1
|
Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, Mathur P. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech 2023; 13:191. [PMID: 37197561 PMCID: PMC10183385 DOI: 10.1007/s13205-023-03605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Endophytic fungi stimulate the production of an enormous number of bioactive metabolites in medicinal plants and affect the different steps of biosynthetic pathways of these secondary metabolites. Endophytic fungi possess a number of biosynthetic gene clusters that possess genes for various enzymes, transcription factors, etc., in their genome responsible for the production of secondary metabolites. Additionally, endophytic fungi also modulate the expression of various genes responsible for the synthesis of key enzymes involved in metabolic pathways of such as HMGR, DXR, etc. involved in the production of a large number of phenolic compounds as well as regulate the expression of genes involved in the production of alkaloids and terpenoids in different plants. This review aims to provide a comprehensive overview of gene expression related to endophytes and their impact on metabolic pathways. Additionally, this review will emphasize the studies done to isolate these secondary metabolites from endophytic fungi in large quantities and assess their bioactivity. Due to ease in synthesis of secondary metabolites and their huge application in the medical industry, these bioactive metabolites are now being extracted from strains of these endophytic fungi commercially. Apart from their application in the pharmaceutical industry, most of these metabolites extracted from endophytic fungi also possess plant growth-promoting ability, bioremediation potential, novel bio control agents, sources of anti-oxidants, etc. The review will comprehensively shed a light on the biotechnological application of these fungal metabolites at the industrial level.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Lahasang Lamu Kagatay
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Ankita Gurung
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Priyanka Singla
- Department of Botany, Mount Carmel College, Bengaluru, Karnataka India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Dist. Darjeeling, Siliguri, West Bengal India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, Siliguri, West Bengal India
| |
Collapse
|
2
|
Feng Q, Sehar S, Zhou F, Wei D, Askri SMH, Ma Z, Adil MF, Shamsi IH. Physiological and TMT-based quantitative proteomic responses of barley to aluminium stress under phosphorus-Piriformospora indica interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:634-646. [PMID: 36791535 DOI: 10.1016/j.plaphy.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Barley (Hordeum vulgare L.) is one of the most important cereal crop in the world, and is also the one being seriously affected by heavy metals, particularly aluminium (Al). Keeping in view the utility of barley as food, fodder and raw material for traditional beer brewing, the top-notch quality and higher production of this crop must be sustained. Phosphorus (P) has a quintessential role in plant growth with a potential to relieve symptoms caused by Al poisoning. Displaying a phytopromotive and stress alleviatory potential, Piriformospora indica (P. indica) can improve the stress tolerance in crops. Several studies have been conducted to evaluate the mechanism of Al translocation in a variety of crops including barley, however, the bio-remediative studies related to detoxification and/or sequestration of metals are scarce. Therefore, the current study was carried out to elucidate the tolerance mechanism of an Al-sensitive barley cultivar ZU9 following the colonization with P. indica and exogenous P supply by physio-biochemical, elemental, leaf ultrastructural and root proteome analyses. When compared to the Al alone treated counterparts, the Al + P + P.i treated plants exhibited 4.1-, 1.38-, 2.7 and 1.35-fold improved root and shoot fresh and dry weights, respectively. With the provision of additional phosphorus, the content of P in the root and shoot for Al + P + P.i group was reportedly higher (71.6% and 49.5%, respectively) as compared to the control group. Moreover, inoculation of P. indica combined with P improved barley leaves' cell arrangement and also maintained normal cell wall shape. The root protemics experiment was divided into three groups: Al, Al + P.i and Al + P + P.i. In total, 28, 598, and 823 differentially expressed proteins were found in Al + P.i vs. Al and Al + P + P.i vs. Al, and phenylpropanoid biosynthesis was the most prominently enriched pathway, which contributed significantly to the recuperating effects of P-P. indica interaction. Conslusively, it was found that the percentage of protein related to peroxidase was 70/359 (Al + P + P.i vs. Al) and 92/447 (Al + P + P.i vs. Al + P.i), respectively, which indicated that P. indica in combination with P might be involved in the regulation of peroxidases, increasing the adaptability of barley plants by enhanced reactive oxygen species (ROS) scavenging mechansism.
Collapse
Affiliation(s)
- Qidong Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Dongming Wei
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Syed Muhammad Hassan Askri
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhengxin Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Gao Z, Liang Y, Wang Y, Xiao Y, Chen J, Yang X, Shi T. Genome-wide association study of traits in sacred lotus uncovers MITE-associated variants underlying stamen petaloid and petal number variations. FRONTIERS IN PLANT SCIENCE 2022; 13:973347. [PMID: 36212363 PMCID: PMC9539442 DOI: 10.3389/fpls.2022.973347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Understanding the genetic variants responsible for floral trait diversity is important for the molecular breeding of ornamental flowers. Widely used in water gardening for thousands of years, the sacred lotus exhibits a wide range of diversity in floral organs. Nevertheless, the genetic variations underlying various morphological characteristics in lotus remain largely unclear. Here, we performed a genome-wide association study of sacred lotus for 12 well-recorded ornamental traits. Given a moderate linkage disequilibrium level of 32.9 kb, we successfully identified 149 candidate genes responsible for seven flower traits and plant size variations, including many pleiotropic genes affecting multiple floral-organ-related traits, such as NnKUP2. Notably, we found a 2.75-kb presence-and-absence genomic fragment significantly associated with stamen petaloid and petal number variations, which was further confirmed by re-examining another independent population dataset with petal number records. Intriguingly, this fragment carries MITE transposons bound by siRNAs and is related to the expression differentiation of a nearby candidate gene between few-petalled and double-petalled lotuses. Overall, these genetic variations and candidate genes responsible for diverse lotus traits revealed by our GWAS highlight the role of transposon variations, particularly MITEs, in shaping floral trait diversity.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Liang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Yuhan Wang
- Wuhan Institute of Design and Sciences, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C. Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111793. [PMID: 33360287 DOI: 10.1016/j.ecoenv.2020.111793] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/21/2023]
Abstract
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China; Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mahdi Tafteh
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Nasim Roudbari
- Faculty of Biology, Islamic Azad University, Kahnouj Branch, Kerman, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
| |
Collapse
|
6
|
Jogawat A, Meena MK, Kundu A, Varma M, Vadassery J. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2752-2768. [PMID: 31957790 PMCID: PMC7210775 DOI: 10.1093/jxb/eraa028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The activation of calcium signaling is a crucial event for perceiving environmental stress. Colonization by Piriformospora indica, a growth-promoting root endosymbiont, activates cytosolic Ca2+ in Arabidopsis roots. In this study, we examined the role and functional relevance of calcium channels responsible for Ca2+ fluxes. Expression profiling revealed that CYCLIC NUCLEOTIDE GATED CHANNEL 19 (CNGC19) is an early-activated gene, induced by unidentified components in P. indica cell-wall extract. Functional analysis showed that loss-of-function of CNGC19 resulted in growth inhibition by P.indica, due to increased colonization and loss of controlled fungal growth. The cngc19 mutant showed reduced elevation of cytosolic Ca2+ in response to P. indica cell-wall extract in comparison to the wild-type. Microbe-associated molecular pattern-triggered immunity was compromised in the cngc19 lines, as evidenced by unaltered callose deposition, reduced cis-(+)-12-oxo-phytodienoic acid, jasmonate, and jasmonoyl isoleucine levels, and down-regulation of jasmonate and other defense-related genes, which contributed to a shift towards a pathogenic response. Loss-of-function of CNGC19 resulted in an inability to modulate indole glucosinolate content during P. indica colonization. CNGC19-mediated basal immunity was dependent on the AtPep receptor, PEPR. CNGC19 was also crucial for P. indica-mediated suppression of AtPep-induced immunity. Our results thus demonstrate that Arabidopsis CNGC19 is an important Ca2+ channel that maintains a robust innate immunity and is crucial for growth-promotion signaling upon colonization by P. indica.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anish Kundu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mahendra Varma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
7
|
Li L, Zhu P, Wang X, Zhang Z. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. BMC Biotechnol 2020; 20:20. [PMID: 32345267 PMCID: PMC7187505 DOI: 10.1186/s12896-020-00613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coexistence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals has deleterious effects on environmental quality. Few reports have studied the mechanisms of plant inoculation with Piriformospora indica to remediate PAH-metal co-contaminated soil by analyzing the chemical speciation of the contaminants. This study investigated the influence of the inoculation of Medicago sativa with P. indica to remediate soil co-contaminated with phenanthrene (a kind of PAH) and cadmium (a heavy metal) by analyzing plant growth, physiological parameters and chemical speciation in rhizosphere and nonrhizosphere soils. RESULTS The presence of P. indica significantly increased plant tolerance, chlorophyll a, chlorophyll b, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene- and/or cadmium-contaminated soil. P. indica inoculation in M. sativa roots increased fluorescein diacetate activities in soils contaminated with phenanthrene, cadmium or both, especially in the nonrhizosphere. The presence of phenanthrene prevented the inoculated plant from accumulating cadmium to some extent, whereas the presence of cadmium did not prevent the degradation of phenanthrene in either the rhizosphere or the nonrhizosphere after P. indica colonization. Although the low bioavailability of cadmium in the rhizosphere restricted its transportation into the stem, P. indica colonization in plants effectively increased cadmium accumulation in roots in soil co-contaminated with cadmium and phenanthrene. CONCLUSIONS In conclusion, this work provides a theoretical basis for the use of P. indica combined with M. sativa for the remediation of PAH-metal co-contaminated soil.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China. .,National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin, China.
| | - Pengyue Zhu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyang Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhenhua Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
8
|
Ye W, Jiang J, Lin Y, Yeh KW, Lai Z, Xu X, Oelmüller R. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC PLANT BIOLOGY 2019; 19:601. [PMID: 31888486 PMCID: PMC6937650 DOI: 10.1186/s12870-019-2105-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. RESULTS Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. CONCLUSION Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.
Collapse
Affiliation(s)
- Wei Ye
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K +/Na + homeostasis and water status. PLANT CELL REPORTS 2019; 38:1151-1163. [PMID: 31152194 DOI: 10.1007/s00299-019-02434-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 05/21/2023]
Abstract
Piriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K+/Na+ homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins. Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P. indica inoculation on growth, accumulation of nutrients, the transcription level of genes involved in ionic homeostasis (NHXs, SOS1 and CNGC15) and regulating water status (PIP1;2, PIP2;4, TIP1;1 and TIP2;2) in roots and leaves of tomato seedlings were investigated. The P. indica improved the uptake of N, P, Ca and K, and reduced Na accumulation, and had no significant effect on Cl accumulation in roots and leaves. The endophytic fungus also increased in K+/Na+ ratio in roots and leaves of tomato by regulating the expression of NHX isoforms and upregulating SOS1 and CNGC15 expression. Salinity stress increased the transcription of PIP2;4 gene and reduced the transcription of PIP1;2, TIP1;1 and TIP2;2 genes compared to the control treatment. However, P. indica inoculation upregulated the expression of PIP1;2 and PIP2;4 genes versus non-inoculated plants but did not have a significant effect on TIP1;1 and TIP2;2 expression. These results conclude that the positive effects of P. indica on nutrients accumulation, ionic homeostasis and water status lead to the increased salinity tolerance and the improved plant growth under NaCl treatment.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Vali Ollah Ghasemi Omran
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Hemmatollah Pirdashti
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
10
|
Liu H, Senthilkumar R, Ma G, Zou Q, Zhu K, Shen X, Tian D, Hua MS, Oelmüller R, Yeh KW. Piriformospora indica-induced phytohormone changes and root colonization strategies are highly host-specific. PLANT SIGNALING & BEHAVIOR 2019; 14:1632688. [PMID: 31230564 PMCID: PMC6768275 DOI: 10.1080/15592324.2019.1632688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 05/19/2023]
Abstract
Piriformospora indica, an endophytic fungus of Sebacinales, has a wide host range and promotes the performance of mono- and eudicot plants. Here, we compare the interaction of P. indica with the roots of seven host plants (Anthurium andraeanum, Arabidopsis thaliana, Brassica campestris, Lycopersicon esculentum, Oncidium orchid, Oryza sativa, and Zea mays). Microscopical analyses showed that the colonization time and the mode of hyphal invasion into the roots differ in the symbiotic interactions. Substantial differences between the species were also observed for the levels and accumulation of jasmonate (JA) and gibberellin (GA) and the transcript levels for genes involved in their syntheses. No obvious correlation could be detected between the endogenous JA and/or GA levels and the time point of root colonization in a given plant species. Our results suggest that root colonization strategies and changes in the two phytohormone levels are highly host-specific.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rajendran Senthilkumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Academia Sinica-Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolan Shen
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Danqing Tian
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Moda Sang Hua
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ralf Oelmüller
- Matthias-Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 2018; 8:5773. [PMID: 29636503 PMCID: PMC5893561 DOI: 10.1038/s41598-018-23994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
Many studies have been now focused on the promising approach of fungal endophytes to protect the plant from nutrient deficiency and environmental stresses along with better development and productivity. Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we used integrated in-depth proteome analyses to characterize the relationship between endophyte Piriformospora indica and Brassica napus plant highlighting its potential involvement in symbiosis and overall growth and development of the plant. An LC-MS/MS based label-free quantitative technique was used to evaluate the differential proteomics under P. indica treatment vs. control plants. In this study, 8,123 proteins were assessed, of which 46 showed significant abundance (34 downregulated and 12 upregulated) under high confidence conditions (p-value ≤ 0.05, fold change ≥2, confidence level 95%). Mapping of identified differentially expressed proteins with bioinformatics tools such as GO and KEGG pathway analysis showed significant enrichment of gene sets involves in metabolic processes, symbiotic signaling, stress/defense responses, energy production, nutrient acquisition, biosynthesis of essential metabolites. These proteins are responsible for root's architectural modification, cell remodeling, and cellular homeostasis during the symbiotic growth phase of plant's life. We tried to enhance our knowledge that how the biological pathways modulate during symbiosis?
Collapse
|
13
|
Jisha S, Gouri PR, Anith KN, Sabu KK. Piriformospora indica cell wall extract as the best elicitor for asiaticoside production in Centella asiatica (L.) Urban, evidenced by morphological, physiological and molecular analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:106-115. [PMID: 29438895 DOI: 10.1016/j.plaphy.2018.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 05/25/2023]
Abstract
Vascular plants synthesise a multitude of organic molecules or phytochemicals, referred to as "secondary metabolites". These molecules are involved in a variety of roles in the life span of plants, ranging from structural ones to protection. Centella asiatica (L.) Urban has probably been used since prehistoric times and has been reported to have been used for various medicinal and cosmetic purposes. The plant contains several active constituents, of which the most important is asiaticoside, a triterpenoid. Asiaticoside content in C. asiatica can be enhanced by the use of biotic elicitors like Piriformospora indica. P. indica has been used as a model to study the mechanisms and evolution of mutualistic symbiosis. P. indica is similar to Arbuscular Mycorrhizal (AM) fungi in terms of plant growth promotional effects. The autoclaved fraction from P. indica (PiCWE) was found to be the most active fraction in promoting the plant biomass and asiaticoside content. To date, there are no reports on the potential role of PiCWE in enhancement of asiaticoside over the control and P. indica colonized plants, which was evidenced by the differential expression of key genes involved and final asiaticoside content along with the determination of phytohormones. Moreover, differential expression of selected miRNAs in PiCWE - C. asiatica root interactions over the control and P. indica treated C. asiatica leaf samples was also scrutinized. The important consequence of induction with PiCWE was the significant enhancement of asiaticoside in the PiCWE induced plants in comparison with the asiaticoside content in control and P. indica-C. asiatica interaction. In addition, the role of miRNAs in C. asiatica - PiCWE would enable more in-depth studies for deciphering the molecular and physiological mechanisms of the association and regulation of PiCWE - C. asiatica interactions.
Collapse
Affiliation(s)
- S Jisha
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - P R Gouri
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - K N Anith
- Division of Microbiology, Kerala Agricultural University, Thiruvananthapuram, 695 522, Kerala, India
| | - K K Sabu
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
14
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
15
|
Li L, Li L, Wang X, Zhu P, Wu H, Qi S. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:211-223. [PMID: 28898746 DOI: 10.1016/j.plaphy.2017.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 05/24/2023]
Abstract
Piriformospora indica, a cultivable root endophytic fungus, induces growth promotion as well as biotic stress resistance and tolerance to abiotic stress in a broad range of host plants. In this study, the potential protection for M Medicago truncatula plants from salinity stress by P. indica was explored. The improved plant growth under severe saline condition was exhibited in P. indica-colonized lines. Moreover, the antioxidant enzymes activities and hyphae density in roots were increased by the endophyte under high salt concentration. Conversely, reduced malondialdehyde (MDA) activity, Na+ content and relative electrolyte conductivity (REC) were observed in P. indica colonized plants. Especially, osmoprotectant proline accumulated and the expression of Delta 1-Pyrroline-5-carboxylate synthetase gene (P5CS2) was induced. The defense related genes PR1 and PR10 and the transcription factors MtAlfin1-like and C2H2-type zinc finger protein MtZfp-c2h2 were induced by P. indica colonization as well. Further work indicated that salinity resistance was increased in overexpressing P5CS2, MtAlfin1-like and MtZfp-c2h2 transgenic M. truncatula plants. Interestingly, our data showed that the transcription factors MtAlfin1-like and MtZfp-c2h2 were positively contributed to P. indica colonization. These results demonstrate that tolerance to salinity stress was conferred by P. indica in M. truncatula via accumulation of osmoprotectant, stimulating antioxidant enzymes and the expression of defense-related genes. This work revealed the potential application of P. indica's as a plant growth-promoting fungus for the target improvement either in crop protection or in the salinized soil improvement indirectly.
Collapse
Affiliation(s)
- Liang Li
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China.
| | - Lei Li
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Xiaoyang Wang
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Pengyue Zhu
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Hongqing Wu
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China
| | - Shuting Qi
- School of Marine Science and Engineering, Hebei University of Technology, No.8 Guangrongdao, Tianjin 300130, China.
| |
Collapse
|
16
|
Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na +/K + homeostasis under salt stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:107-115. [PMID: 28818365 DOI: 10.1016/j.plantsci.2017.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 05/08/2023]
Abstract
The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.
Collapse
Affiliation(s)
- Mohamed E Abdelaziz
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia; Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Dongjin Kim
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia
| | - Nina V Fedoroff
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), BESE Division, 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 PMCID: PMC5571224 DOI: 10.1038/s41598-017-08715-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan. .,Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
18
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 DOI: 10.1038/s41598-017-087152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan.
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
19
|
Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis. Biochem Biophys Res Commun 2017; 490:1162-1167. [PMID: 28668394 DOI: 10.1016/j.bbrc.2017.06.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.
Collapse
|
20
|
Qin Y, Pan X, Kubicek C, Druzhinina I, Chenthamara K, Labbé J, Yuan Z. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth. Front Microbiol 2017; 8:158. [PMID: 28220113 PMCID: PMC5292420 DOI: 10.3389/fmicb.2017.00158] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant-fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and pleosporalean fungi, and initial evidence for the use of this fungal group in benefiting plant production.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Xueyu Pan
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| | - Christian Kubicek
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Irina Druzhinina
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Komal Chenthamara
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Jessy Labbé
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU WienVienna, Austria
| | - Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of ForestryHangzhou, China
| |
Collapse
|
21
|
Zavala-Gonzalez EA, Rodríguez-Cazorla E, Escudero N, Aranda-Martinez A, Martínez-Laborda A, Ramírez-Lepe M, Vera A, Lopez-Llorca LV. Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. THE NEW PHYTOLOGIST 2017; 213:351-364. [PMID: 27456071 DOI: 10.1111/nph.14106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/13/2016] [Indexed: 05/09/2023]
Abstract
Pochonia chlamydosporia has been intensively studied in nematode control of different crops. We have investigated the interaction between P. chlamydosporia and the model system Arabidopsis thaliana under laboratory conditions in the absence of nematodes. This study demonstrates that P. chlamydosporia colonizes A. thaliana. Root colonization monitored with green fluorescent protein-tagged P. chlamydosporia and quantitative PCR (qPCR) quantitation methods revealed root cell invasion. Fungal inoculation reduced flowering time and stimulated plant growth, as determined by total FW increase, faster development of inflorescences and siliques, and a higher yield in terms of seed production per plant. Precocious flowering was associated with significant expression changes in key flowering-time genes. In addition, we also provided molecular and genetic evidence that point towards jasmonate signaling as an important factor to modulate progression of plant colonization by the fungus. Our results indicate that P. chlamydosporia provides benefits to the plant in addition to its nematophagous activity. This report highlights the potential of P. chlamydosporia to improve yield in economically important crops.
Collapse
Affiliation(s)
- Ernesto A Zavala-Gonzalez
- Multidisciplinary Institute for Environmental Studies (MIES) 'Ramon Margalef', Department of Marine Sciences and Applied Biology, University of Alicante, Aptdo. 99, Alicante, 03080, Spain
- Food Research and Development Unit (UNIDA), Laboratory of Genetics, Technological Institute of Veracruz, Veracruz, 91897, México
| | | | - Nuria Escudero
- Multidisciplinary Institute for Environmental Studies (MIES) 'Ramon Margalef', Department of Marine Sciences and Applied Biology, University of Alicante, Aptdo. 99, Alicante, 03080, Spain
| | - Almudena Aranda-Martinez
- Multidisciplinary Institute for Environmental Studies (MIES) 'Ramon Margalef', Department of Marine Sciences and Applied Biology, University of Alicante, Aptdo. 99, Alicante, 03080, Spain
| | | | - Mario Ramírez-Lepe
- Food Research and Development Unit (UNIDA), Laboratory of Genetics, Technological Institute of Veracruz, Veracruz, 91897, México
| | - Antonio Vera
- Area de Genética, Universidad Miguel Hernández, Campus de Sant Joan, Alicante, 03550, Spain
| | - Luis V Lopez-Llorca
- Multidisciplinary Institute for Environmental Studies (MIES) 'Ramon Margalef', Department of Marine Sciences and Applied Biology, University of Alicante, Aptdo. 99, Alicante, 03080, Spain
| |
Collapse
|
22
|
Strehmel N, Mönchgesang S, Herklotz S, Krüger S, Ziegler J, Scheel D. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana. Int J Mol Sci 2016; 17:ijms17071091. [PMID: 27399695 PMCID: PMC4964467 DOI: 10.3390/ijms17071091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022] Open
Abstract
Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes
Collapse
Affiliation(s)
- Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Siska Herklotz
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sylvia Krüger
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
23
|
Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R. The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC PLANT BIOLOGY 2015; 15:58. [PMID: 25849363 PMCID: PMC4384353 DOI: 10.1186/s12870-015-0419-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. RESULTS We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the number and expression level of defense/stress-related genes decreases. CONCLUSIONS We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the down-regulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance.
Collapse
Affiliation(s)
- Khabat Vahabi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Irena Sherameti
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Madhunita Bakshi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anna Mrozinska
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anatoli Ludwig
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- />Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ralf Oelmüller
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|