1
|
Zheng J, Tang H, Wang J, Liu Y, Ge L, Liu G, Shi Q, Zhang Y. Genome-Wide Identification and Expression Analysis of the High-Mobility Group B ( HMGB) Gene Family in Plant Response to Abiotic Stress in Tomato. Int J Mol Sci 2024; 25:5850. [PMID: 38892039 PMCID: PMC11172549 DOI: 10.3390/ijms25115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
High-mobility group B (HMGB) proteins are a class of non-histone proteins associated with eukaryotic chromatin and are known to regulate a variety of biological processes in plants. However, the functions of HMGB genes in tomato (Solanum lycopersicum) remain largely unexplored. Here, we identified 11 members of the HMGB family in tomato using BLAST. We employed genome-wide identification, gene structure analysis, domain conservation analysis, cis-acting element analysis, collinearity analysis, and qRT-PCR-based expression analysis to study these 11 genes. These genes were categorized into four groups based on their unique protein domain structures. Despite their structural diversity, all members contain the HMG-box domain, a characteristic feature of the HMG superfamily. Syntenic analysis suggested that tomato SlHMGBs have close evolutionary relationships with their homologs in other dicots. The promoter regions of SlHMGBs are enriched with numerous cis-elements related to plant growth and development, phytohormone responsiveness, and stress responsiveness. Furthermore, SlHMGB members exhibited distinct tissue-specific expression profiles, suggesting their potential roles in regulating various aspects of plant growth and development. Most SlHMGB genes respond to a variety of abiotic stresses, including salt, drought, heat, and cold. For instance, SlHMGB2 and SlHMGB4 showed positive responses to salt, drought, and cold stresses. SlHMGB1, SlHMGB3, and SlHMGB8 were involved in responses to two types of stress: SlHMGB1 responded to drought and heat, while SlHMGB3 and SlHMGB8 responded to salt and heat. SlHMGB6 and SlHMGB11 were solely regulated by drought and heat stress, respectively. Under various treatment conditions, the number of up-regulated genes significantly outnumbered the down-regulated genes, implying that the SlHMGB family may play a crucial role in mitigating abiotic stress in tomato. These findings lay a foundation for further dissecting the precise roles of SlHMGB genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (J.Z.); (H.T.); (J.W.); (Y.L.); (L.G.); (G.L.); (Q.S.)
| |
Collapse
|
2
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
3
|
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 2019; 10:1154. [PMID: 30858362 PMCID: PMC6411957 DOI: 10.1038/s41467-019-09134-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Brassica napus (2n = 4x = 38, AACC) is an important allopolyploid crop derived from interspecific crosses between Brassica rapa (2n = 2x = 20, AA) and Brassica oleracea (2n = 2x = 18, CC). However, no truly wild B. napus populations are known; its origin and improvement processes remain unclear. Here, we resequence 588 B. napus accessions. We uncover that the A subgenome may evolve from the ancestor of European turnip and the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale. Additionally, winter oilseed may be the original form of B. napus. Subgenome-specific selection of defense-response genes has contributed to environmental adaptation after formation of the species, whereas asymmetrical subgenomic selection has led to ecotype change. By integrating genome-wide association studies, selection signals, and transcriptome analyses, we identify genes associated with improved stress tolerance, oil content, seed quality, and ecotype improvement. They are candidates for further functional characterization and genetic improvement of B. napus. Brassica napus is a globally important oil crop, but the origin of the allotetraploid genome and its improvement process are largely unknown. Here, the authors take a population genetic approach to resolve its origin and evolutionary history, and identify candidate genes related to important agricultural traits.
Collapse
Affiliation(s)
- Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Lijuan Wei
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Yuntong Wang
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Miao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Chao Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Zhiyou Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Zhongchun Xiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Xinchao Cheng
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Cunming Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Rui Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Qingyuan Zou
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Jiamin Ying
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Xingfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Jiaqing Mei
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Ying Liang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - You-Rong Chai
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Zhanglin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Na Lin
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Wei Sun
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Nan-Nan Li
- Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Gang Zhou
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30605, USA.
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China. .,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China. .,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China.
| |
Collapse
|
4
|
Lee T, Lee I. araGWAB: Network-based boosting of genome-wide association studies in Arabidopsis thaliana. Sci Rep 2018; 8:2925. [PMID: 29440686 PMCID: PMC5811503 DOI: 10.1038/s41598-018-21301-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/01/2018] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have been applied for the genetic dissection of complex phenotypes in Arabidopsis thaliana. However, the significantly associated single-nucleotide polymorphisms (SNPs) could not explain all the phenotypic variations. A major reason for missing true phenotype-associated loci is the strict P-value threshold after adjustment for multiple hypothesis tests to reduce false positives. This statistical limitation can be partly overcome by increasing the sample size, but at a much higher cost. Alternatively, weak phenotype-association signals can be boosted by integrating other types of data. Here, we present a web application for network-based Arabidopsis genome-wide association boosting-araGWAB-which augments the likelihood of association with the given phenotype by integrating GWAS summary statistics (SNP P-values) and co-functional gene network information. The integration utilized the inherent values of SNPs with subthreshold significance, thus substantially increasing the information usage of GWAS data. We found that araGWAB could more effectively retrieve genes known to be associated with various phenotypes relevant to defense against bacterial pathogens, flowering time regulation, and organ development in A. thaliana. We also found that many of the network-boosted candidate genes for the phenotypes were supported by previous publications. The araGWAB is freely available at http://www.inetbio.org/aragwab/ .
Collapse
Affiliation(s)
- Tak Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
5
|
Zermiani M, Begheldo M, Nonis A, Palme K, Mizzi L, Morandini P, Nonis A, Ruperti B. Identification of the Arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. ANNALS OF BOTANY 2015; 116:69-89. [PMID: 26078466 PMCID: PMC4479753 DOI: 10.1093/aob/mcv066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. METHODS Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. KEY RESULTS Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. CONCLUSIONS The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity.
Collapse
Affiliation(s)
- Monica Zermiani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Maura Begheldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Klaus Palme
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 2
| | - Luca Mizzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
6
|
Zhou W, Zhu Y, Dong A, Shen WH. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:78-95. [PMID: 25781491 DOI: 10.1111/tpj.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/06/2023]
Abstract
Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.
Collapse
Affiliation(s)
- Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
7
|
Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:741-56. [PMID: 24923357 DOI: 10.1111/tpj.12582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, male gametes (sperm cells) develop within male gametophytes (pollen grains) and are delivered to female gametes for double fertilization by pollen tubes. Therefore, pollen tube growth is crucial for reproduction. The mechanisms that control pollen tube growth remain poorly understood. In this study, we demonstrated that the ARID-HMG DNA-binding protein AtHMGB15 plays an important role in pollen tube growth. This protein is preferentially expressed in pollen grains and pollen tubes and is localized in the vegetative nuclei of the tricellular pollen grains and pollen tubes. Knocking down AtHMGB15 expression via a Ds insertion caused retarded pollen tube growth, leading to a significant reduction in the seed set. The athmgb15-1 mutation affected the expression of 1686 genes in mature pollen, including those involved in cell wall formation and modification, cell signaling and cellular transport during pollen tube growth. In addition, it was observed that AtHMGB15 binds to DNA in vitro and interacts with the transcription factors AGL66 and AGL104, which are required for pollen maturation and pollen tube growth. These results suggest that AtHMGB15 functions in pollen tube growth through the regulation of gene expression.
Collapse
Affiliation(s)
- Chuan Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen T, Zhu XG, Lin Y. Major alterations in transcript profiles between C3-C4 and C4 photosynthesis of an amphibious species Eleocharis baldwinii. PLANT MOLECULAR BIOLOGY 2014; 86:93-110. [PMID: 25008152 DOI: 10.1007/s11103-014-0215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
Engineering C4 photosynthetic metabolism into C3 crops is regarded as a major strategy to increase crop productivity, and clarification of the evolutionary processes of C4 photosynthesis can help the better use of this strategy. Here, Eleocharis baldwinii, a species in which C4 photosynthesis can be induced from a C3-C4 state under either environmental or ABA treatments, was used to identify the major transcriptional modifications during the process from C3-C4 to C4. The transcriptomic comparison suggested that in addition to the major differences in C4 core pathway, the pathways of glycolysis, citrate acid metabolism and protein synthesis were dramatically modified during the inducement of C4 photosynthetic states. Transcripts of many transporters, including not only metabolite transporters but also ion transporters, were dramatically increased in C4 photosynthetic state. Many candidate regulatory genes with unidentified functions were differentially expressed in C3-C4 and C4 photosynthetic states. Finally, it was indicated that ABA, auxin signaling and DNA methylation play critical roles in the regulation of C4 photosynthesis. In summary, by studying the different photosynthetic states of the same species, this work provides the major transcriptional differences between C3-C4 and C4 photosynthesis, and many of the transcriptional differences are potentially related to C4 development and therefore are the potential targets for reverse genetics studies.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | |
Collapse
|
9
|
Zou B, Yang DL, Shi Z, Dong H, Hua J. Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:309-18. [PMID: 24664204 PMCID: PMC4012590 DOI: 10.1104/pp.113.227801] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/22/2014] [Indexed: 05/17/2023]
Abstract
Disease resistance (R) genes are key components in plant immunity. Here, we show that Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligase genes HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 regulate the expression of R genes SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1) and RESISTANCE TO PERONOSPORA PARASITICA4. An increase of SNC1 expression induces constitutive immune responses in the bonzai1 (bon1) mutant, and the loss of HUB1 or HUB2 function reduces SNC1 up-regulation and suppresses the bon1 autoimmune phenotypes. HUB1 and HUB2 mediate histone 2B (H2B) monoubiquitination directly at the SNC1 R gene locus to regulate its expression. In addition, SNC1 and HUB1 transcripts are moderately up-regulated by pathogen infection, and H2B monoubiquitination at SNC1 is enhanced by pathogen infection. Together, this study indicates that H2B monoubiquitination at the R gene locus regulates its expression and that this histone modification at the R gene locus has an impact on immune responses in plants.
Collapse
|
10
|
Durut N, Abou-Ellail M, Pontvianne F, Das S, Kojima H, Ukai S, de Bures A, Comella P, Nidelet S, Rialle S, Merret R, Echeverria M, Bouvet P, Nakamura K, Sáez-Vásquez J. A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis. THE PLANT CELL 2014; 26:1330-44. [PMID: 24668745 PMCID: PMC4001387 DOI: 10.1105/tpc.114.123893] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 05/19/2023]
Abstract
In plants as well as in animals, hundreds to thousands of 45S rRNA gene copies localize in Nucleolus Organizer Regions (NORs), and the activation or repression of specific sets of rDNA depends on epigenetic mechanisms. Previously, we reported that the Arabidopsis thaliana nucleolin protein NUC1, an abundant and evolutionarily conserved nucleolar protein in eukaryotic organisms, is required for maintaining DNA methylation levels and for controlling the expression of specific rDNA variants in Arabidopsis. Interestingly, in contrast with animal or yeast cells, plants contain a second nucleolin gene. Here, we report that Arabidopsis NUC1 and NUC2 nucleolin genes are both required for plant growth and survival and that NUC2 disruption represses flowering. However, these genes seem to be functionally antagonistic. In contrast with NUC1, disruption of NUC2 induces CG hypermethylation of rDNA and NOR association with the nucleolus. Moreover, NUC2 loss of function triggers major changes in rDNA spatial organization, expression, and transgenerational stability. Our analyses indicate that silencing of specific rRNA genes is mostly determined by the active or repressed state of the NORs and that nucleolin proteins play a key role in the developmental control of this process.
Collapse
Affiliation(s)
- Nathalie Durut
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Mohamed Abou-Ellail
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Sadhan Das
- École Normale Supérieure Lyon, CNRS,
Unité de Service et de Recherche 3010, Lyon 69364, France
| | - Hisae Kojima
- Graduate School of Bioagricultural Sciences, Nagoya
University, Nagoya 464-8601, Japan
| | - Seiko Ukai
- Graduate School of Bioagricultural Sciences, Nagoya
University, Nagoya 464-8601, Japan
| | - Anne de Bures
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Pascale Comella
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | | | | | - Remy Merret
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Manuel Echeverria
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| | - Philippe Bouvet
- École Normale Supérieure Lyon, CNRS,
Unité de Service et de Recherche 3010, Lyon 69364, France
| | - Kenzo Nakamura
- Graduate School of Bioagricultural Sciences, Nagoya
University, Nagoya 464-8601, Japan
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement
des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire
Génome et Développement des Plantes, Unité Mixte de Recherche
5096, F-66860 Perpignan, France
| |
Collapse
|
11
|
Ménard R, Verdier G, Ors M, Erhardt M, Beisson F, Shen WH. Histone H2B Monoubiquitination is Involved in the Regulation of Cutin and Wax Composition in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:455-66. [DOI: 10.1093/pcp/pct182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Himanen K, Woloszynska M, Boccardi TM, De Groeve S, Nelissen H, Bruno L, Vuylsteke M, Van Lijsebettens M. Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:249-60. [PMID: 22762858 DOI: 10.1111/j.1365-313x.2012.05071.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Previously, we identified HISTONE MONOUBIQUITINATION1 (HUB1) as an unconventional ubiquitin E3 ligase that is not involved in protein degradation but in the histone H2B modification that is implicated in transcriptional activation in plants. HUB1-mediated regulation of gene expression played a role in periodic and inducible processes such as the cell cycle, dormancy, flowering time and defense responses. Here, we determined the effects of the hub1-1 mutation on expression of a set of diurnally induced circadian clock genes identified from a comparative microarray analysis between the hub1-1 mutant and an HUB1 over-expression line. The hub1-1 mutation reduced the amplitudes of a number of induced clock gene expression peaks, as well as the HUB1-mediated histone H2BUb and H3K4Me3 marks associated with the coding regions, suggesting a role for HUB1 in facilitating transcriptional elongation in plants. Furthermore, double mutants between hub1-1 and elongata (elo) showed an embryo-lethal phenotype, indicating a synergistic genetic interaction. The double mutant embryos arrested at the torpedo stage, implying that together histone ubiquitination and acetylation marks are essential to activate expression of target genes in multiple pathways.
Collapse
Affiliation(s)
- Kristiina Himanen
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mazzio EA, Soliman KFA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012; 7:119-30. [PMID: 22395460 DOI: 10.4161/epi.7.2.18764] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL USA
| | | |
Collapse
|
14
|
Formosa T. The role of FACT in making and breaking nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:247-55. [PMID: 21807128 DOI: 10.1016/j.bbagrm.2011.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
FACT is a roughly 180kDa heterodimeric protein complex important for managing the properties of chromatin in eukaryotic cells. Chromatin is a repressive barrier that plays an important role in protecting genomic DNA and regulating access to it. This barrier must be temporarily removed during transcription, replication, and repair, but it also must be rapidly restored to the original state afterwards. Further, the properties of chromatin are dynamic and must be adjusted as conditions dictate. FACT was identified as a factor that destabilizes nucleosomes in vitro, but it has now also been implicated as a central factor in the deposition of histones to form nucleosomes, as an exchange factor that swaps the histones within existing nucleosomes for variant forms, and as a tether that prevents histones from being displaced by the passage of RNA polymerases during transcription. FACT therefore plays central roles in building, maintaining, adjusting, and overcoming the chromatin barrier. This review summarizes recent results that have begun to reveal how FACT can promote what appear to be contradictory goals, using a simple set of binding activities to both enhance and diminish the stability of nucleosomes. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
15
|
Lin M, Zhou X, Shen X, Mao C, Chen X. The predicted Arabidopsis interactome resource and network topology-based systems biology analyses. THE PLANT CELL 2011; 23:911-22. [PMID: 21441435 PMCID: PMC3082272 DOI: 10.1105/tpc.110.082529] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 12/30/2010] [Accepted: 03/10/2011] [Indexed: 05/17/2023]
Abstract
Predicted interactions are a valuable complement to experimentally reported interactions in molecular mechanism studies, particularly for higher organisms, for which reported experimental interactions represent only a small fraction of their total interactomes. With careful engineering consideration of the lessons from previous efforts, the predicted arabidopsis interactome resource (PAIR; ) presents 149,900 potential molecular interactions, which are expected to cover approximately 24% of the entire interactome with approximately 40% precision. This study demonstrates that, although PAIR still has limited coverage, it is rich enough to capture many significant functional linkages within and between higher-order biological systems, such as pathways and biological processes. These inferred interactions can nicely power several network topology-based systems biology analyses, such as gene set linkage analysis, protein function prediction, and identification of regulatory genes demonstrating insignificant expression changes. The drastically expanded molecular network in PAIR has considerably improved the capability of these analyses to integrate existing knowledge and suggest novel insights into the function and coordination of genes and gene networks.
Collapse
Affiliation(s)
- Mingzhi Lin
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xi Zhou
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xueling Shen
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xin Chen
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| |
Collapse
|