1
|
Jiang Z, Liu T, Wang Y, Li J, Guo L. Effect of lncRNA XIST on acute myeloid leukemia cells via miR-142-5p-PFKP axis. Hematology 2024; 29:2306444. [PMID: 38305210 DOI: 10.1080/16078454.2024.2306444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Acute myeloid leukemia (AML) is the common blood cancer in hematopoietic system-related diseases and has a poor prognosis. Studies have shown that long non-coding RNAs (lncRNAs) are closely related to the pathogenesis of a variety of diseases, including AML. However, the specific molecular mechanism remains unclear. Hence, the objective of this study was to investigate the effect and mechanism of lncRNA X inactive specific transcript (lncRNA XIST) on AML. To achieve our objective, some tests were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of lncRNA XIST, miR-142-5p and the platelet isoform of phosphofructokinase (PFKP). The targeting relationship between miR-142-5p and lncRNA XIST and PFKP was verified by Pearson correlation analysis, dual-luciferase reporter assay, and pull-down assay. Functional experiments were used to analyze the effect and mechanism of action of knocking down lncRNA XIST on THP-1 and U937 cells. Compared with bone marrow cells, lncRNA XIST and PFKP expression levels were up-regulated and miR-142-5p expression levels were down-regulated in AML. Further analysis revealed that lncRNA XIST targeted and bound to miR-142-5p, and PFKP was a target gene of miR-142-5p. Knockdown of lncRNA XIST significantly promoted miR-142-5p expression to down-regulate PFKP in THP-1 and U937 cells, while the cell proliferation, cell viability, and cell cycle arrest were inhibited and apoptosis was increased. Knockdown of miR-142-5p reversed the functional impact of lncRNA XIST knockdown on AML cells. In conclusion, down-regulation of lncRNA XIST can affect the progression of AML by regulating miR-142-5p.
Collapse
Affiliation(s)
- Zhaozhi Jiang
- Blood Transfusion Department, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Tingting Liu
- Pathology Department, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Youhong Wang
- Blood Transfusion Department, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Jiao Li
- Blood Transfusion Department, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Lusheng Guo
- Blood Transfusion Department, Affiliated Hospital of Jilin Medical University, Jilin, China
| |
Collapse
|
2
|
Wilson C, Swaroop P, Kumar S, Chopra A, Sharawat SK. Molecular leveraging of HOX-embedded non-coding RNAs in the progression of acute myeloid leukemia. Hum Cell 2024; 38:24. [PMID: 39614990 DOI: 10.1007/s13577-024-01149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by impaired differentiation of myeloid cells leading to hematopoietic failure. Despite advances, the molecular mechanisms driving AML remain incompletely understood, limiting the identification and targeting of critical vulnerabilities in leukemic cells. Homeobox (HOX) genes, encoding transcription factors essential for myeloid and lymphoid differentiation, are distributed across four clusters: HOXA (chromosome 7), HOXB (chromosome 17), HOXC (chromosome 12), and HOXD (chromosome 2). In addition to protein-coding sequences, HOX clusters encode non-coding RNAs (ncRNAs), which are functional as transcripts and do not translate into proteins. This is the first study wherein we comprehensively reviewed the literature for HOX-embedded ncRNAs, encompassing long non-coding RNAs (lncRNAs), microRNAs, circular RNAs (circRNAs), and piwiRNAs with a role in AML. To date, there is no evidence of circular RNAs and piwi RNAs encoded from the HOX gene clusters. Our review focuses on how leukemic cells harness the regulatory mechanisms of HOX-cluster-derived ncRNAs, (predominantly HOXA and HOXB) to modulate expression of HOX transcription factors facilitating leukemogenesis. HOX ncRNAs either regulate genes on the same chromosome (e.g., lncRNA HOTTIP) or influence expression of genes on different chromosomes (e.g., HOTAIR, HOX10-AS, miR-196b, and miR-10a). We discuss how specific HOX ncRNA networks are leveraged by leukemic cells, presenting an opportunity to explore targeted therapies and address the molecular heterogeneity of AML. Additionally, the aberrant expression of HOX ncRNAs such as HOXB derived ncRNAs in NPM1 mutated AML suggests their potential utility as improved biomarkers and for prognostication of patients with specific molecular aberrations.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Nucleophosmin/genetics
- Disease Progression
- Genes, Homeobox/genetics
- RNA, Untranslated/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- MicroRNAs/genetics
- Homeodomain Proteins/genetics
- Multigene Family/genetics
- RNA, Circular/genetics
- RNA, Circular/physiology
- Cell Differentiation/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Christine Wilson
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India
| | - Priyanka Swaroop
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, Room No. 401, 4th Floor, New Delhi, India.
| |
Collapse
|
3
|
Kubaski Benevides AP, Marin AM, Wosniaki DK, Oliveira RN, Koerich GM, Kusma BN, Munhoz EC, Zanette DL, Aoki MN. Expression of HOTAIR and PTGS2 as potential biomarkers in chronic myeloid leukemia patients in Brazil. Front Oncol 2024; 14:1443346. [PMID: 39450252 PMCID: PMC11499243 DOI: 10.3389/fonc.2024.1443346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm in which all the patients has the translocation (9;22) that generates de BCR::ABL1 tyrosine kinase. Despite this disease possessing a good biomarker (BCR::ABL1 transcripts level) for diagnosis and prognosis, many studies has been performed to investigate other molecules, such as the long noncoding RNAs (lncRNAs) and mRNAs, as potential biomarkers with the aim of predicting a change in BCR::ABL1 levels and as an associated biomarker. A RNAseq was performed comparing 6 CML patients with high BCR::ABL1 expression with 6 healthy control individuals, comprising the investigation cohort to investigate these molecules. To validate the results obtained by RNAseq, samples of 87 CML patients and 42 healthy controls were used in the validation cohort by RT-qPCR assays. The results showed lower expression of HOTAIR and PTGS2 in CML patients. The HOTAIR expression is inversely associated with BCR::ABL1 expression in imatinib-treated CML patients, and to PTGS2 showing that CML patients with high BCR::ABL1 expression showed reduced PTGS2 expression.
Collapse
Affiliation(s)
- Ana Paula Kubaski Benevides
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Denise K. Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Rafaela Noga Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Gabriela Marino Koerich
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Bianca Nichele Kusma
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| |
Collapse
|
4
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Hazra R, Debnath R, Tuppad A. Glioblastoma stem cell long non-coding RNAs: therapeutic perspectives and opportunities. Front Genet 2024; 15:1416772. [PMID: 39015773 PMCID: PMC11249581 DOI: 10.3389/fgene.2024.1416772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Glioblastoma poses a formidable challenge among primary brain tumors: its tumorigenic stem cells, capable of self-renewal, proliferation, and differentiation, contribute substantially to tumor initiation and therapy resistance. These glioblastoma stem cells (GSCs), resembling conventional stem and progenitor cells, adopt pathways critical for tissue development and repair, promoting uninterrupted tumor expansion. Long non-coding RNAs (lncRNAs), a substantial component of the human transcriptome, have garnered considerable interest for their pivotal roles in normal physiological processes and cancer pathogenesis. They display cell- or tissue-specific expression patterns, and extensive investigations have highlighted their impact on regulating GSC properties and cellular differentiation, thus offering promising avenues for therapeutic interventions. Consequently, lncRNAs, with their ability to exert regulatory control over tumor initiation and progression, have emerged as promising targets for innovative glioblastoma therapies. This review explores notable examples of GSC-associated lncRNAs and elucidates their functional roles in driving glioblastoma progression. Additionally, we delved deeper into utilizing a 3D in vitro model for investigating GSC biology and elucidated four primary methodologies for targeting lncRNAs as potential therapeutics in managing glioblastoma.
Collapse
Affiliation(s)
- Rasmani Hazra
- University of New Haven, Biology and Environmental Science Department, West Haven, CT, United States
| | - Rinku Debnath
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Arati Tuppad
- University of New Haven, Biology and Environmental Science Department, West Haven, CT, United States
| |
Collapse
|
6
|
Al-Hawary SIS, Jasim SA, Altalbawy FMA, Hjazi A, Jyothi SR, Kumar A, Eldesoqui M, Rasulova MT, Sinha A, Zwamel AH. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 2024; 41:171. [PMID: 38849654 DOI: 10.1007/s12032-024-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - M T Rasulova
- Department of Physiology, Dean of the Faculty of Therapeutics, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
8
|
Li L, Xin L, Yang X, Zou Z. Oncogenic lncRNA FAM215A promotes the malignant cell phenotypes of acute myeloid leukemia (AML) cell lines. J Mol Histol 2024; 55:97-108. [PMID: 38165572 DOI: 10.1007/s10735-023-10174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/14/2023] [Indexed: 01/04/2024]
Abstract
Acute myeloid leukemia (AML) is a form of blood cancer that arise as a result of clonal proliferation of malignant myeloid precursors acquiring genetic abnormalities. Primary resistance to initial treatment and disease recurrence continues to be huge challenge in treating AML. Herein, GSE114868 was analyzed for differentially-expressed lncRNAs between AML patients' mononucleated cells and healthy normal control mononucleated cells and 191 lncRNAs were significantly deregulated in AML patients' mononucleated cells. The correlation between candidate lncRNAs and AML patients' overall survival was analyzed and 6 lncRNAs, including MIR181A1HG, TRAF3IP2-AS1, STARD4-AS1, E2F3-IT1, FAM215A, and HHIP-AS1 were dramatically linked to AML patients' OS. Using a Cox proportional-hazards model, we identified risk factors and found FAM215A as a risk factor for AML patients' prognosis. The expression level of FAM215A showed to be upregulated within blood samples and cells. Genes correlated with FAM215A were correlated to cell division, modulation of cell apoptosis, and modulation of programmed cell death. FAM215A knockdown inhibited AML cell viability, elicited G0/G1-phase arrest of cell cycle, enhanced cell apoptosis, increased proapoptotic Bax and cleaved-caspase3 levels, and decreased antiapoptotic Bcl2. FAM215A overexpression exerted opposite effects on AML cells. Conclusively, FAM215A serves as an oncogenic lncRNA in AML, promoting cell viability, relieving cell cycle arrest, and suppressing cell apoptosis. FAM215A might be un underlying biological prognostic marker and therapeutic target for AML.
Collapse
Affiliation(s)
- Lin Li
- Department of hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Liuyan Xin
- Department of hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Xiang Yang
- Department of hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Zhengrong Zou
- Department of emergency, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
9
|
Zhou Y, Wu Q, Long X, He Y, Huang J. lncRNA HOTAIRM1 Activated by HOXA4 Drives HUVEC Proliferation Through Direct Interaction with Protein Partner HSPA5. Inflammation 2024; 47:421-437. [PMID: 37898994 PMCID: PMC10798933 DOI: 10.1007/s10753-023-01919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
Despite the substantial progress in deciphering the pathogenesis of atherosclerosis (AS), cardiovascular mortality is still increasing. Therefore, atherosclerotic cardiovascular disease remains a sweeping epidemic that jeopardizes human health. Disentangling the molecular underpinnings of AS is imperative in the molecular cardiology field. Overwhelming evidence has indicated that the recognition of a fascinating class of players, known as long non-coding RNAs (lncRNAs), provides causality for coordinating AS. However, the function and mechanism of HOTAIRM1 are still poorly understood in human umbilical vein endothelial cells (HUVECs) and AS. Herein, we primarily underscored that lncRNA HOTAIRM1 is potentially responsible for AS; as such, it was dramatically up-regulated in HUVECs upon ox-LDL stimulation. Functionally, HOTAIRM1 knockdown attenuated HUVEC proliferation and potentiated apoptosis in the absence and presence of ox-LDL. Furthermore, HOTAIRM1 was preferentially located in the nuclei of HUVECs. Mechanistically, HOXA4 is directly bound to the HOTAIRM1 promoter and activated its transcription. Of note, a positive feedback signaling between HOXA4 and HOTAIRM1 was determined. Intriguingly, the interplay between HOTAIRM1 and HSPA5 occurred in an RNA-binding protein pattern and a transcription-dependent regulatory manner. In addition, HSPA5 overexpression partially antagonized HUVEC proliferation inhibition of HOTAIRM1 depletion. Taken together, our findings delineate a pivotal functional interaction among HOXA4, HOTAIRM1, and HSPA5 as a novel regulatory circuit for modulating HUVEC proliferation. An in-depth investigation of the HOXA4-HOTAIRM1-HSPA5 axis promises to yield significant breakthroughs in identifying the molecular mechanisms governing AS and developing therapeutic avenues for AS.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, 550025, Guizhou, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Xiangshu Long
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| |
Collapse
|
10
|
Xie KY, Chen SZ, Wang Y, Zeng ML, Liu XY, Liang Y, Wei J. Establishment and validation of a prognostic immune-related lncRNA risk model for acute myeloid leukemia. Transl Cancer Res 2023; 12:3693-3702. [PMID: 38192996 PMCID: PMC10774049 DOI: 10.21037/tcr-23-429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 01/10/2024]
Abstract
Background Acute myeloid leukemia (AML) is a cancer arising in the bone marrow and is the most common type of adult leukemia. AML has a poor prognosis, and currently, its prognosis evaluation does not include immune status assessment. This study established an immune-related long non-coding RNA (lncRNA) prognostic risk model for AML based on immune lncRNAs screening. Methods To construct training and validation cohorts, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public databases were accessed to obtain gene expression profiles and clinical data. The correlation between lncRNAs and immunity genes was analyzed using the "limma" package, and the immune-related lncRNAs were obtained. Through least absolute shrinkage and selection operator regression, a prognostic model was established with immune-related lncRNAs. Using the median risk score, patients were divided into high- and low-risk groups. The Kaplan-Meier method was used for survival analysis, whereas the accuracy of the risk model was evaluated using time-dependent receiver operating characteristic curves, risk score distribution, survival status, and risk heat maps. We utilized univariate and multivariate Cox regression to examine the association between risk score and clinical variables and AML survival and prognosis. Results In the immune-related lncRNA prognostic risk model, the prognosis was better for low-risk than for high-risk patients, indicating risk score of this model as an independent indicator of prognosis. The area under the curve value for 1-, 3-, and 5-year survival of TCGA patients was 0.817, 0.859, and 0.909, respectively, whereas that of GEO patients (of dataset GPL96-GSE37642) was 0.603, 0.652, and 0.624, respectively. Gene set enrichment analysis revealed the enrichment of multiple pathways, such as antigen processing, B-cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, and chemokines, in high-risk patients. Conclusions In this study, immune-related lncRNA prognostic risk models effectively predicted AML survival and provided potential treatment targets.
Collapse
Affiliation(s)
- Kun-Ying Xie
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shu-Zhao Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Meng-Lan Zeng
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ying Liu
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Hu X, Wang Y, Zhang X, Li C, Zhang X, Yang D, Liu Y, Li L. DNA methylation of HOX genes and its clinical implications in cancer. Exp Mol Pathol 2023; 134:104871. [PMID: 37696326 DOI: 10.1016/j.yexmp.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Homeobox (HOX) genes encode highly conserved transcription factors that play vital roles in embryonic development. DNA methylation is a pivotal regulatory epigenetic signaling mark responsible for regulating gene expression. Abnormal DNA methylation is largely associated with the aberrant expression of HOX genes, which is implicated in a broad range of human diseases, including cancer. Numerous studies have clarified the mechanisms of DNA methylation in both physiological and pathological processes. In this review, we focus on how DNA methylation regulates HOX genes and briefly discuss drug development approaches targeting these mechanisms.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China; Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan, Jinan 250200, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chensheng Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xikun Zhang
- Department of Minimally Invasive Interventional, The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, Shandong, China
| | - Dongxia Yang
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Yuanyuan Liu
- Shandong Xinchuang Biotechnology Co., LTD, Jinan 250102, Shandong, China
| | - Lianlian Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
12
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Athanasopoulou K, Chondrou V, Xiropotamos P, Psarias G, Vasilopoulos Y, Georgakilas GK, Sgourou A. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis. J Mol Med (Berl) 2023; 101:1097-1112. [PMID: 37486375 PMCID: PMC10482784 DOI: 10.1007/s00109-023-02352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Non-coding RNA (ncRNA) species, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been currently imputed for lesser or greater involvement in human erythropoiesis. These RNA subsets operate within a complex circuit with other epigenetic components and transcription factors (TF) affecting chromatin remodeling during cell differentiation. Lymphoma/leukemia-related (LRF) TF exerts higher occupancy on DNA CpG rich sites and is implicated in several differentiation cell pathways and erythropoiesis among them and also directs the epigenetic regulation of hemoglobin transversion from fetal (HbF) to adult (HbA) form by intervening in the γ-globin gene repression. We intended to investigate LRF activity in the evolving landscape of cells' commitment to the erythroid lineage and specifically during HbF to HbA transversion, to qualify this TF as potential repressor of lncRNAs and miRNAs. Transgenic human erythroleukemia cells, overexpressing LRF and further induced to erythropoiesis, were subjected to expression analysis in high LRF occupancy genetic loci-producing lncRNAs. LRF abundance in genetic loci transcribing for studied lncRNAs was determined by ChIP-Seq data analysis. qPCRs were performed to examine lncRNA expression status. Differentially expressed miRNA pre- and post-erythropoiesis induction were assessed by next-generation sequencing (NGS), and their promoter regions were charted. Expression levels of lncRNAs were correlated with DNA methylation status of flanked CpG islands, and contingent co-regulation of hosted miRNAs was considered. LRF-binding sites were overrepresented in LRF overexpressing cell clones during erythropoiesis induction and exerted a significant suppressive effect towards lncRNAs and miRNA collections. Based on present data interpretation, LRF's multiplied binding capacity across genome is suggested to be transient and associated with higher levels of DNA methylation. KEY MESSAGES: During erythropoiesis, LRF displays extensive occupancy across genetic loci. LRF significantly represses subsets of lncRNAs and miRNAs during erythropoiesis. Promoter region CpG islands' methylation levels affect lncRNA expression. MiRNAs embedded within lncRNA loci show differential regulation of expression.
Collapse
Affiliation(s)
- Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
15
|
Gu D, Tong M, Wang J, Zhang B, Liu J, Song G, Zhu B. Overexpression of the lncRNA HOTAIRM1 promotes lenvatinib resistance by downregulating miR-34a and activating autophagy in hepatocellular carcinoma. Discov Oncol 2023; 14:66. [PMID: 37171645 PMCID: PMC10182232 DOI: 10.1007/s12672-023-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers in humans and has a high fatality rate. Despite pharmacological advances such as sorafenib and lenvatinib approval, responses are seen only in a limited fraction of HCCs, and the majority of HCC patients do not benefit from this treatment. In recent years, researchers have verified that the long noncoding RNAs (lncRNAs) impact the efficiency of lenvatinib and the prognosis of patients with HCC. MATERIALS AND METHODS This work obtained gene expression profile from an Arraystar lncRNA microarray. Expression of HOTAIRM1, Beclin-1, and p62 in HCC was characterized in clinical HCC tissues of 24 patients with HCC. Overexpression and knockdown experiments were performed in HCC cells to examine the effects of the HOTAIRM1 on lenvatinib sensitivity. The interactions between HOTAIRM1, miR-34a and Beclin-1 were predicted according to GSEA and CNC network. The effects of HOTAIRM1, autophagy and lenvatinib on tumor inhibit were validated in orthotopic tumor-bearing nude mouse model. RESULTS Lenvatinib-resistant HCC cell lines were established using the concentration gradient method. Data from an Arraystar lncRNA microarray indicated that HOTAIRM1, a specific lncRNA located in an evolutionarily highly conserved HOX gene cluster, was differentially expressed between lenvatinib-resistant HCC cells and their parental cells. Expression of HOTAIRM1 and Beclin-1 in HCC was characterized in clinical HCC tissues of 24 patients who have different sensitivity to lenvatinib. Knocking down of HOTAIRM1 decreased the autophagy level in lenvatinib-resistant HCC cells and increased their sensitivity to lenvatinib, especially when combined with autophagy inhibitors both in vitro and in vivo. Further study indicated that knocking down HOTAIRM1 in lenvatinib-resistant cell lines increased the level of miR-34a and inhibited the expression of Beclin-1 in Huh7-R and HepG2-R cells. Investigation according to GSEA and CNC network, lncRNA and nearby coding gene and lncRNA-miRNA analyses demonstrated that the resistance of HCC to lenvatinib was affected by the HOTAIRM1-miR-34a-Beclin-1 regulatory axis. CONCLUSION HOTAIRM1 is an independent drug resistance factor which significantly associated with the efficacy of lenvatinib in HCC. HOTAIRM1 may downregulation of miR-34a and upregulation of Beclin-1, leading to activation of autophagy, thereby inducing lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Danyan Gu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Meng Tong
- Department of General Surgery, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Wang
- Department of Radiology, Linyi People's Hospital, Linyi, 276000, China
| | - Bocheng Zhang
- Department of General Surgery, Jinzhou Medical University, Jinzhou, 121001, China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery and Minimally Invasive Institute of Digestive Surgery and Prof. Cai's Laboratory, Linyi People's Hospital, Linyi, 276000, China
| | - Guoqiang Song
- Department of Pulmonary, Department of Cancer Center, Changxing Hospital of Traditional Chinese Medicine, Huzhou, 313100, China.
| | - Biao Zhu
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Desai SS, Ravindran F, Panchal A, Ojha N, Jadhav S, Choudhary B. Whole transcriptome sequencing reveals HOXD11-AGAP3, a novel fusion transcript in the Indian acute leukemia cohort. Front Genet 2023; 14:1100587. [PMID: 37113989 PMCID: PMC10126405 DOI: 10.3389/fgene.2023.1100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Acute leukemia is a heterogeneous disease with distinct genotypes and complex karyotypes leading to abnormal proliferation of hematopoietic cells. According to GLOBOCAN reports, Asia accounts for 48.6% of leukemia cases, and India reports ~10.2% of all leukemia cases worldwide. Previous studies have shown that the genetic landscape of AML in India is significantly different from that in the western population by WES. Methods: We have sequenced and analyzed 9 acute myeloid leukemia (AML) transcriptome samples in the present study. We performed fusion detection in all the samples and categorized the patients based on cytogenetic abnormalities, followed by a differential expression analysis and WGCNA analysis. Finally, Immune profiles were obtained using CIBERSORTx. Results: We found a novel fusion HOXD11-AGAP3 in 3 patients, BCR-ABL1 in 4, and KMT2A-MLLT3 in one patient. Categorizing the patients based on their cytogenetic abnormalities and performing a differential expression analysis, followed by WGCNA analysis, we observed that in the HOXD11-AGAP3 group, correlated co-expression modules were enriched with genes from pathways like Neutrophil degranulation, Innate Immune system, ECM degradation, and GTP hydrolysis. Additionally, we obtained HOXD11-AGAP3-specific overexpression of chemokines CCL28 and DOCK2. Immune profiling using CIBRSORTx revealed differences in the immune profiles across all the samples. We also observed HOXD11-AGAP3-specific elevated expression of lincRNA HOTAIRM1 and its interacting partner HOXA2. Discussion: The findings highlight population-specific HOXD11-AGAP3, a novel cytogenetic abnormality in AML. The fusion led to alterations in immune system represented by CCL28 and DOCK2 over-expression. Interestingly, in AML, CCL28 is known prognostic marker. Additionally, non-coding signatures (HOTAIRM1) were observed specific to the HOXD11-AGAP3 fusion transcript which are known to be implicated in AML.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Febina Ravindran
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Amey Panchal
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Nishit Ojha
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Sachin Jadhav
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
17
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
18
|
Segal D, Coulombe S, Sim J, Dostie J. A conserved HOTAIRM1-HOXA1 regulatory axis contributes early to neuronal differentiation. RNA Biol 2023; 20:1523-1539. [PMID: 37743644 PMCID: PMC10619521 DOI: 10.1080/15476286.2023.2258028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 09/26/2023] Open
Abstract
HOTAIRM1 is unlike most long non-coding RNAs in that its sequence is highly conserved across mammals. Such evolutionary conservation points to it having a role in key cellular processes. We previously reported that HOTAIRM1 is required to curb premature activation of downstream HOXA genes in a cell model recapitulating their sequential induction during development. We found that it regulates 3' HOXA gene expression by a mechanism involving epigenetic and three-dimensional chromatin changes. Here we show that HOTAIRM1 participates in proper progression through the early stages of neuronal differentiation. We found that it can associate with the HOXA1 transcription factor and contributes to its downstream transcriptional program. Particularly, HOTAIRM1 affects the NANOG/POU5F1/SOX2 core pluripotency network maintaining an undifferentiated cell state. HOXA1 depletion similarly perturbed expression of these pluripotent factors, suggesting that HOTAIRM1 is a modulator of this transcription factor pathway. Also, given that binding of HOTAIRM1 to HOXA1 was observed in different cell types and species, our results point to this ribonucleoprotein complex as an integral part of a conserved HOTAIRM1-HOXA1 regulatory axis modulating the transition from a pluripotent to a differentiated neuronal state.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Samy Coulombe
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- School of Computer Science, and McGill Center for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Jasper Sim
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) is the most common form of leukemia in adults, leading to the highest number of annual leukemia-associated deaths in the USA. Although most AML patients initially enter remission following induction therapy, most eventually relapse, underscoring the unmet need for more effective therapies. In recent years, novel high-throughput sequencing techniques, and mouse and human models of disease have increased our understanding of the molecular mechanisms that lead to AML. Leukemogenic mechanisms can be broadly classified into two types-cell-intrinsic and cell-extrinsic. Cell-intrinsic mechanisms include an array of genetic and epigenetic alterations that lead to dysregulated gene expression and function in hematopoietic stem/progenitor cells, leading to their increased fitness and ultimately, malignant transformation. Extrinsic mechanisms include both hematopoietic and non-hematopoietic stromal components of the leukemic microenvironment that interact with pre-leukemic and leukemic clones to promote their survival, self-renewal, and/or resistance to therapy. Through the individual and concerted action of these factors, pre-leukemic clones acquire the changes necessary for leukemic transformation. In addition, following therapy, specific leukemic clones are selected for that eventually re-initiate disease. Improving our understanding of these cell-intrinsic and cell-extrinsic mechanisms will provide novel opportunities to treat AML as well as prevent the development of disease.
Collapse
|
21
|
Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2120680119. [PMID: 35998224 PMCID: PMC9457492 DOI: 10.1073/pnas.2120680119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SARS-CoV-2–infected patients often display characteristic changes in the production of immune mediators that trigger life-threatening courses of COVID-19. The underlying molecular mechanisms are not yet fully understood. Here, we used single-cell RNA sequencing to investigate the involvement of the emerging class of long regulatory RNA in COVID-19. Our data reveal that a previously unknown regulatory RNA in the nucleus of immune cells is altered after SARS-CoV-2 infection. The degradation of this RNA removes a natural brake on the production of critical immune mediators that can promote the development of severe COVID-19. We believe that therapeutic intervention in this nuclear RNA circuit could counteract the overproduction of disease-causing immune mediators and protect against severe COVID-19. The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB–dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.
Collapse
|
22
|
Mahmoud RH, Fouad NA, Hefzy EM, Shaker OG, Ahmed TI, Hussein HA, Nasr MH, Zaki OM, Abdelghaffar NK, Abdelaleem OO. The potential role of serum expression profile of long non coding RNAs, Cox2 and HOTAIR as novel diagnostic biomarkers in systemic lupus erythematosus. PLoS One 2022; 17:e0268176. [PMID: 35972968 PMCID: PMC9380942 DOI: 10.1371/journal.pone.0268176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The role of the long non-coding RNAs (lncRNAs) in the pathogenesis of systemic lupus erythematosus (SLE) is mostly unknown, despite increasing evidence that lncRNAs extensively participate in physiological and pathological conditions. AIM To detect the level of lncRNA-Cox2, HOTAIR, IL-6, and MMP-9 in the serum of SLE patients and to correlate these levels with disease activity and patients' clinical and laboratory data to evaluate the value of these biomarkers for SLE diagnosis and assessment of disease activity. METHODS Blood samples from 58 SLE patients, and 60 healthy controls (HCs) were used for detection of lncRNAs-Cox2 and HOTAIR expression levels by real-time polymerase chain reaction. Both IL-6 and MMP-9 serum levels were assayed by enzyme-linked immunosorbent assay. Lupus activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). RESULTS The serum expression levels of lncRNA-Cox2 and HOTAIR were significantly up-regulated in SLE patients vs HCs (fold change [median (IQR) was 1.29(0.81-1.71, P<0.0001) and 2.68(0.95-3.67), P = 0.038) for lncRNA-Cox2 and HOTAIR, respectively. Serum levels of both IL-6 and MMP-9 were significantly high in SLE patients compared with HCs (P≤0.001 for each). The up-regulated lncRNA-Cox2 was positively associated with the presence of neurological manifestations in SLE patients (P = 0.007). Furthermore, HOTAIR expression level had significantly positive correlation with IL-6 (r = 0.578, P<0.0001), MMP-9 level (r = 0.762, P<0.0001), nephritis grades (r = 0.296, P = 0.024) and proteinuria (r = 0.287, P = 0.035). LncRNA-Cox2 showed sensitivity and specificity 72.4%, and 100.0% respectively. HOTAIR sensitivity was 60.3%, and specificity was 100.0%. By multiple logistic regression analysis, lncRNA-Cox2 and HOTAIR were found as SLE independent predictors. CONCLUSION LncRNA-COX2 and HOTAIR can be used as new non-invasive biomarkers for the diagnosis of SLE.
Collapse
Affiliation(s)
- Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nermeen A. Fouad
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas M. Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Cairo, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hoda A. Hussein
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Maha H. Nasr
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Noha K. Abdelghaffar
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O. Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
23
|
Han W, Wang S, Qi Y, Wu F, Tian N, Qiang B, Peng X. Targeting HOTAIRM1 Ameliorates Glioblastoma by Disrupting Mitochondrial Oxidative Phosphorylation and Serine Metabolism. iScience 2022; 25:104823. [PMID: 35992092 PMCID: PMC9389257 DOI: 10.1016/j.isci.2022.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/12/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Serine hydroxymethyltransferase 2 (SHMT2), which catalyzes the conversion of serine to glycine and one-carbon transfer reactions in mitochondria, is significantly upregulated in glioblastoma (GBM). However, the mechanism by which the stability of SHMT2 gene expression is maintained to drive GBM tumorigenesis has not been clarified. Herein, through microarray screening, we identified that HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) modulates the SHMT2 level in various GBM cell lines. Serine catabolism and mitochondrial oxidative phosphorylation activities were decreased by HOTAIRM1 inhibition. Mechanistically, according to our mass spectrometry and eCLIP-seq results, HOTAIRM1 can bind to PTBP1 and IGF2BP2. Furthermore, HOTAIRM1 maintains the stability of SHMT2 by promoting the recognition of an m6A site and the interaction of PTBP1/IGF2BP2 with SHMT2 mRNA. The stability of HOTAIRM1 can also be enhanced and results in positive feedback regulation to support the progression of GBM. Thus, targeting HOTAIRM1 could be a promising metabolic therapy for GBM. HOTAIRM1 regulates mitochondrial activity in GBM The target genes of HOTAIRM1 and the interacting RBPs were screened and identified SHMT2 mRNA has an m6A site that can be recognized by IGF2BP2 HOTAIRM1 regulates the stability of SHMT2 by binding to PTBP1 and IGF2BP2
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Corresponding author
| | - Shanshan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yingjiao Qi
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fan Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
- Corresponding author
| |
Collapse
|
24
|
Exploring the crosstalk between long non-coding RNAs and microRNAs to unravel potential prognostic and therapeutic biomarkers in β-thalassemia. Mol Biol Rep 2022; 49:7057-7068. [PMID: 35717472 DOI: 10.1007/s11033-022-07629-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
β-thalassemia is a prevalent monogenic disorder characterized by reduced or absent synthesis of the β-globin chain. Although great effort has been made to ameliorate the disease severity of β-thalassemic patients, progress has been stymied due to limited understanding of the detailed molecular mechanism of disease pathogenesis. Recently, non-coding RNAs have been established as key players in regulating various physiological and pathological processes. Many ncRNAs are involved in hematopoiesis and erythroid development. Furthermore, various studies have also reported the complex interplay between different ncRNAs, such as miRNA, lncRNAs, etc. in regulating disease progression and pathogenesis. Both lncRNAs and miRNAs have been identified as independent regulators of globin gene expression and are intricately involved in disease pathogenesis; yet accumulating evidence suggests that the cross-talk between lncRNAs and miRNAs is intricately involved in the underlying globin gene expression, fine-tuning the effect of their independent regulation. In this review, we summarize the current progress of research on the roles of lncRNAs and miRNAs implicated in β-thalassemia disease, including their interactions and regulatory networks. This can provide important insights into the detailed epigenetic regulation of globin gene switching and has the potential to develop novel therapeutic approaches against β-thalassemia.
Collapse
|
25
|
Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, Adelian S, Chaleshtori SR, Shah-Amiri K, Ahmadi A, Aref AR. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 2022; 65:61-74. [PMID: 35597701 DOI: 10.1016/j.cytogfr.2022.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Sahar Parkhideh
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setare Samizade
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Sahar Samsami
- Biotechnology department of Fasa University of medical science, Fasa, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University Of Isfahan, Isfahan, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Kamal Shah-Amiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, De Rosa A, Cirillo E, Coppola E, Giardino G, Brunetti-Pierri N, Riccio A, Pignata C. Epigenetic Alterations in Inborn Errors of Immunity. J Clin Med 2022; 11:1261. [PMID: 35268351 PMCID: PMC8910960 DOI: 10.3390/jcm11051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Francesca Cillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Cristina Moracas
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| |
Collapse
|
27
|
Zhong F, Yao F, Cheng Y, Liu J, Zhang N, Li S, Li M, Huang B, Wang X. m6A-related lncRNAs predict prognosis and indicate immune microenvironment in acute myeloid leukemia. Sci Rep 2022; 12:1759. [PMID: 35110624 PMCID: PMC8810799 DOI: 10.1038/s41598-022-05797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematologic malignancy. Survival rate of AML patients is low. N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) play important roles in AML tumorigenesis and progression. However, the relationship between lncRNAs and biological characteristics of AML, as well as how lncRNAs influence the prognosis of AML patients, remain unclear. In this study. In this study, Pearson correlation analysis was used to identify lncRNAs related to m6A regulatory genes, namely m6A-related lncRNAs. And we analyzed their roles and prognostic values in AML. m6A-related lncRNAs associated with patient prognosis were screened using univariate Cox regression analysis, followed by systematic analysis of the relationship between these genes and AML clinicopathologic and biologic characteristics. Furthermore, we examined the characteristics of tumor immune microenvironment (TIME) using different IncRNA clustering models. Using LASSO regression, we identified the risk signals related to prognosis of AML patients. We then constructed and verified a risk model based on m6A-related lncRNAs for independent prediction of overall survival in AML patients. Our results indicate that risk scores, calculated based on risk-related signaling, were related to the clinicopathologic characteristics of AML and level of immune infiltration. Finally, we examined the expression level of TRAF3IP2-AS1 in patient samples through real-time polymerase chain reaction analysis and in GEO datasets, and we identified a interaction relationship between SRSF10 and TRAF3IP2-AS1 through in vitro assays. Our study shows that m6A-related lncRNAs, evaluated using the risk prediction model, can potentially be used to predict prognosis and design immunotherapy in AML patients.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuqi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Meiyong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
28
|
Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, Luo X, Liu W, Ye F. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther 2022; 30:688-702. [PMID: 34371180 PMCID: PMC8821934 DOI: 10.1016/j.ymthe.2021.08.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.
Collapse
Affiliation(s)
- Xiaoting Lin
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Shiwen Zhuang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Xue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jun Du
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Longhua Zhong
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jiancheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Lei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guosheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China
| | - Guohui Tang
- Department of Anus and Bowels, Affiliated Nanhua Hospital, University of South China, Hengyang 421010, China
| | - Xi Luo
- BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China,Corresponding author: Xi Luo, BE/Phase I Clinical Center, First Affiliated Hospital of Xiamen University, Xiamen 361003 China.
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China,Corresponding author: Wen Liu, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361104, China.
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China,Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China,Corresponding author: Feng Ye, Department of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
29
|
Yu Y, Niu J, Zhang X, Wang X, Song H, Liu Y, Jiao X, Chen F. Identification and Validation of HOTAIRM1 as a Novel Biomarker for Oral Squamous Cell Carcinoma. Front Bioeng Biotechnol 2022; 9:798584. [PMID: 35087800 PMCID: PMC8787327 DOI: 10.3389/fbioe.2021.798584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
ORAL squamous cell carcinoma (OSCC) is a malignant tumor with the highest incidence among tumors involving the oral cavity maxillofacial region, and is notorious for its high recurrence and metastasis potential. Long non-coding RNAs (lncRNAs), which regulate the genesis and evolution of cancers, are potential prognostic biomarkers. This study identified HOTAIRM1 as a novel significantly upregulated lncRNA in OSCC, which is strongly associated with unfavorable prognosis of OSCC. Systematic bioinformatics analyses demonstrated that HOTAIRM1 was closely related to tumor stage, overall survival, genome instability, the tumor cell stemness, the tumor microenvironment, and immunocyte infiltration. Using biological function prediction methods, including Weighted gene co-expression network analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), HOTAIRM1 plays a pivotal role in OSCC cell proliferation, and is mainly involved in the regulation of the cell cycle. In vitro, cell loss-functional experiments confirmed that HOTAIRM1 knockdown significantly inhibited the proliferation of OSCC cells, and arrested the cell cycle in G1 phase. At the molecular level, PCNA and CyclinD1 were obviously reduced after HOTAIRM1 knockdown. The expression of p53 and p21 was upregulated while CDK4 and CDK6 expression was decreased by HOTAIRM1 knockdown. In vivo, knocking down HOTAIRM1 significantly inhibited tumor growth, including the tumor size, weight, volume, angiogenesis, and hardness, monitored by ultrasonic imaging and magnetic resonance imaging In summary, our study reports that HOTAIRM1 is closely associated with tumorigenesis of OSCC and promotes cell proliferation by regulating cell cycle. HOTAIRM1 could be a potential prognostic biomarker and a therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yixiu Yu
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamei Niu
- Department of Abdominal Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingwei Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongquan Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingqun Liu
- Pediatric Dentistry Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| | - Fuyang Chen
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaohui Jiao , ; Fuyang Chen,
| |
Collapse
|
30
|
Ahmadov U, Picard D, Bartl J, Silginer M, Trajkovic-Arsic M, Qin N, Blümel L, Wolter M, Lim JKM, Pauck D, Winkelkotte AM, Melcher M, Langini M, Marquardt V, Sander F, Stefanski A, Steltgens S, Hassiepen C, Kaufhold A, Meyer FD, Seibt A, Kleinesudeik L, Hain A, Münk C, Knobbe-Thomsen CB, Schramm A, Fischer U, Leprivier G, Stühler K, Fulda S, Siveke JT, Distelmaier F, Borkhardt A, Weller M, Roth P, Reifenberger G, Remke M. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death Dis 2021; 12:885. [PMID: 34584066 PMCID: PMC8478910 DOI: 10.1038/s41419-021-04146-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.
Collapse
Affiliation(s)
- Ulvi Ahmadov
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jasmin Bartl
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Manuela Silginer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lena Blümel
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jonathan K M Lim
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Pauck
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alina Marie Winkelkotte
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maike Langini
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Viktoria Marquardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Felix Sander
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Sascha Steltgens
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christina Hassiepen
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Anna Kaufhold
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Frauke-Dorothee Meyer
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lara Kleinesudeik
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Alexander Schramm
- Department of Molecular Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biological-Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
31
|
Kirtonia A, Ashrafizadeh M, Zarrabi A, Hushmandi K, Zabolian A, Bejandi AK, Rani R, Pandey AK, Baligar P, Kumar V, Das BC, Garg M. Long noncoding RNAs: A novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol 2021; 237:450-465. [PMID: 34569616 DOI: 10.1002/jcp.30590] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefe K Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reshma Rani
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, India
| | - Amit K Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
32
|
Fantini S, Rontauroli S, Sartini S, Mirabile M, Bianchi E, Badii F, Maccaferri M, Guglielmelli P, Ottone T, Palmieri R, Genovese E, Carretta C, Parenti S, Mallia S, Tavernari L, Salvadori C, Gesullo F, Maccari C, Zizza M, Grande A, Salmoiraghi S, Mora B, Potenza L, Rosti V, Passamonti F, Rambaldi A, Voso MT, Mecucci C, Tagliafico E, Luppi M, Vannucchi AM, Manfredini R. Increased Plasma Levels of lncRNAs LINC01268, GAS5 and MALAT1 Correlate with Negative Prognostic Factors in Myelofibrosis. Cancers (Basel) 2021; 13:cancers13194744. [PMID: 34638230 PMCID: PMC8507546 DOI: 10.3390/cancers13194744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Myelofibrosis (MF) displays the worst prognosis among Philadelphia-negative chronic myeloproliferative neoplasms. There is no curative therapy for MF, except for bone marrow transplantation, which however has a consistent percentage of failure. There is thus an urgent need of novel biomarkers to complement current stratification models and to enable better management of patients. To address this issue, we herein measured the plasma levels of several long noncoding RNAs (lncRNAs). Circulating lncRNAs has been already largely described as potential non-invasive biomarkers in cancers. In our study we unveiled that LINC01268, MALAT1 (both p < 0.0001) and GAS5 (p = 0.0003) plasma levels are significantly higher in MF patients if compared with healthy donors, and their increased plasma levels correlate with several detrimental features in MF. Among them, LINC01268 is an independent variable for both OS (p = 0.0297) and LFS (p = 0.0479), thus representing a putative new biomarker suitable for integrate contemporary prognostic models. Abstract Long non-coding RNAs (lncRNAs) have been recently described as key mediators in the development of hematological malignancies. In the last years, circulating lncRNAs have been proposed as a new class of non-invasive biomarkers for cancer diagnosis and prognosis and to predict treatment response. The present study is aimed to investigate the potential of circulating lncRNAs as non-invasive prognostic biomarkers in myelofibrosis (MF), the most severe among Philadelphia-negative myeloproliferative neoplasms. We detected increased levels of seven circulating lncRNAs in plasma samples of MF patients (n = 143), compared to healthy controls (n = 65). Among these, high levels of LINC01268, MALAT1 or GAS5 correlate with detrimental clinical variables, such as high count of leukocytes and CD34+ cells, severe grade of bone marrow fibrosis and presence of splenomegaly. Strikingly, high plasma levels of LINC01268 (p = 0.0018), GAS5 (p = 0.0008) or MALAT1 (p = 0.0348) are also associated with a poor overall-survival while high levels of LINC01268 correlate with a shorter leukemia-free-survival. Finally, multivariate analysis demonstrated that the plasma level of LINC01268 is an independent prognostic variable, suggesting that, if confirmed in future in an independent patients’ cohort, it could be used for further studies to design an updated classification model for MF patients.
Collapse
Affiliation(s)
- Sebastian Fantini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Stefano Sartini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Margherita Mirabile
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Elisa Bianchi
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Filippo Badii
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Monica Maccaferri
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy;
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
- Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuro-Oncohematology, 00179 Rome, Italy
| | - Raffaele Palmieri
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
| | - Elena Genovese
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Chiara Carretta
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Sandra Parenti
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Selene Mallia
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Lara Tavernari
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
| | - Costanza Salvadori
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Francesca Gesullo
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Michela Zizza
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Silvia Salmoiraghi
- Hematology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.S.); (A.R.)
| | - Barbara Mora
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21100 Varese, Italy; (B.M.); (F.P.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Foundation Policlinico San Matteo, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 27100 Pavia, Italy;
| | - Francesco Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, 21100 Varese, Italy; (B.M.); (F.P.)
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy; (T.O.); (R.P.); (M.T.V.)
- Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Neuro-Oncohematology, 00179 Rome, Italy
| | - Cristina Mecucci
- Department of Medicine and Surgery, Section of Hematology and Clinical Immunology, University of Perugia, 06129 Perugia, Italy;
| | - Enrico Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.P.); (E.T.); (M.L.)
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, and Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), University of Florence, Careggi University Hospital, 50134 Florence, Italy; (P.G.); (C.S.); (F.G.); (C.M.); (M.Z.); (A.M.V.)
| | - Rossella Manfredini
- Centre for Regenerative Medicine, Life Sciences Department, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.F.); (S.R.); (S.S.); (M.M.); (E.B.); (F.B.); (E.G.); (C.C.); (S.P.); (S.M.); (L.T.)
- Correspondence:
| |
Collapse
|
33
|
Role of the HOXA cluster in HSC emergence and blood cancer. Biochem Soc Trans 2021; 49:1817-1827. [PMID: 34374409 DOI: 10.1042/bst20210234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.
Collapse
|
34
|
Bah I, Alkhateeb T, Youssef D, Yao ZQ, McCall CE, El Gazzar M. KDM6A Lysine Demethylase Directs Epigenetic Polarity of MDSCs during Murine Sepsis. J Innate Immun 2021; 14:112-123. [PMID: 34289476 PMCID: PMC9082193 DOI: 10.1159/000517407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
Sepsis-induced myeloid-derived suppressor cells (MDSCs) increase mortality risk. We previously identified that long non-coding RNA Hotairm1 supports myeloid precursor shifts to Gr1+CD11b+ MDSCs during mouse sepsis. A major unanswered question is what molecular processes control Hotairm1 expression. In this study, we found by a genetic deletion that a specific PU.1-binding site is indispensable in controlling Hotairm1 transcription. We then identified H3K4me3 and H3K27me3 at the PU.1 site on the Hotairm1 promoter. Controlling an epigenetic switch of Hotairm1 transcription by PU.1 was histone KDM6A demethylase for H3K27me3 that derepressed its transcription with possible contributions from Ezh2 methyltransferase for H3K27me3. KDM6A knockdown in MDSCs increased H3K27me3, decreased H3K4me3, and inhibited Hotairm1 transcription activation by PU.1. These results enlighten clinical translation research of PU.1 epigenetic regulation as a potential sepsis immune-checkpoint treatment site.
Collapse
Affiliation(s)
- Isatou Bah
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Tuqa Alkhateeb
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA,*Mohamed El Gazzar,
| |
Collapse
|
35
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
36
|
The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18. Cell Death Dis 2021; 12:702. [PMID: 34262023 PMCID: PMC8280127 DOI: 10.1038/s41419-021-03982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Acquired resistance to glucocorticoids (GCs) is an obstacle to the effective treatment of leukemia, but the molecular mechanisms of steroid insensitivity have not been fully elucidated. In this study, we established an acquired GC-resistant leukemia cell model and found a long noncoding RNA, HOTAIRM1, was overexpressed in the resistant cells by transcriptional profiling, and was higher expressed in patients with poor prognosis. The whole-genome-binding sites of HOTAIRM1 were determined by ChIRP-seq (chromatin isolation by RNA purification combined with sequencing) analysis. Further study determined that HOTAIRM1 bound to the transcriptional inhibitory region of ARHGAP18 and repressed the expression of ARHGAP18, which led to the increase of RHOA/ROCK1 signaling pathway and promoted GC resistance through antiapoptosis of leukemia cells. The inhibition of ROCK1 in GC-resistant cells could restore GCs responsiveness. In addition, HOTAIRM1 could also act as a protein sequester to prevent transcription factor AML1(acute myeloid leukemia 1) from binding to the regulatory region of ARHGAP18 by interacting with AML1. At last, we also proved AML1 could directly activate the expression of HOTAIRM1 through binding to the promoter of HOTAIRM1, which enriched the knowledge on the regulation of lncRNAs. This study revealed epigenetic causes of glucocorticoid resistance from the perspective of lncRNA, and laid a foundation for the optimization of glucocorticoid-based leukemia treatment strategy in clinic.
Collapse
|
37
|
Cui X, Pertile RAN, Du Z, Wei W, Sun Z, Eyles DW, Kesby JP. Developmental Inhibition of Long Intergenic Non-Coding RNA, HOTAIRM1, Impairs Dopamine Neuron Differentiation and Maturation. Int J Mol Sci 2021; 22:ijms22147268. [PMID: 34298885 PMCID: PMC8306845 DOI: 10.3390/ijms22147268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The dopaminergic (DA) system is important for a range of brain functions and subcortical DA development precedes many cortical maturational processes. The dysfunction of DA systems has been associated with neuropsychiatric disorders such as schizophrenia, depression, and addiction. DA neuron cell fate is controlled by a complex web of transcriptional factors that dictate DA neuron specification, differentiation, and maturation. A growing body of evidence suggests that these transcriptional factors are under the regulation of newly discovered non-coding RNAs. However, with regard to DA neuron development, little is known of the roles of non-coding RNAs. The long non-coding RNA (lncRNA) HOX-antisense intergenic RNA myeloid 1 (HOTAIRM1) is present in adult DA neurons, suggesting it may have a modulatory role in DA systems. Moreover, HOTAIRM1 is involved in the neuronal differentiation in human stem cells suggesting it may also play a role in early DA neuron development. To determine its role in early DA neuron development, we knocked down HOTAIRM1 using RNAi in vitro in a human neuroblastoma cell line, and in vivo in mouse DA progenitors using a novel in utero electroporation technique. HOTAIRM1 inhibition decreased the expression of a range of key DA neuron specification factors and impaired DA neuron differentiation and maturation. These results provide evidence of a functional role for HOTAIRM1 in DA neuron development and differentiation. Understanding of the role of lncRNAs in the development of DA systems may have broader implications for brain development and neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia; (X.C.); (D.W.E.)
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Renata Ap. Nedel Pertile
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Zilong Du
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Wei Wei
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Zichun Sun
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - Darryl W. Eyles
- Queensland Centre for Mental Health Research, Wacol, QLD 4076, Australia; (X.C.); (D.W.E.)
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
| | - James P. Kesby
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; (R.A.N.P.); (Z.D.); (W.W.); (Z.S.)
- QIMR Berghofer Medical Research Institute, Herston, QLD 4029, Australia
- Correspondence: ; Tel.: +61-7-3346-6363; Fax: +61-7-3346-6301
| |
Collapse
|
38
|
Gutmann C, Joshi A, Zampetaki A, Mayr M. The Landscape of Coding and Noncoding RNAs in Platelets. Antioxid Redox Signal 2021; 34:1200-1216. [PMID: 32460515 DOI: 10.1089/ars.2020.8139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Levels of platelet noncoding RNAs (ncRNAs) are altered by disease, and ncRNAs may exert functions inside and outside of platelets. Their role in physiologic hemostasis and pathologic thrombosis remains to be explored. Recent Advances: The number of RNA classes identified in platelets has been growing since the past decade. Apart from coding messenger RNAs, the RNA landscape in platelets comprises ncRNAs such as microRNAs, circular RNAs, long ncRNAs, YRNAs, and potentially environmentally derived exogenous ncRNAs. Recent research has focused on the function of platelet RNAs beyond platelets, mediated through protective RNA shuttles or even cellular uptake of entire platelets. Multiple studies have also explored the potential of platelet RNAs as novel biomarkers. Critical Issues: Platelet preparations can contain contaminating leukocytes. Even few leukocytes may contribute a substantial amount of RNA. As biomarkers, platelet RNAs have shown associations with platelet activation, but it remains to be seen whether their measurements could improve diagnostics. It also needs to be clarified whether platelet RNAs influence processes beyond platelets. Future Directions: Technological advances such as single-cell RNA-sequencing might help to identify hyperreactive platelet subpopulations on a single-platelet level, avoid the common problem of leukocyte contamination in platelet preparations, and allow simultaneous profiling of native megakaryocytes and their platelet progeny to clarify to what extent the platelet RNA content reflects their megakaryocyte precursors or changes in the circulation. Antioxid. Redox Signal. 34, 1200-1216.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
39
|
Identification of Potential Key lncRNAs in the Context of Mouse Myeloid Differentiation by Systematic Transcriptomics Analysis. Genes (Basel) 2021; 12:genes12050630. [PMID: 33922442 PMCID: PMC8146222 DOI: 10.3390/genes12050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic differentiation is a well-orchestrated process by many regulators such as transcription factor and long non-coding RNAs (lncRNAs). However, due to the large number of lncRNAs and the difficulty in determining their roles, the study of lncRNAs is a considerable challenge in hematopoietic differentiation. Here, through gene co-expression network analysis over RNA-seq data generated from representative types of mouse myeloid cells, we obtained a catalog of potential key lncRNAs in the context of mouse myeloid differentiation. Then, employing a widely used in vitro cell model, we screened a novel lncRNA, named Gdal1 (Granulocytic differentiation associated lncRNA 1), from this list and demonstrated that Gdal1 was required for granulocytic differentiation. Furthermore, knockdown of Cebpe, a principal transcription factor of granulocytic differentiation regulation, led to down-regulation of Gdal1, but not vice versa. In addition, expression of genes involved in myeloid differentiation and its regulation, such as Cebpa, were influenced in Gdal1 knockdown cells with differentiation blockage. We thus systematically identified myeloid differentiation associated lncRNAs and substantiated the identification by investigation of one of these lncRNAs on cellular phenotype and gene regulation levels. This study promotes our understanding of the regulation of myeloid differentiation and the characterization of roles of lncRNAs in hematopoietic system.
Collapse
|
40
|
Izadirad M, Jafari L, James AR, Unfried JP, Wu ZX, Chen ZS. Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia. Drug Discov Today 2021; 26:1735-1743. [PMID: 33781951 DOI: 10.1016/j.drudis.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Many patients with acute myeloid leukemia (AML) experience poor outcomes following traditional high-dose chemotherapies and complete remission rates remain suboptimal. Chemoresistance is an obstacle to effective chemotherapy and the precise mechanisms involved remain to be determined. Recently, long noncoding RNAs (lncRNAs) have been identified as relevant factors in the development of drug resistance in patients with AML. Furthermore, accumulating data support the importance of lncRNAs as potentially useful novel therapeutic targets in many cancers. Here, we review the role of lncRNAs in the development and induction of the chemoresistance in AML, and suggest lncRNAs as novel molecular markers for diagnosis, prediction of patient response to chemotherapy, and novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alva Rani James
- Digital Health & Machine Learning, Hasso Plattner Institute, University of Potsdam, Germany
| | - Juan Pablo Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA.
| |
Collapse
|
41
|
Ghafouri-Fard S, Niazi V, Taheri M. Role of miRNAs and lncRNAs in hematopoietic stem cell differentiation. Noncoding RNA Res 2021; 6:8-14. [PMID: 33385102 PMCID: PMC7770514 DOI: 10.1016/j.ncrna.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse roles in the differentiation of hematopoietic cells. Among these transcripts, long ncRNAs (lncRNAs) and microRNAs (miRNAs) have especial contribution in this regard particularly by affecting levels of transcription factors that define differentiation of each linage. miR-222, miR-10a, miR-126, miR-106, miR-10b, miR-17, miR-20, miR-146, miR-155, miR-223, miR-221, miR-92, miR-150, miR-126 and miR-142 are among miRNAs that partake in the differentiation of hematopoietic stem cells. Meanwhile, this process is controlled by a number of lncRNAs such as PU.1-AS, AlncRNA-EC7, EGO, HOTAIRM1, Fas-AS1, LincRNA-EPS and lncRNA-CSR. Manipulation of expression of these transcripts has functional significance in the treatment of cancers and in cell therapy. In this paper, we have provided a brief summary of the role of miRNAs and lncRNAs in the regulation of hematopoietic stem cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
García-Padilla C, Lozano-Velasco E, López-Sánchez C, Garcia-Martínez V, Aranega A, Franco D. Non-Coding RNAs in Retinoic Acid as Differentiation and Disease Drivers. Noncoding RNA 2021; 7:ncrna7010013. [PMID: 33671241 PMCID: PMC8005990 DOI: 10.3390/ncrna7010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (RA) is the most active metabolite of vitamin A. Several studies have described a pivotal role for RA signalling in different biological processes such as cell growth and differentiation, embryonic development and organogenesis. Since RA signalling is highly dose-dependent, a fine-tuning regulatory mechanism is required. Thus, RA signalling deregulation has a major impact, both in development and disease, related in many cases to oncogenic processes. In this review, we focus on the impact of ncRNA post-transcriptional regulatory mechanisms, especially those of microRNAs and lncRNAs, in RA signalling pathways during differentiation and disease.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (E.L.-V.); (A.A.)
- Fundación Medina, 18016 Granada, Spain
- Correspondence:
| |
Collapse
|
43
|
Ren Y, Zhang K, Wang J, Meng X, Du X, Shi Z, Xue Y, Hong W. HOTAIRM1 promotes osteogenic differentiation and alleviates osteoclast differentiation by inactivating the NF-κB pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:201-211. [PMID: 33404645 DOI: 10.1093/abbs/gmaa164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP), one of the most prevalent chronic progressive bone diseases, is caused by deficiency in bone formation by osteoblasts or excessive bone resorption by osteoclasts and subsequently increases the risk of bone fractures. Emerging evidence has indicated that long noncoding RNAs (lncRNAs) play key roles in many biological processes and various disorders. However, the role and mechanism of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), a myeloid-specific lncRNA, in osteoclast differentiation, osteogenic differentiation, and OP remain unclear. In this study, we found that HOTAIRM1 was upregulated during ossification of ligamentum flavum and osteogenic differentiation, while it was downregulated in osteoclast differentiation and in the bone and serum of human and mouse with OP. Further investigation revealed that silencing Hotairm1 decreased the expression of the osteogenic markers and attenuated osteogenesis. Moreover, forced Hotairm1 expression inhibited the expressions of the osteoclastogenesis markers and alleviated receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation. Mechanically, Hotairm1 repressed the phosphorylation of p65 and inhibitor of κBα (IκBα) and attenuated RANKL-mediated enhancement of phos-p65 and IκBα, suggesting that Hotairm1 inhibits RANKL-induced osteoclastogenesis through the NF-κB pathway. In conclusion, our data identified a crucial role of HOTAIRM1 in OP, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against OP.
Collapse
Affiliation(s)
- Yi Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Xue
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
44
|
Wang L, Wang L, Wang Q, Yosefi B, Wei S, Wang X, Shen D. The function of long noncoding RNA HOTAIRM1 in the progression of prostate cancer cells. Andrologia 2020; 53:e13897. [PMID: 33368390 DOI: 10.1111/and.13897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence is indicating the importance of hundreds of long noncoding RNAs (lncRNAs) in the occurrence and progression of different malignancies such as prostate cancer (PCa). This study investigated the possible role of HOX transcript antisense intergenic RNA myeloid-specific 1 (HOTAIRM1) in the progression of tumorigenesis of PC3 as PCa cell line. RT-qPCR was used to measure HOTAIRM1 expression levels in PC3 and RWPE-1 cell lines. To detect the effect of HOTAIRM1 in the progression of PCa, HOTAIRM1 was silenced on PC3 cells with specific siRNA and transfected into cells using a liposomal approach. Using MTT assay, the effects of si-HOTAIRM1 on cell viability and proliferation were evaluated. Cell apoptosis was analysed using flow cytometry and Wnt pathway-related proteins by Western blot. HOTAIRM1 was overexpressed in PC3 cells compared with RWPE-1 cells. Reducing HOTAIRM1 alleviated cell proliferation and increased apoptosis of PC3 cells so that the expression of pro-apoptotic agents such as Bad and Bax was significantly increased, while that of Bid and Bcl-2 (anti-apoptotic) was decreased. Furthermore, HOTAIRM1 silencing suppressed the Wnt pathway. Overall, HOTAIRM1 silencing in PC3 cells inhibited the proliferative ability and promoted the apoptosis of PCa cells by suppressing the Wnt pathway, thereby inhibiting the progression of PCa.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Bin zhou People's Hospital, Binzhou, China
| | - Longning Wang
- Department of Urology, Bin zhou People's Hospital, Binzhou, China
| | - Qingfen Wang
- Department of Nephrology, Bin zhou People's Hospital, Binzhou, China
| | - Bahman Yosefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sen Wei
- Department of Urology, Bin zhou People's Hospital, Binzhou, China
| | - Xiaodong Wang
- Department of Urology, Bin zhou People's Hospital, Binzhou, China
| | - Daqing Shen
- Department of Clinical Medicine, Jining Medical University, Jining, China.,Department of Urology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
45
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
46
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Khanal S, Cao D, Dang X, Schank M, Wu XY, Morrison ZD, Gazzar ME, Li Z, Jiang Y, Ning S, Wang L, Moorman JP, Yao ZQ. LncRNA HOTAIRM1 promotes MDSC expansion and suppressive functions through the HOXA1-miR124 axis during HCV infection. Sci Rep 2020; 10:22033. [PMID: 33328510 PMCID: PMC7745042 DOI: 10.1038/s41598-020-78786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is a long non-coding RNA (lncRNA) that plays a pivotal role in regulating myeloid cell development via targeting HOXA1 gene expression. We and others have previously shown that myeloid-derived suppressor cells (MDSCs), a heterogeneous population of immature myeloid cells, expand during chronic viral (HCV, HIV) infections. However, the role of HOTAIRM1 in the development and suppression of MDSCs during viral infection remains unknown. In this study, we demonstrate that the expressions of HOTAIRM1 and its target HOXA1 are substantially upregulated to promote the expressions of immunosuppressive molecules, including arginase 1, inducible nitric oxide synthase, signal transducer and activator of transcription 3, and reactive oxygen species, in CD33+ myeloid cells derived from hepatitis C virus (HCV)-infected patients. We show that HCV-associated exosomes (HCV-Exo) can modulate HOTAIRM1, HOXA1, and miR124 expressions to regulate MDSC development. Importantly, overexpression of HOTAIRM1 or HOXA1 in healthy CD33+ myeloid cells promoted the MDSC differentiation and suppressive functions; conversely, silencing of HOTAIRM1 or HOXA1 expression in MDSCs from HCV patients significantly reduced the MDSC frequency and their suppressive functions. In essence, these results indicate that the HOTAIRM1-HOXA1-miR124 axis enhances the differentiation and suppressive functions of MDSCs and may be a potential target for immunomodulation in conjunction with antiviral therapy during chronic viral infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson City, TN, 37614, USA.
- Center of Excellence for HIV/AIDS Care, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
47
|
Xie P, Li X, Chen R, Liu Y, Liu D, Liu W, Cui G, Xu J. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells. Aging (Albany NY) 2020; 13:2348-2364. [PMID: 33323548 PMCID: PMC7880397 DOI: 10.18632/aging.202263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) promote invasion and migration by glioblastoma (GBM) cells. In this study, quantitative real-time polymerase chain reaction was used to detect expression levels of the lncRNA HOTAIRM1 in GBM tissue samples and cells. The function of HOTAIRM1 was examined using wound healing assays, transwell assays, and in vivo experiments after GBM cells were transfected with either sh-ctrl or sh-HOTAIRM1. Luciferase reporter assays and RIP assays were performed to determine the interactions between HOTAIRM1 and miR-153-5p and between miR-153-5p and SNAI2. We also used luciferase reporter assays and ChIP assays to assess the transcriptional regulation of HOTAIRM1 by SNAI2 and CDH1. HOTAIRM1 was significantly overexpressed in GBM tissues and cells. HOTAIRM1 knockdown significantly weakened the migration and invasion by GBM cells. HOTAIRM1 was found to sponge miR-153-5p, and SNAI2 is a direct target of miR-153-5p. In addition, SNAI2 was shown to force HOTAIRM1 expression through directly promoting transcription and suppressing the negative regulation of CDH1 on transcription. Our results indicate a positive feedback loop between HOTAIRM1 and SNAI2, and suggest that the lncRNA HOTAIRM1 is a potential biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Xiang Li
- Department of Oncology, Huaian Hospital of Huaian District, Huai'an, Jiangsu Province, China.,Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Yue Liu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - DaChao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Wenguang Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
48
|
Hu L, Liu J, Meng Y, Zheng H, Ding C, Wang H, Charwudzi A, Li M, Li J, Zhai Z, Xiong S. Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol 2020; 18:1434-1444. [PMID: 33241756 DOI: 10.1080/15476286.2020.1854520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA HOTAIR has been reported to play a key role in regulating various biological processes in various cancers. However, the roles and mechanisms of HOTAIR in acute myeloid leukaemia (AML) are still unclear and need to be investigated. In this study, we induced differentiation of four AML cell lines by all-trans retinoic acid (ATRA) and found HOTAIR was significantly upregulated in the process. Chromatin immunoprecipitation (ChIP) assays indicated that C/EBPβ upregulated HOTAIR during ATRA induced differentiation in HL-60 cells. By gain- and loss-of-function analysis, we then observed that HOTAIR expression was positively correlated with ATRA-induced differentiation and negatively regulated G1 phase arrest in HL-60 cells. In addition, we found that HOTAIR promoted ATRA-induced differentiation via the regulation of the cell cycle regulator p21 via miR-17-5p. Moreover, we detected the expression of HOTAIR in 84 de novo AML patients, HOTAIR was found significantly downregulated in the AML patients compared to the iron deficiency anaemia (IDA) control group, negatively correlated with the platelet level in M2 patients. In all, our data suggest that HOTAIR may be subtype-specific in AML-M2 patients, also HOTAIR regulates AML differentiation by C/EBPBβ/HOTAIR/miR-17-5p/p21 pathway. The findings of the present study provide a novel insight into the mechanism of lncRNA-mediated differentiation and indicate that HOTAIR may be a promising therapeutic target for leukaemia, especially for AML with M2 type.Abbreviation: AML: acute myeloid leukaemia; APL: acute promyelocytic leukaemia; ATRA: all-trans retinoic acid; CCK8: cell Counting Kit-8; CDKs: cyclin-dependent kinases ; CeRNA: competing endogenous RNAs; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; FAB: French-American-British; FCM: flow cytometry; HOTAIR: HOX transcript antisense RNA; IDA: iron-deficiency anemia; lncRNA: long non-coding RNA; 3'UTR: 3'untranslated region; MT: Mutation type; WT: Wild type; qRT-PCR: Quantitative real-time PCR.
Collapse
Affiliation(s)
- Linhui Hu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Liu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huimin Zheng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chen Ding
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Huiping Wang
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Manman Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China.,Center of Hematology Research, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
49
|
Long noncoding RNA HOTAIRM1 promotes myeloid-derived suppressor cell expansion and suppressive functions through up-regulating HOXA1 expression during latent HIV infection. AIDS 2020; 34:2211-2221. [PMID: 33048872 PMCID: PMC7674250 DOI: 10.1097/qad.0000000000002700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) contribute to HIV progression by impairing antiviral immunity; however, the mechanisms responsible for MDSC development during HIV infection are incompletely understood. HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) is a long noncoding RNA (lncRNA) that plays a pivotal role in regulating myeloid cell development via targeting HOXA1. The role of HOTAIRM1--HOXA1 in the differentiation and functions of MDSCs during HIV infection remains unclear. METHODS In this study, we measured MDSC induction and suppressive functions by flow cytometry, RT-PCR, and co-culture experiments using CD33 myeloid cells derived from people living with HIV (PLHIV) on antiretroviral therapy (ART). We also manipulated the HOTAIRM1--HOXA1 axis in myeloid cells using knockdown and overexpression approaches. RESULTS We demonstrate that HOTAIRM1 and HOXA1 expressions are reciprocally upregulated and are responsible for increased levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS), in CD33 myeloid cells derived from PLHIV on ART. We found that overexpression of HOTAIRM1 or HOXA1 in CD33 cells isolated from healthy individuals promoted the differentiation and suppressive functions of MDSCs, whereas silencing of HOTAIRM1 or HOXA1 expression in MDSCs derived from PLHIV significantly inhibited the frequency of MDSCs and expressions of the immunosuppressive molecules and reduced their immunosuppressive effects on T cells. CONCLUSION These results indicate that the HOTAIRM1--HOXA1 axis enhances differentiation and suppressive functions of MDSCs and could be a potential therapeutic target for immunomodulation during latent HIV infection.
Collapse
|
50
|
Oncogenic role of lncRNA CRNDE in acute promyelocytic leukemia and NPM1-mutant acute myeloid leukemia. Cell Death Discov 2020; 6:121. [PMID: 33298855 PMCID: PMC7658230 DOI: 10.1038/s41420-020-00359-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
The PML/RARα fusion protein acts in concert with cooperative genetic events in the development of acute promyelocytic leukemia (APL). However, oncogenic long non-coding RNAs (lncRNAs) cooperating with PML/RARα remain under-explored. Here, we first identified a set of pathogenesis-related lncRNAs, aberrantly expressed in APL using RNA-seq data from a large cohort of acute myeloid leukemia (AML) patients and normal counterparts. Among the pathogenesis-related lncRNAs, one of the evolutionarily conservative lncRNAs CRNDE (Colorectal Neoplasia Differentially Expressed) drew our attention. We found that CRNDE was highly expressed in the disease state but not in the preleukemic stage of APL, suggesting that CRNDE might be a secondary event coordinating with PML/RARα to promote APL development. Functional analysis showed that CRNDE knockdown induced differentiation and inhibited proliferation of APL cells, and prolonged survival of APL mice. Further mechanistic studies showed that CRNDE elicited its oncogenic effects through binding the miR-181 family and thereby regulating NOTCH2. Finally, we found that high CRNDE expression was also significantly correlated with NPM1 mutations and contributed to the differentiation block in NPM1-mutant AML. Collectively, our findings shed light on the importance of oncogenic lncRNAs in the development of AML and provide a promising target for AML therapy.
Collapse
|