disease were used to predict response to 5-fluorouracil (5-FU)-based adjuvant chemotherapy (ACT) in both sets. γδTILs were defined as intense (γδT cells≥ 5/HPF) versus nonintense (γδT cells<5/HPF). Kaplan-Meier curve was plotted to analysis survival. Hazard ratio (HR) and 95%CI associated with γδTILs were evaluated by multivariable Cox models. Findings : The prognostic value of γδTILs in the discovery set (HR, 0.193; 95%CI, 0.097-0.383; P<0.001) was confirmed in the validation set (HR, 0.442; 95%CI, 0.251-0.779; P = 0.005) for overall survival (OS). Patients whose tumors with γδT cells≥ 5/HPF could benefit from ACT, with a reduced risk of compromised survival compared with those with γδT cells<5/HPF (HR, 0.086; 95%CI, 0.023-0.327; P<0.001 in discovery set; and HR, 0.077; 95%CI, 0.023-0.256; P<0.001 in validation set). Conclusion : The present study shows that intense γδT cells infiltration is an independent prognostic factor in patients with gastric cancer and is predictive of a survival benefit from adjuvant chemotherapy in patients with TNM II and III disease.
Collapse
Affiliation(s)
- Jieti Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells. Sci Rep 2017; 7:5509. [PMID: 28710491 PMCID: PMC5511140 DOI: 10.1038/s41598-017-05849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes.
Collapse
|
33
|
Zocchi MR, Costa D, Venè R, Tosetti F, Ferrari N, Minghelli S, Benelli R, Scabini S, Romairone E, Catellani S, Profumo A, Poggi A. Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector γδ T cells with antitumor activity. Oncoimmunology 2017; 6:e1278099. [PMID: 28405500 DOI: 10.1080/2162402x.2016.1278099] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022] Open
Abstract
Amino-bis-phosphonates (N-BPs) such as zoledronate (Zol) have been used in anticancer clinical trials due to their ability to upregulate pyrophosphate accumulation promoting antitumor Vγ9Vδ2 T cells. The butyrophilin 3A (BTN3A, CD277) family, mainly the BTN3A1 isoform, has emerged as an important structure contributing to Vγ9Vδ2 T cells stimulation. It has been demonstrated that the B30.2 domain of BTN3A1 can bind phosphoantigens (PAg) and drive the activation of Vγ9Vδ2 T cells through conformational changes of the extracellular domains. Moreover, BTN3A1 binding to the cytoskeleton, and its consequent membrane stabilization, is crucial to stimulate the PAg-induced tumor cell reactivity by human Vγ9Vδ2 T cells. Aim of this study was to investigate the relevance of BTN3A1 in N-BPs-induced antitumor response in colorectal cancer (CRC) and the cell types involved in the tumor microenvironment. In this paper, we show that (i) CRC, exposed to Zol, stimulates the expansion of Vδ2 T lymphocytes with effector memory phenotype and antitumor cytotoxic activity, besides sensitizing cancer cells to γδ T cell-mediated cytotoxicity; (ii) this effect is partially related to BTN3A1 expression and in particular with its cellular re-distribution in the membrane and cytoskeleton-associated fraction; (iii) BTN3A1 is detected in CRC at the tumor site, both on epithelial cells and on tumor-associated fibroblasts (TAF), close to areas infiltrated by Vδ2 T lymphocytes; (iv) Zol is effective in stimulating antitumor effector Vδ2 T cells from ex-vivo CRC cell suspensions; and (v) both CRC cells and TAF can be primed by Zol to trigger Vδ2 T cells.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute , Milan, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Simona Minghelli
- UOC Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | | | - Stefano Scabini
- Oncological Surgery, IRCCS AOU San Martino-IST , Genoa, Italy
| | | | | | - Aldo Profumo
- Biopolymers and Proteomics Unit IRCCS AOU San Martino-IST , Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis, IRCCS AOU San Martino-IST , Genoa, Italy
| |
Collapse
|
34
|
Human γδT-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2016; 14:245-253. [PMID: 27890919 PMCID: PMC5360884 DOI: 10.1038/cmi.2016.55] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
γδT cells are a conserved population of innate lymphocytes with diverse structural and functional heterogeneity that participate in various immune responses during tumor progression. γδT cells perform potent immunosurveillance by exerting direct cytotoxicity, strong cytokine production and indirect antitumor immune responses. However, certain γδT-cell subsets also contribute to tumor progression by facilitating cancer-related inflammation and immunosuppression. Here, we review recent observations regarding the antitumor and protumor roles of major structural and functional subsets of human γδT cells, describing how these subsets are activated and polarized, and how these events relate to subsequent function in tumor immunity. These studies provide insights into the manipulation of γδT-cell function to facilitate more targeted approaches for tumor therapy.
Collapse
|
35
|
Kalyan S. It May Seem Inflammatory, but Some T Cells Are Innately Healing to the Bone. J Bone Miner Res 2016; 31:1997-2000. [PMID: 27207251 DOI: 10.1002/jbmr.2875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022]
Abstract
Among the most significant developments to have taken place in osteology over the last few decades is an evolution from treating and viewing bone disorders primarily through an endocrine lens to instead seeing them as metabolic disorders that interface at the molecular and cellular level with the immune system. Osteoimmunology was officially born in response to accumulating evidence that the immune system is integrally involved in bone remodeling, but much of the early work focused on the role of conventional αβ T cells in driving bone loss. There is, however, emerging data indicating that innate lymphocytes, in particular γδ T cells, may in fact be important for bone regeneration. We first observed that bisphosphonate-associated osteonecrosis of the jaw (ONJ), a rare but serious adverse drug effect characterized by nonhealing necrotic bone tissue of the mandible or maxilla, was linked to a deficiency in a subset of γδ T cells found in human peripheral blood. Patients who developed ONJ while on bisphosphonate therapy not only lacked the main subset of circulating γδ T cells, but they also all had underlying conditions that compromised their immune integrity. A number of recent studies have unraveled the role of γδ T cells (and lymphocytes sharing their characteristics) in bone regeneration-particularly for fracture healing. These findings seem to contradict the prevailing view of such "inflammatory" T cells as being bone degenerative rather than restorative. This viewpoint melds together the emerging evidence of these so-called inflammatory T cells in bone remodeling and healing-showing that they are not in fact "all bad to the bone." © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Shirin Kalyan
- CeMCOR, Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Human γδ T cells: From a neglected lymphocyte population to cellular immunotherapy: A personal reflection of 30years of γδ T cell research. Clin Immunol 2016; 172:90-97. [DOI: 10.1016/j.clim.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/10/2016] [Indexed: 01/06/2023]
|
37
|
Abstract
Vδ2Vγ9 T cells are the dominant γδ T-cell subset in human peripheral blood. Vδ2 T cells recognize pyrophosphate molecules derived from microbes or tumor cells; hence, they play a role in antimicrobial and antitumor immunity. TGF-β, together with IL-15, induces a regulatory phenotype in Vδ2 T cells, characterized by forkhead box protein P3 (FoxP3) expression and suppressive activity on CD4 T-cell activation. We performed a genome-wide transcriptome analysis and found that the same conditions (TGF-β plus IL-15) strongly enhanced the expression of additional genes in Vδ2 T cells, including IKAROS family zinc finger 4 (IKZF4; Eos), integrin subunit alpha E (ITGAE; CD103/αEβ7), and IL9 This up-regulation was associated with potent IL-9 production as revealed by flow cytometry and multiplex analysis of cell culture supernatants. In contrast to CD4 and CD8 αβ T cells, γδ T cells did not require IL-4 for induction of intracellular IL-9 expression. Upon antigen restimulation of Vδ2 T cells expanded in vitro in the presence of TGF-β and IL-15, IL-9 was the most abundant among 16 analyzed cytokines and chemokines. IL-9 is a pleiotropic cytokine involved in various (patho)physiological conditions, including allergy and tumor defense, where it can promote antitumor immunity. Given the conspicuous sensitivity of many different tumors to Vδ2 T-cell-mediated killing, the conditions defined here for strong induction of IL-9 might be relevant for the development of Vδ2 T-cell-based immunotherapy.
Collapse
|
38
|
Bertaina A, Zorzoli A, Petretto A, Barbarito G, Inglese E, Merli P, Lavarello C, Brescia LP, De Angelis B, Tripodi G, Moretta L, Locatelli F, Airoldi I. Zoledronic acid boosts γδ T-cell activity in children receiving αβ + T and CD19 + cell-depleted grafts from an HLA-haplo-identical donor. Oncoimmunology 2016; 6:e1216291. [PMID: 28344861 DOI: 10.1080/2162402x.2016.1216291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ+ T cells and CD19+ B cells are endowed with the capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, p = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients.
Collapse
Affiliation(s)
- A Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - A Zorzoli
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - A Petretto
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - G Barbarito
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - E Inglese
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - P Merli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - C Lavarello
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - L P Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - B De Angelis
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - G Tripodi
- Dipartimento Ricerca Traslazionale, Medicina di Laboratorio, Diagnostica e Servizi, Istituto Giannina Gaslini , Genova, Italy
| | - L Moretta
- Area di Ricerca Immunologica, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy; Department of Pediatric Science, Università di Pavia, Pavia, Italy
| | - I Airoldi
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| |
Collapse
|
39
|
He K, You H, Li Y, Cui L, Zhang J, He W. TCRγ4δ1-engineered αβT cells exhibit effective antitumor activity. Mol Med 2016; 22:519-529. [PMID: 27463149 DOI: 10.2119/molmed.2016.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T-cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum anti-tumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and their potential role in autoimmunity. Results show TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited an effective in-vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More importantly, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer.
Collapse
Affiliation(s)
- Kangxia He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongqin You
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yuxia Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
40
|
Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology 2016; 16:1069-1079. [PMID: 27424476 DOI: 10.1016/j.pan.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/26/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) still has a poor prognosis and current treatments including immunotherapy often fail. This might be due to the pronounced immunosuppressive milieu impairing infiltration and function of immune effector cells. This study aimed at a comprehensive analysis of immune cells in PDAC patients by determining absolute and relative peripheral blood cell numbers of immune cell subsets along with their functional capacity. METHODS Whole blood cells or isolated peripheral blood mononuclear cells were characterized by flow cytometry. PDAC tissues were analyzed by immunohistochemistry. Anti-tumor activity of immune effector cells was determined by RTCA system. RESULTS Our data demonstrate that relative CD4+ memory- and regulatory T cell numbers were enhanced, whereas determination of absolute cell numbers revealed generally lower immune cell numbers in PDAC patients compared to healthy controls. γδ T cells accumulated at higher numbers compared to αβ T cells in the malignant ductal epithelium of PDAC tissues indicating that γδ T cells infiltrate into the tumor. Cytotoxicity against tumor cells of even small numbers of T- and NK cells could be induced by a bispecific antibody targeting CD3+ T cells to human epidermal growth factor receptor (HER)2 expressing PDAC cells or Trastuzumab. Importantly, a critical number of γδ T cells was required for significant tumor cell killing by a bispecific antibody engaging the γδ T cell receptor on γδ T cells and HER2 on tumor cells. CONCLUSION Monitoring immune cells along with the determination of their functional capacity provides a comprehensive assessment as a prerequisite for a personalized immunotherapeutic PDAC treatment.
Collapse
|
41
|
Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Demuth I, Steinhagen-Thiessen E, Larbi A, Schilling B, Schadendorf D, Wolchok JD, Blank CU, Pawelec G, Garbe C, Weide B. Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer 2016; 64:116-26. [PMID: 27400322 DOI: 10.1016/j.ejca.2016.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Human γδ T-cells possess regulatory and cytotoxic capabilities, and could potentially influence the efficacy of immunotherapies. We analysed the frequencies of peripheral γδ T-cells, including their most prominent subsets (Vδ1+ and Vδ2+ cells) and differentiation states in 109 melanoma patients and 109 healthy controls. We additionally analysed the impact of γδ T-cells on overall survival (OS) calculated from the first dose of ipilimumab in melanoma patients. Higher median frequencies of Vδ1+ cells and lower median frequencies of Vδ2+ cells were identified in patients compared to healthy subjects (Vδ1+: 30% versus 15%, Vδ2+: 39% versus 64%, both p < 0.001). Patients with higher frequencies of Vδ1+ cells (≥30%) had poorer OS (p = 0.043) and a Vδ1+ differentiation signature dominated by late-differentiated phenotypes. In contrast, higher frequencies of Vδ2+ cells (≥39%) were associated with longer survival (p = 0.031) independent of the M category or lactate dehydrogenase level. Patients with decreasing frequencies of Vδ2+ cells under ipilimumab treatment had worse OS and a lower rate of clinical benefit than patients without such decreases. Therefore, we suggest frequencies of both Vδ1+ and Vδ2+ cells as candidate biomarkers for outcome in melanoma patients following ipilimumab. Further studies are needed to validate these results and to clarify whether they represent prognostic associations or whether γδ T-cells are specifically and/or functionally linked to the mode of action of ipilimumab.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany.
| | - Alexander Martens
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | - Karin Haehnel
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | | | - Jianda Yuan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuela Romano
- Department of Oncology, Immunotherapy Unit, INSERM U932, Institut Curie, Paris, France
| | - Amir Khammari
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | - Brigitte Dreno
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | | | | | - Ilja Demuth
- Research Group on Geriatrics, Charité - Universitaetsmedizin, Berlin, Germany; Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Germany
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany; School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK; Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| |
Collapse
|
42
|
Gruenbacher G, Gander H, Rahm A, Idzko M, Nussbaumer O, Thurnher M. Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ9Vδ2 T Cell Phosphoantigens. Cell Rep 2016; 16:444-456. [PMID: 27346340 DOI: 10.1016/j.celrep.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
In humans, Vγ9Vδ2 T cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs). However, activation and homeostasis of Vγ9Vδ2 T cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR) agonistic activity of self and microbial pAgs (C5 to C15). Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20) resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4(+) T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria
| | - Marco Idzko
- Department of Pulmonary Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck and K1 Center Oncotyrol-Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria.
| |
Collapse
|
43
|
Rong L, Li K, Li R, Liu HM, Sun R, Liu XY. Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol 2016; 22:3573-3580. [PMID: 27053849 PMCID: PMC4814643 DOI: 10.3748/wjg.v22.i13.3573] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulatory effect of Vδ1 T cells and the antitumor activity of Vδ2 T cells in rectal cancer.
METHODS: Peripheral blood, tumor tissues and para-carcinoma tissues from 20 rectal cancer patients were collected. Naïve CD4 T cells from the peripheral blood of rectal cancer patients were purified by negative selection using a Naive CD4+ T Cell Isolation Kit II (Miltenyi Biotec). Tumor tissues and para-carcinoma tissues were minced into small pieces and digested in a triple enzyme mixture containing collagenase type IV, hyaluronidase, and deoxyribonuclease for 2 h at room temperature. After digestion, the cells were washed twice in RPMI1640 and cultured in RPMI1640 containing 10% human serum supplemented with L-glutamine and 2-mercaptoethanol and 1000 U/mL of IL-2 for the generation of T cells. Vδ1 T cells and Vδ2 T cells from tumor tissues and para-carcinoma tissues were expanded by anti-TCR γδ antibodies. The inhibitory effects of Vδ1 T cells on naïve CD4 T cells were analyzed using the CFSE method. The cytotoxicity of Vδ2 T cells on rectal cancer lines was determined by the LDH method.
RESULTS: The percentage of Vδ1 T cells in rectal tumor tissues from rectal cancer patients was significantly increased, and positively correlated with the T stage. The percentage of Vδ2 T cells in rectal tumor tissues from rectal cancer patients was significantly decreased, and negatively correlated with the T stage. After culture for 14 d with 1 μg/mL anti-TCR γδ antibodies, the percentage of Vδ1 T cells from para-carcinoma tissues was 21.45% ± 4.64%, and the percentage of Vδ2 T cells was 38.64% ± 8.05%. After culture for 14 d, the percentage of Vδ1 T cells from rectal cancer tissues was 67.45% ± 11.75% and the percentage of Vδ2 T cells was 8.94% ± 2.85%. Tumor-infiltrating Vδ1 T cells had strong inhibitory effects, and tumor-infiltrating Vδ2 T cells showed strong cytolytic activity. The inhibitory effects of Vδ1 T cells from para-carcinoma tissues and from rectal cancer tissue were not significantly different. In addition, the cytolytic activities of Vδ2 T cells from para-carcinoma tissues and from rectal cancer tissues were not significantly different.
CONCLUSION: A percentage imbalance in Vδ1 and Vδ2 T cells in rectal cancer patients may contribute to the development of rectal cancer.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cell Separation
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Rectal Neoplasms/immunology
- Rectal Neoplasms/metabolism
- Rectal Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
|
44
|
Phalke SP, Chiplunkar SV. Activation status of γδ T cells dictates their effect on osteoclast generation and bone resorption. Bone Rep 2015; 3:95-103. [PMID: 28377972 PMCID: PMC5365245 DOI: 10.1016/j.bonr.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023] Open
Abstract
γδ T cells, a small subset of T cell population (5–10%), forms a bridge between innate and adaptive immunity. Although the role of γδ T cells in infectious diseases and antitumor immunity is well investigated, their role in bone biology needs to be explored. Aminobisphosphonates are used as a standard treatment modality for bone related disorders and are potent activators of γδ T cells. In the present study, we have compared the effect of “activated” and “freshly isolated” γδ T cells on osteoclast generation and function. We have shown that “activated” (αCD3/CD28 + rhIL2 or BrHPP + rhIL2 stimulated) γδ T cells inhibit osteoclastogenesis, while “freshly isolated” γδ T cells enhance osteoclast generation and function. Upon stimulation with phosphoantigen (BrHPP), “freshly isolated” γδ T cells were also able to suppress osteoclast generation and function. Cytokine profiles of these cells revealed that, “freshly isolated” γδ T cells secrete higher amounts of IL6 (pro-osteoclastogenic), while “activated” γδ T cells secrete high IFNγ levels (anti-osteoclastogenic). Neutralization of IFNγ and IL6 reversed the “inhibitory” or “stimulatory” effect of γδ T cells on osteoclastogenesis. In conclusion, we have shown that, activation status and dynamics of IL6 and IFNγ secretion dictate pro and anti-osteoclastogenic role of γδ T cells. Freshly isolated (unstimulated) γδ T cells enhance osteoclastogenesis. Activated γδ T cells inhibit osteoclast generation and function. Activated γδ T cells secrete high IFNγ, while freshly isolated secrete high IL6. Dynamics of IL6/IFNγ explains pro- and anti-osteoclastogenic effect of γδ T cells.
Collapse
Key Words
- Activation status
- BrHPP, bromohydrin pyrophosphate
- CBA, cytometric bead array
- Cytokines
- FCS, Fetal calf serum
- FH, Ficoll-Hypaque
- IFNγ, interferon gamma
- IL6, interleukin 6
- MACS, magnetic-activated cell sorting
- MFI, mean fluorescent intensity
- OAAS, osteoclast activity assay substrate
- OPCs, osteoclast precursor cells
- Osteoclasts
- PBMCs, peripheral blood mononuclear cells
- PBS, phosphate buffered saline
- Phosphoantigen
- RPMI, Roswell Park Memorial Institute medium
- SEM, standard error of mean
- TRAP, tartarate resistant acid phosphatase
- cαMEM, complete minimum essential medium with alpha modification
- rhIL2, recombinant human interleukin 2
- rhMCSF, recombinant human macrophage-colony stimulating factor
- rhRANKL, recombinant human receptor activator of nuclear factor kappa-B ligand
- αIFNγ, anti-interferon gamma
- αIL6, anti-interleukin 6
- γδ T cells
Collapse
Affiliation(s)
| | - Shubhada V. Chiplunkar
- Corresponding author at: Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.Chiplunkar LaboratoryAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi Mumbai410210India
| |
Collapse
|
45
|
Hyperactivation and in situ recruitment of inflammatory Vδ2 T cells contributes to disease pathogenesis in systemic lupus erythematosus. Sci Rep 2015; 5:14432. [PMID: 26395317 PMCID: PMC4585774 DOI: 10.1038/srep14432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we measured the proportion of peripheral Vδ2 T cells as well as the status and chemokine receptor expression profiles in SLE patients and healthy control (HC). In addition, Vδ2 T cell infiltration in the kidneys of patients with lupus nephritis was examined. The results showed that the percentage of peripheral Vδ2 T cells in new-onset SLE was decreased, and negatively correlated with the SLE Disease Activity Index score and the severity of proteinuria. These cells had a decreased apoptosis but an increased proliferation, and they showed increased accumulation in SLE kidneys. Moreover, IL-21 production and CD40L, CCR4, CCR7, CCR8, CXCR1 and CX3CR1 expression in Vδ2 T cells from SLE patients was significantly higher than from HC (p < 0.05), and these factors were downregulated in association with the repopulation of peripheral Vδ2 T cells in patients who were in remission (p < 0.05). In addition, anti-TCR Vδ2 antibodies activation significantly upregulated these chemokine receptors on Vδ2 T cells from HC, and this effect was blocked by inhibitors of PLC-γ1, MAPK/Erk, and PI3K signaling pathways. Our findings demonstrate that the distribution and function status of Vδ2 T cells from SLE patients are abnormal, and these aberrations may contribute to disease pathogenesis.
Collapse
|
46
|
Kabelitz D, Déchanet-Merville J. Editorial: "Recent Advances in Gamma/Delta T Cell Biology: New Ligands, New Functions, and New Translational Perspectives". Front Immunol 2015; 6:371. [PMID: 26257738 PMCID: PMC4508528 DOI: 10.3389/fimmu.2015.00371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel , Kiel , Germany
| | | |
Collapse
|
47
|
Bhat J, Kabelitz D. γδ T cells and epigenetic drugs: A useful merger in cancer immunotherapy? Oncoimmunology 2015; 4:e1006088. [PMID: 26155411 DOI: 10.1080/2162402x.2015.1006088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
γδ T cell-based immunotherapeutic strategies in cancer patients are as yet of limited success. Drugs targeting epigenetic mechanisms including histone acetylation and DNA methylation trigger cell death in tumor cells but in addition have immunomodulatory activity. Here, we discuss the potential benefit of combining both strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Jaydeep Bhat
- Institute of Immunology; University of Kiel and UKSH Campus Kiel ; Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology; University of Kiel and UKSH Campus Kiel ; Kiel, Germany
| |
Collapse
|
48
|
γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 2015; 125:2349-58. [PMID: 25612623 DOI: 10.1182/blood-2014-09-599423] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/10/2015] [Indexed: 12/26/2022] Open
Abstract
We prospectively assessed functional and phenotypic characteristics of γδ T lymphocytes up to 7 months after HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) depleted of αβ(+) T cells and CD19(+) B cells in 27 children with either malignant or nonmalignant disorders. We demonstrate that (1) γδ T cells are the predominant T-cell population in patients during the first weeks after transplantation, being mainly, albeit not only, derived from cells infused with the graft and expanding in vivo; (2) central-memory cells predominated very early posttransplantation for both Vδ1 and Vδ2 subsets; (3) Vδ1 cells are specifically expanded in patients experiencing cytomegalovirus reactivation and are more cytotoxic compared with those of children who did not experience reactivation; (4) these subsets display a cytotoxic phenotype and degranulate when challenged with primary acute myeloid and lymphoid leukemia blasts; and (5) Vδ2 cells are expanded in vitro after exposure to zoledronic acid (ZOL) and efficiently lyse primary lymphoid and myeloid blasts. This is the first detailed characterization of γδ T cells emerging in peripheral blood of children after CD19(+) B-cell and αβ(+) T-cell-depleted haplo-HSCT. Our results can be instrumental to the development of clinical trials using ZOL for improving γδ T-cell killing capacity against leukemia cells. This trial was registered at www.clinicaltrials.gov as #NCT01810120.
Collapse
|
49
|
Oberg HH, Kellner C, Peipp M, Sebens S, Adam-Klages S, Gramatzki M, Kabelitz D, Wesch D. Monitoring Circulating γδ T Cells in Cancer Patients to Optimize γδ T Cell-Based Immunotherapy. Front Immunol 2014; 5:643. [PMID: 25566256 PMCID: PMC4269191 DOI: 10.3389/fimmu.2014.00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
The success of γδ T cell-based immunotherapy, where the cytotoxic activity of circulating γδ T lymphocytes is activated by nitrogen-containing bisphosphonates (n-BP), or possibly by bispecific antibodies or the combination of both, requires a profound knowledge of patients' γδ T cells. A possible influence of radio- or chemotherapy on γδ T cells as well as their reported exhaustion after repetitive treatment with n-BP or their lack of response to various cancers can be easily determined by the monitoring assays described in this perspective article. Monitoring the absolute cell numbers of circulating γδ T cell subpopulations in small volumes of whole blood from cancer patients and determining γδ T cell cytotoxicity using the Real-Time Cell Analyzer can give a more comprehensive assessment of a personalized tumor treatment. Possible future directions such as the combined usage of n-BP or phosphorylated antigens together with bispecific antibodies that selectively target γδ T cells to tumor-associated antigens, will be discussed. Such strategies induce expansion and enhance γδ T cell cytotoxicity and might possibly avoid their exhaustion and overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Christian Kellner
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Matthias Peipp
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Susanne Sebens
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Sabine Adam-Klages
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Martin Gramatzki
- 2nd Medical Department, Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|
50
|
Deniger DC, Moyes JS, Cooper LJN. Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol 2014; 5:636. [PMID: 25566249 PMCID: PMC4263175 DOI: 10.3389/fimmu.2014.00636] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/28/2014] [Indexed: 01/13/2023] Open
Abstract
γδ T cells hold promise for adoptive immunotherapy because of their reactivity to bacteria, viruses, and tumors. However, these cells represent a small fraction (1–5%) of the peripheral T-cell pool and require activation and propagation to achieve clinical benefit. Aminobisphosphonates specifically expand the Vγ9Vδ2 subset of γδ T cells and have been used in clinical trials of cancer where objective responses were detected. The Vγ9Vδ2 T cell receptor (TCR) heterodimer binds multiple ligands and results in a multivalent attack by a monoclonal T cell population. Alternatively, populations of γδ T cells with oligoclonal or polyclonal TCR repertoire could be infused for broad-range specificity. However, this goal has been restricted by a lack of applicable expansion protocols for non-Vγ9Vδ2 cells. Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs), tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T cells with oligoclonal or polyclonal TCR repertoires. Immobilized major histocompatibility complex Class-I chain-related A was a stimulus for γδ T cells expressing TCRδ1 isotypes, and plate-bound activating antibodies have expanded Vδ1 and Vδ2 cells ex vivo. Clinically sufficient quantities of TCRδ1, TCRδ2, and TCRδ1negTCRδ2neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. Gamma delta T cells are also amenable to genetic modification as evidenced by introduction of αβ TCRs, chimeric antigen receptors, and drug-resistance genes. This represents a promising future for the clinical application of oligoclonal or polyclonal γδ T cells in autologous and allogeneic settings that builds on current trials testing the safety and efficacy of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Drew C Deniger
- Surgery Branch, National Cancer Institute , Bethesda, MD , USA
| | - Judy S Moyes
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Laurence J N Cooper
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|