1
|
Xie Y, Yang Z, Chen W, Zhong C, Li M, Zhang L, Cheng T, Deng Q, Wang H, Ju J, Du Z, Liang H. Splicing factor SRSF1 attenuates cardiomyocytes apoptosis via regulating alternative splicing of Bcl2L12. Cell Biosci 2024; 14:142. [PMID: 39578852 PMCID: PMC11585136 DOI: 10.1186/s13578-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) events, triggered by the alterations in serine/arginine splicing factor 1 (SRSF1), a member of the SR protein family, have been implicated in various pathological processes. However, the function and mechanism of SRSF1 in cardiovascular diseases remain unclear. RESULTS In this study, we found that the expression of SRSF1 was significantly down-regulated in the hearts of mice with acute myocardial infarction (AMI) and H9C2 cells exposed to H2O2. Moreover, in vivo experiments utilizing adeno-associated virus serotype 9-mediated SRSF1 overexpression improved cardiac function and reduced infarct size in AMI mice. Mechanistically, we employed RNA-seq assay to identify AS aberrations associated with altered SRSF1 level in cardiomyocytes, and found that SRSF1 regulates the splice switching of Bcl2L12. Further study showed that silencing SRSF1 inhibits the inclusion of exon7 in Bcl2L12. Importantly, the truncated Bcl2L12 lacked the necessary structural elements and failed to interact with p53, thus compromising its ability to suppress apoptosis. CONCLUSIONS Our study unraveled the role of SRSF1 as a splicing factor involved in the regulation of Bcl2L12 splice switching, thereby exerting an anti-apoptotic effect through the p53 pathway, which provides new insights into potential approaches targeting cardiomyocyte apoptosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Yilin Xie
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Zhenbo Yang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wenxian Chen
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Changsheng Zhong
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengyang Li
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Lei Zhang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Ting Cheng
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Qin Deng
- College of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huifang Wang
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jin Ju
- College of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zhimin Du
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau , 999078, China.
| | - Haihai Liang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Jinan University, Zhuhai, 519000, Guangdong, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray -Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
2
|
Porozhan Y, Carstensen M, Thouroude S, Costallat M, Rachez C, Batsché E, Petersen T, Christensen T, Muchardt C. Defective Integrator activity shapes the transcriptome of patients with multiple sclerosis. Life Sci Alliance 2024; 7:e202402586. [PMID: 39029934 PMCID: PMC11259605 DOI: 10.26508/lsa.202402586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.
Collapse
Affiliation(s)
- Yevheniia Porozhan
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mikkel Carstensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Forum, Aarhus, Denmark
| | - Sandrine Thouroude
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Mickael Costallat
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Christophe Rachez
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Eric Batsché
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Christian Muchardt
- Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Qi C, Ren H, Fan Y. Microglia specific alternative splicing alterations in multiple sclerosis. Aging (Albany NY) 2024; 16:11656-11667. [PMID: 39115871 PMCID: PMC11346782 DOI: 10.18632/aging.206045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Several aberrant alternative splicing (AS) events and their regulatory mechanisms are widely recognized in multiple sclerosis (MS). Yet the cell-type specific AS events have not been extensively examined. Here we assessed the diversity of AS events using web-based RNA-seq data of sorted CD15-CD11b+ microglia in white matter (WM) region from 10 patients with MS and 11 control subjects. The GSE111972 dataset was downloaded from GEO and ENA databases, aligned to the GRCh38 reference genome from ENSEMBL via STAR. rMATS was used to assess five types of AS events, alternative 3'SS (A3SS), alternative 5'SS (A5SS), skipped exon (SE), retained intron (RI) and mutually exclusive exons (MXE), followed by visualizing with rmats2sashimiplot and maser. Differential genes or transcripts were analyzed using the limma R package. Gene ontology (GO) analysis was performed with the clusterProfiler R package. 42,663 raw counts of AS events were identified and 132 significant AS events were retained based on the filtered criteria: 1) average coverage >10 and 2) delta percent spliced in (ΔPSI) >0.1. SE was the most common AS event (36.36%), followed by MXE events (32.58%), and RI (18.94%). Genes related to telomere maintenance and organization primarily underwent SE splicing, while genes associated with protein folding and mitochondrion organization were predominantly spliced in the MXE pattern. Conversely, genes experiencing RI were enriched in immune response and immunoglobulin production. In conclusion, we identified microglia-specific AS changes in the white matter of MS patients, which may shed light on novel pathological mechanisms underlying MS.
Collapse
Affiliation(s)
- Caiyun Qi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Reder AT, Goel A, Garcia T, Feng X. Alternative Splicing of RNA Is Excessive in Multiple Sclerosis and Not Linked to Gene Expression Levels: Dysregulation Is Corrected by IFN-β. J Interferon Cytokine Res 2024; 44:355-371. [PMID: 38695855 DOI: 10.1089/jir.2024.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Affiliation(s)
- Anthony T Reder
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Aika Goel
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Tzintzuni Garcia
- Center for Translational Data Sciences, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Xuan Feng
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
5
|
Dhib-Jalbut S. Alternative Splicing in Multiple Sclerosis: A Promising Biomarker of Therapeutic Response to Interferon-β. J Interferon Cytokine Res 2024; 44:335-336. [PMID: 38800963 DOI: 10.1089/jir.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Affiliation(s)
- Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Kosmara D, Papanikolaou S, Nikolaou C, Bertsias G. Extensive Alternative Splicing Patterns in Systemic Lupus Erythematosus Highlight Sexual Differences. Cells 2023; 12:2678. [PMID: 38067106 PMCID: PMC10705143 DOI: 10.3390/cells12232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Substantial evidence highlights divergences in immune responses between men and women. Women are more susceptible to autoimmunity, whereas men suffer from the more severe presentation of autoimmune disorders. The molecular mechanism of this sexual dimorphism remains elusive. Herein, we conducted a comprehensive analysis of sex differences in whole-blood gene expression focusing on alternative splicing (AS) events in systemic lupus erythematosus (SLE), which is a prototype sex-biased disease. This study included 79 SLE patients with active disease and 58 matched healthy controls who underwent whole-blood RNA sequencing. Sex differences in splicing events were widespread, existent in both SLE and a healthy state. However, we observed distinct gene sets and molecular pathways targeted by sex-dependent AS in SLE patients as compared to healthy subjects, as well as a notable sex dissimilarity in intron retention events. Sexually differential spliced genes specific to SLE patients were enriched for dynamic cellular processes including chromatin remodeling, stress and inflammatory responses. Remarkably, the extent of sexual differences in AS in the SLE patients and healthy individuals exceeded those in gene expression. Overall, this study reveals an unprecedent variation in sex-dependent splicing events in SLE and the healthy state, with potential implications for understanding the molecular basis of sexual dimorphism in autoimmunity.
Collapse
Affiliation(s)
- Despoina Kosmara
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Foundation for Research and Technology-Hellas (FORTH), Infections and Immunity, Institute of Molecular Biology and Biotechnology, 71110 Heraklion, Greece
| | - Sofia Papanikolaou
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Biomedical Sciences Research Center “Alexander Fleming”, Institute of Bioinnovation, 16672 Athens, Greece
| | - Christoforos Nikolaou
- Biomedical Sciences Research Center “Alexander Fleming”, Institute of Bioinnovation, 16672 Athens, Greece
| | - George Bertsias
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Foundation for Research and Technology-Hellas (FORTH), Infections and Immunity, Institute of Molecular Biology and Biotechnology, 71110 Heraklion, Greece
| |
Collapse
|
8
|
Sciaccotta R, Murdaca G, Caserta S, Rizzo V, Gangemi S, Allegra A. Circular RNAs: A New Approach to Multiple Sclerosis. Biomedicines 2023; 11:2883. [PMID: 38001884 PMCID: PMC10669154 DOI: 10.3390/biomedicines11112883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis, a condition characterised by demyelination and axonal damage in the central nervous system, is due to autoreactive immune cells that recognise myelin antigens. Alteration of the immune balance can promote the onset of immune deficiencies, loss of immunosurveillance, and/or development of autoimmune disorders such as MS. Numerous enzymes, transcription factors, signal transducers, and membrane proteins contribute to the control of immune system activity. The "transcriptional machine" of eukaryotic cells is a complex system composed not only of mRNA but also of non-coding elements grouped together in the set of non-coding RNAs. Recent studies demonstrate that ncRNAs play a crucial role in numerous cellular functions, gene expression, and the pathogenesis of many immune disorders. The main purpose of this review is to investigate the role of circular RNAs, a previously unknown class of non-coding RNAs, in MS's pathogenesis. CircRNAs influence post-transcriptional control, expression, and functionality of a microRNA and epigenetic factors, promoting the development of typical MS abnormalities such as neuroinflammation, damage to neuronal cells, and microglial dysfunction. The increase in our knowledge of the role of circRNAs in multiple sclerosis could, in the future, modify the common diagnostic-therapeutic criteria, paving the way to a new vision of this neuroimmune pathology.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico S. Martino, 16132 Genova, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| |
Collapse
|
9
|
Liu HL, Lu XM, Wang HY, Hu KB, Wu QY, Liao P, Li S, Long ZY, Wang YT. The role of RNA splicing factor PTBP1 in neuronal development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119506. [PMID: 37263298 DOI: 10.1016/j.bbamcr.2023.119506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.
Collapse
Affiliation(s)
- Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
10
|
Banerjee S, Galarza-Muñoz G, Garcia-Blanco MA. Role of RNA Alternative Splicing in T Cell Function and Disease. Genes (Basel) 2023; 14:1896. [PMID: 37895245 PMCID: PMC10606310 DOI: 10.3390/genes14101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative RNA splicing, a ubiquitous mechanism of gene regulation in eukaryotes, expands genome coding capacity and proteomic diversity. It has essential roles in all aspects of human physiology, including immunity. This review highlights the importance of RNA alternative splicing in regulating immune T cell function. We discuss how mutations that affect the alternative splicing of T cell factors can contribute to abnormal T cell function and ultimately lead to autoimmune diseases. We also explore the potential applications of strategies that target the alternative splicing changes of T cell factors. These strategies could help design therapeutic approaches to treat autoimmune disorders and improve immunotherapy.
Collapse
Affiliation(s)
- Shefali Banerjee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Mariano A. Garcia-Blanco
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA;
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
11
|
Tuerdimaimaiti D, Abuduaini B, Kang S, Jiao J, Li M, Madeniyati W, Tuerdi B, Aili G, Tuerhong R, Kulaxi A. Genome-wide identification and functional analysis of dysregulated alternative splicing profiles in sepsis. J Inflamm (Lond) 2023; 20:31. [PMID: 37749550 PMCID: PMC10521395 DOI: 10.1186/s12950-023-00355-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND An increasing body of evidence now shows that the long-term mortality of patients with sepsis are associated with various sepsis-related immune cell defects. Alternative splicing (AS), as a sepsis-related immune cell defect, is considered as a potential immunomodulatory therapy target to improve patient outcomes. However, our understanding of the role AS plays in sepsis is currently insufficient. AIM This study investigated possible associations between AS and the gene regulatory networks affecting immune cells. We also investigated apoptosis and AS functionality in sepsis pathophysiology. METHODS In this study, we assessed publicly available mRNA-seq data that was obtained from the NCBI GEO dataset (GSE154918), which included a healthy group (HLTY), a mild infection group (INF1), asepsis group (Seps), and a septic shock group (Shock). A total of 79 samples (excluding significant outliers) were identified by a poly-A capture method to generate RNA-seq data. The variable splicing events and highly correlated RNA binding protein (RBP) genes in each group were then systematically analyzed. RESULTS For the first time, we used systematic RNA-seq analysis of sepsis-related AS and identified 1505 variable AS events that differed significantly (p <= 0.01) across the four groups. In the sepsis group, the genes related to significant AS events, such as, SHISA5 and IFI27, were mostly enriched in the cell apoptosis pathway. Furthermore, we identified differential splicing patterns within each of the four groups. Significant differences in the expression of RNA Binding Protein(RBP) genes were observed between the control group and the sepsis group. RBP gene expression was highly correlated with variant splicing events in sepsis, as determined by co-expression analysis; The expression of DDX24, CBFA2T2, NOP, ILF3, DNMT1, FTO, PPRC1, NOLC1 RBPs were significant reduced in sepsis compared to the healthy group. Finally, we constructed an RBP-AS functional network. CONCLUSION Analysis indicated that the RBP-AS functional network serves as a critical post-transcriptional mechanism that regulates the development of sepsis. AS dysregulation is associated with alterations in the regulatory gene expression network that is involved in sepsis. Therefore, the RBP-AS expression network could be useful in refining biomarker predictions in the development of new therapeutic targets for the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Dilixiati Tuerdimaimaiti
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Buzukela Abuduaini
- The Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, Xinjiang, 830054, China
| | - Shaotao Kang
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Jinliang Jiao
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Mengchen Li
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Wolazihan Madeniyati
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Baihetinisha Tuerdi
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China.
| | - Gulisitan Aili
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Reyila Tuerhong
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| | - Ajiguli Kulaxi
- Department of RICU, The First Affiliated Hospital of Xinjiang Medical University, 393 South Li Yu Shan Road, Wulumuqi, Xinjiang, 830054, China
| |
Collapse
|
12
|
Ner-Gaon H, Peleg R, Gazit R, Reiner-Benaim A, Shay T. Mapping the splicing landscape of the human immune system. Front Immunol 2023; 14:1116392. [PMID: 37711610 PMCID: PMC10499523 DOI: 10.3389/fimmu.2023.1116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronnie Peleg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Sun X, Liu Z, Li Z, Zeng Z, Peng W, Zhu J, Zhao J, Zhu C, Zeng C, Stearrett N, Crandall KA, Bachali P, Grammer AC, Lipsky PE. Abnormalities in intron retention characterize patients with systemic lupus erythematosus. Sci Rep 2023; 13:5141. [PMID: 36991079 PMCID: PMC10060252 DOI: 10.1038/s41598-023-31890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Computer Science Department, George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zhouhao Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Weiqun Peng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, 1445 Research Blvd, Suite 150, Rockville, MD, 20850, USA
| | - Joel Zhao
- Walt Whitman High School, Bethesda, MD, 20817, USA
| | | | - Chen Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA.
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA.
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA.
| |
Collapse
|
14
|
Cardamone G, Paraboschi EM, Soldà G, Liberatore G, Rimoldi V, Cibella J, Airi F, Tisato V, Cantoni C, Gallia F, Gemmati D, Piccio L, Duga S, Nobile-Orazio E, Asselta R. The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile. Mult Scler Relat Disord 2023; 69:104426. [PMID: 36446168 DOI: 10.1016/j.msard.2022.104426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of non-coding RNAs increasingly emerging as crucial actors in the pathogenesis of human diseases, including autoimmune and neurological disorders as multiple sclerosis (MS). Despite several efforts, the mechanisms regulating circRNAs expression are still largely unknown and the circRNA profile and regulation in MS-relevant cell models has not been completely investigated. In this work, we aimed at exploring the global landscape of circRNA expression in MS patients, also evaluating a possible correlation with their genetic and epigenetic background. METHODS We performed RNA-seq experiments on circRNA-enriched samples, derived from peripheral blood mononuclear cells (PBMCs) of 10 MS patients and 10 matched controls and performed differential circRNA expression. The genetic background was evaluated using array genotyping, and an expression quantitative trait loci (eQTL) analysis was carried out. RESULTS Expression analysis revealed 166 differentially expressed circRNAs in MS patients, 125 of which are downregulated. One of the top dysregulated circRNAs, hsa_circ_0007990, derives from the PGAP3 gene, encoding a protein relevant for the control of autoimmune responses. The downregulation of this circRNA was confirmed in two independent replication cohorts, suggesting its implementation as a possible RNA-based biomarker. The eQTL analysis evidenced a significant association between 89 MS-associated loci and the expression of at least one circRNA, suggesting that MS-associated variants could impact on disease pathogenesis by altering circRNA profiles. Finally, we found a significant correlation between exon methylation and circRNA expression levels, supporting the hypothesis that epigenetic features may play an important role in the definition of the cell circRNA pool. CONCLUSION We described the circRNA expression profile of PBMCs in MS patients, suggesting that MS-associated variants may tune the expression levels of circRNAs acting as "circ-QTLs", and proposing a role for exon-based DNA methylation in regulating circRNA expression.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuseppe Liberatore
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Javier Cibella
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Federica Airi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Francesca Gallia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Italy; Center Haemostasis & Thrombosis, University of Ferrara, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA; Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Eduardo Nobile-Orazio
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
15
|
Huang CM, Chen YC, Lai IL, Chen HD, Huang PH, Tu SJ, Lee YT, Yen JC, Lin CL, Liu TY, Chang JG. Exploring RNA modifications, editing, and splicing changes in hyperuricemia and gout. Front Med (Lausanne) 2022; 9:889464. [PMID: 36148448 PMCID: PMC9487523 DOI: 10.3389/fmed.2022.889464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia and gout are two of the most common metabolic disorders worldwide; their incidence is increasing with changes in lifestyle, and they are correlated with many diseases, including renal and cardiovascular diseases. The majority of studies on hyperuricemia and gout have focused on the discovery of the associated genes and their functions and on the roles of monocytes and neutrophils in the development of gout. Virtually no studies investigating the epigenomics of gout disease or exploring the clinical significance of such research have been conducted. In this study, we observed that the expression of enzymes involved in RNA modifications or RNA editing was affected in uric acid (UA)- or monosodium urate (MSU)-treated cell lines. RNA alternative splicing and splicing factors were also affected by UA or MSU treatment. We used transcriptome sequencing to analyze genome-wide RNA splicing and RNA editing and found significant changes in RNA splicing and RNA editing in MSU- or UA-treated THP-1 and HEK293 cells. We further found significant changes of RNA modifications, editing, and splicing in patients with gout. The data indicate that RNA modifications, editing, and splicing play roles in gout. The findings of this study may help to understand the mechanism of RNA splicing and modifications in gout, facilitating the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Ming Huang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Hao Huang
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Li Lin
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung, Taiwan
- *Correspondence: Jan-Gowth Chang,
| |
Collapse
|
16
|
Butler MG, Hossain WA, Steinle J, Gao H, Cox E, Niu Y, Quach M, Veatch OJ. Connective Tissue Disorders and Fragile X Molecular Status in Females: A Case Series and Review. Int J Mol Sci 2022; 23:ijms23169090. [PMID: 36012355 PMCID: PMC9408984 DOI: 10.3390/ijms23169090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 01/10/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and the second most common cause after Down syndrome. FXS is an X-linked disorder due to a full mutation of the CGG triplet repeat of the FMR1 gene which codes for a protein that is crucial in synaptogenesis and maintaining functions of extracellular matrix-related proteins, key for the development of normal neuronal and connective tissue including collagen. In addition to neuropsychiatric and behavioral problems, individuals with FXS show physical features suggestive of a connective tissue disorder including loose skin and joint laxity, flat feet, hernias and mitral valve prolapse. Disturbed collagen leads to hypermobility, hyperextensible skin and tissue fragility with musculoskeletal, cardiovascular, immune and other organ involvement as seen in hereditary disorders of connective tissue including Ehlers−Danlos syndrome. Recently, FMR1 premutation repeat expansion or carrier status has been reported in individuals with connective tissue disorder-related symptoms. We examined a cohort of females with features of a connective tissue disorder presenting for genetic services using next-generation sequencing (NGS) of a connective tissue disorder gene panel consisting of approximately 75 genes. In those females with normal NGS testing for connective tissue disorders, the FMR1 gene was then analyzed using CGG repeat expansion studies. Three of thirty-nine females were found to have gray zone or intermediate alleles at a 1:13 ratio which was significantly higher (p < 0.05) when compared with newborn females representing the general population at a 1:66 ratio. This association of connective tissue involvement in females with intermediate or gray zone alleles reported for the first time will require more studies on how the size variation may impact FMR1 gene function and protein directly or in relationship with other susceptibility genes involved in connective tissue disorders.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-(913)-588-1800; Fax: +1-(913)-588-1305
| | - Waheeda A. Hossain
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Jacob Steinle
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Harry Gao
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Eleina Cox
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Yuxin Niu
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - May Quach
- Fulgent Genetics, 4978 Santa Anita Ave., Temple City, CA 91780, USA
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Tram J, Mesnard JM, Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol 2022; 13:959382. [PMID: 35979354 PMCID: PMC9376482 DOI: 10.3389/fimmu.2022.959382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells employ a broad range of mechanisms to regulate gene expression. Among others, mRNA alternative splicing is a key process. It consists of introns removal from an immature mRNA (pre-mRNA) via a transesterification reaction to create a mature mRNA molecule. Large-scale genomic studies have shown that in the human genome, almost 95% of protein-encoding genes go through alternative splicing and produce transcripts with different exons combinations (and sometimes retained introns), thus increasing the proteome diversity. Considering the importance of RNA regulation in cellular proliferation, survival, and differentiation, alterations in the alternative splicing pathway have been linked to several human cancers, including adult T-cell leukemia/lymphoma (ATL). ATL is an aggressive and fatal malignancy caused by the Human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 genome encodes for two oncoproteins: Tax and HBZ, both playing significant roles in the transformation of infected cells and ATL onset. Here, we review current knowledge on alternative splicing and its link to cancers and reflect on how dysregulation of this pathway could participate in HTLV-1-induced cellular transformation and adult T-cell leukemia/lymphoma development.
Collapse
|
18
|
Aliaga-Gaspar P, Hurtado-Guerrero I, Ciano-Petersen NL, Urbaneja P, Brichette-Mieg I, Reyes V, Rodriguez-Bada JL, Alvarez-Lafuente R, Arroyo R, Quintana E, Ramió-Torrentà L, Alonso A, Leyva L, Fernández O, Oliver-Martos B. Soluble Receptor Isoform of IFN-Beta (sIFNAR2) in Multiple Sclerosis Patients and Their Association With the Clinical Response to IFN-Beta Treatment. Front Immunol 2021; 12:778204. [PMID: 34975865 PMCID: PMC8716373 DOI: 10.3389/fimmu.2021.778204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Interferon beta receptor 2 subunit (IFNAR2) can be produced as a transmembrane protein, but also as a soluble form (sIFNAR2) generated by alternative splicing or proteolytic cleavage, which has both agonist and antagonist activities for IFN-β. However, its role regarding the clinical response to IFN-β for relapsing-remitting multiple sclerosis (RRMS) is unknown. We aim to evaluate the in vitro short-term effects and after 6 and 12 months of IFN-β therapy on sIFNAR2 production and their association with the clinical response in MS patients. Methods Ninety-four RRMS patients were included and evaluated at baseline, 6 and 12 months from treatment onset. A subset of 41 patients were classified as responders and non-responders to IFN-β therapy. sIFNAR2 serum levels were measured by ELISA. mRNA expression for IFNAR1, IFNAR2 splice variants, MxA and proteases were assessed by RT-PCR. The short-term effect was evaluated in PBMC from RRMS patients after IFN-β stimulation in vitro. Results Protein and mRNA levels of sIFNAR2 increased after IFN-β treatment. According to the clinical response, only non-responders increased sIFNAR2 significantly at both protein and mRNA levels. sIFNAR2 gene expression correlated with the transmembrane isoform expression and was 2.3-fold higher. While MxA gene expression increased significantly after treatment, IFNAR1 and IFNAR2 only slightly increased. After short-term IFN-β in vitro induction of PBMC, 6/7 patients increased the sIFNAR2 expression. Conclusions IFN-β administration induces the production of sIFNAR2 in RRMS and higher levels might be associated to the reduction of therapeutic response. Thus, levels of sIFNAR2 could be monitored to optimize an effective response to IFN-β therapy.
Collapse
Affiliation(s)
- Pablo Aliaga-Gaspar
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Isaac Hurtado-Guerrero
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Lundahl Ciano-Petersen
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Patricia Urbaneja
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Isabel Brichette-Mieg
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Virginia Reyes
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Jose Luis Rodriguez-Bada
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Roberto Alvarez-Lafuente
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Rafael Arroyo
- Servicio de Neurología, Hospital Universitario Quirónsalud, Madrid, Spain
| | - Ester Quintana
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Servicio de Neurología, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
| | - Lluis Ramió-Torrentà
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Servicio de Neurología, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- Medical Sciences Department, University of Girona, Girona, Spain
| | - Ana Alonso
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
| | - Laura Leyva
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Oscar Fernández
- Departmento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Begoña Oliver-Martos, ; Oscar Fernández,
| | - Begoña Oliver-Martos
- Neuroimmunology and Neuroinflammation Group, Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica (UGC) Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-Reca), Málaga, Spain
- Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
- Departamento de Biología Celular, Genética y Fisiología, Área de Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- *Correspondence: Begoña Oliver-Martos, ; Oscar Fernández,
| |
Collapse
|
19
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
20
|
Jansen K, Shikama-Dorn N, Attar M, Maio S, Lopopolo M, Buck D, Holländer GA, Sansom SN. RBFOX splicing factors contribute to a broad but selective recapitulation of peripheral tissue splicing patterns in the thymus. Genome Res 2021; 31:2022-2034. [PMID: 34649931 PMCID: PMC8559713 DOI: 10.1101/gr.275245.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Thymic epithelial cells (TEC) control the selection of a T cell repertoire reactive to pathogens but tolerant of self. This process is known to involve the promiscuous expression of virtually the entire protein-coding gene repertoire, but the extent to which TEC recapitulate peripheral isoforms, and the mechanisms by which they do so, remain largely unknown. We performed the first assembly-based transcriptomic census of transcript structures and splicing factor (SF) expression in mouse medullary TEC (mTEC) and 21 peripheral tissues. Mature mTEC expressed 60.1% of all protein-coding transcripts, more than was detected in any of the peripheral tissues. However, for genes with tissue-restricted expression, mTEC produced fewer isoforms than did the relevant peripheral tissues. Analysis of exon inclusion revealed an absence of brain-specific microexons in mTEC. We did not find unusual numbers of novel transcripts in TEC, and we show that Aire, the facilitator of promiscuous gene expression, promotes the generation of long “classical” transcripts (with 5′ and 3′ UTRs) but has only a limited impact on alternative splicing in mTEC. Comprehensive assessment of SF expression in mTEC identified a small set of nonpromiscuously expressed SF genes, among which we confirmed RBFOX to be present with AIRE in mTEC nuclei. Using a conditional loss-of-function approach, we show that Rbfox2 promotes mTEC development and regulates the alternative splicing of promiscuously expressed genes. These data indicate that TEC recommission a small number of peripheral SFs, including members of the RBFOX family, to generate a broad but selective representation of the peripheral splice isoform repertoire.
Collapse
Affiliation(s)
- Kathrin Jansen
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom.,Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Noriko Shikama-Dorn
- The University Children's Hospital of Basel and the Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Moustafa Attar
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Maria Lopopolo
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - David Buck
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Georg A Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,The University Children's Hospital of Basel and the Department of Biomedicine, University of Basel, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Stephen N Sansom
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
21
|
Zhang P, Perez OC, Southey BR, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes (Basel) 2021; 12:1570. [PMID: 34680965 PMCID: PMC8535871 DOI: 10.3390/genes12101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Olivia C. Perez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sandra L. Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Liao KC, Chuo V, Fagg WS, Modahl CM, Widen S, Garcia-Blanco MA. The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response. Nucleic Acids Res 2021; 49:10034-10045. [PMID: 34428287 PMCID: PMC8464043 DOI: 10.1093/nar/gkab732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cassandra M Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Steven Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
23
|
Combining Multiple RNA-Seq Data Analysis Algorithms Using Machine Learning Improves Differential Isoform Expression Analysis. Methods Protoc 2021; 4:mps4040068. [PMID: 34698224 PMCID: PMC8544431 DOI: 10.3390/mps4040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
RNA sequencing has become the standard technique for high resolution genome-wide monitoring of gene expression. As such, it often comprises the first step towards understanding complex molecular mechanisms driving various phenotypes, spanning organ development to disease genesis, monitoring and progression. An advantage of RNA sequencing is its ability to capture complex transcriptomic events such as alternative splicing which results in alternate isoform abundance. At the same time, this advantage remains algorithmically and computationally challenging, especially with the emergence of even higher resolution technologies such as single-cell RNA sequencing. Although several algorithms have been proposed for the effective detection of differential isoform expression from RNA-Seq data, no widely accepted golden standards have been established. This fact is further compounded by the significant differences in the output of different algorithms when applied on the same data. In addition, many of the proposed algorithms remain scarce and poorly maintained. Driven by these challenges, we developed a novel integrative approach that effectively combines the most widely used algorithms for differential transcript and isoform analysis using state-of-the-art machine learning techniques. We demonstrate its usability by applying it on simulated data based on several organisms, and using several performance metrics; we conclude that our strategy outperforms the application of the individual algorithms. Finally, our approach is implemented as an R Shiny application, with the underlying data analysis pipelines also available as docker containers.
Collapse
|
24
|
Li J, Li G, Qi Y, Lu Y, Wang H, Shi K, Li D, Shi J, Stovall DB, Sui G. SRSF5 regulates alternative splicing of DMTF1 pre-mRNA through modulating SF1 binding. RNA Biol 2021; 18:318-336. [PMID: 34291726 DOI: 10.1080/15476286.2021.1947644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ABBREVIATIONS ARF: alternative reading frame, that is, p14ARF, or CDKN2A (cyclin-dependent kinase inhibitor 2A); β-gal: β-galactosidase; CLIP-seq: crosslinking and immunoprecipitation-sequencing; DMTF1: the cyclin D binding myb-like transcription factor 1; ESS/ESE: exonic splicing silencer/enhancer; Ex: exon; FBS: fetal bovine serum; Gluc: Gaussia luciferase; hnRNPs: heterogeneous nuclear ribonucleoproteins; In: intron; ISS/ISE: intronic splicing silencer/enhancer; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PSI: percent-splice-in; qPCR: quantitative real-time PCR; RIP: RNA immunoprecipitation; RNAseq: RNA sequencing; RT: reverse transcription; SF1: splicing factor 1; SR: serine/arginine-rich proteins; SRSF5: serine and arginine-rich splicing factor 5; TCGA: the cancer genome atlas; UCSC: University of California, Santa Cruz. WT: Wild type.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yige Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Yao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Ke Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC, USA
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Liao KC, Garcia-Blanco MA. Role of Alternative Splicing in Regulating Host Response to Viral Infection. Cells 2021; 10:1720. [PMID: 34359890 PMCID: PMC8306335 DOI: 10.3390/cells10071720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host-virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77550, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
26
|
Geng G, Xu C, Peng N, Li Y, Liu J, Wu J, Liang J, Zhu Y, Shi L. PTBP1 is necessary for dendritic cells to regulate T-cell homeostasis and antitumour immunity. Immunology 2021; 163:74-85. [PMID: 33421118 PMCID: PMC8044338 DOI: 10.1111/imm.13304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) play an important role in linking innate and adaptive immunity. DCs can sense endogenous and exogenous antigens and present those antigens to T cells to induce an immune response or immune tolerance. During activation, alternative splicing (AS) in DCs is dramatically changed to induce cytokine secretion and upregulation of surface marker expression. PTBP1, an RNA-binding protein, is essential in alternative splicing, but the function of PTBP1 in DCs is unknown. Here, we found that a specific deficiency of Ptbp1 in DCs could increase MHC II expression and perturb T-cell homeostasis without affecting DC development. Functionally, Ptbp1 deletion in DCs could enhance antitumour immunity and asthma exacerbation. Mechanistically, we found that Pkm alternative splicing and a subset of Ifn response genes could be regulated by PTBP1. These findings revealed the function of PTBP1 in DCs and indicated that PTBP1 might be a novel therapeutic target for antitumour treatment.
Collapse
Affiliation(s)
- Guangfeng Geng
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Changlu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Nan Peng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yue Li
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jinhua Liu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jing Wu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jing Liang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Lihong Shi
- State Key Laboratory of Experimental HematologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
27
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
29
|
Paz S, Ritchie A, Mauer C, Caputi M. The RNA binding protein SRSF1 is a master switch of gene expression and regulation in the immune system. Cytokine Growth Factor Rev 2020; 57:19-26. [PMID: 33160830 DOI: 10.1016/j.cytogfr.2020.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Serine/Arginine splicing factor 1 (SRSF1) is an RNA binding protein abundantly expressed in most tissues. The pleiotropic functions of SRSF1 exert multiple roles in gene expression by regulating major steps in transcription, processing, export through the nuclear pores and translation of nascent RNA transcripts. The aim of this review is to highlight recent findings in the functions of this protein and to describe its role in immune system development, functions and regulation.
Collapse
Affiliation(s)
- Sean Paz
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Anastasia Ritchie
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Christopher Mauer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, United States.
| |
Collapse
|
30
|
Alternative splicing of MR1 regulates antigen presentation to MAIT cells. Sci Rep 2020; 10:15429. [PMID: 32963314 PMCID: PMC7508857 DOI: 10.1038/s41598-020-72394-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Mucosal Associated Invariant T (MAIT) cells can sense intracellular infection by a broad array of pathogens. These cells are activated upon encountering microbial antigen(s) displayed by MR1 on the surface of an infected cell. Human MR1 undergoes alternative splicing. The full-length isoform, MR1A, can activate MAIT cells, while the function of the isoforms, MR1B and MR1C, are incompletely understood. In this report, we sought to characterize the expression and function of these splice variants. Using a transcriptomic analysis in conjunction with qPCR, we find that that MR1A and MR1B transcripts are widely expressed. However only MR1A can present mycobacterial antigen to MAIT cells. Coexpression of MR1B with MR1A decreases MAIT cell activation following bacterial infection. Additionally, expression of MR1B prior to MR1A lowers total MR1A abundance, suggesting competition between MR1A and MR1B for either ligands or chaperones required for folding and/or trafficking. Finally, we evaluated CD4/CD8 double positive thymocytes expressing surface MR1. Here, we find that relative expression of MR1A/MR1B transcript is associated with the prevalence of MR1 + CD4/CD8 cells in the thymus. Our results suggest alternative splicing of MR1 represents a means of regulating MAIT activation in response to microbial ligand(s).
Collapse
|
31
|
Giblin SP, Schwenzer A, Midwood KS. Alternative splicing controls cell lineage-specific responses to endogenous innate immune triggers within the extracellular matrix. Matrix Biol 2020; 93:95-114. [PMID: 32599145 DOI: 10.1016/j.matbio.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023]
Abstract
The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.
Collapse
Affiliation(s)
- Sean P Giblin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
32
|
Cardamone G, Paraboschi EM, Soldà G, Cantoni C, Supino D, Piccio L, Duga S, Asselta R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 2020; 28:1414-1428. [PMID: 30566690 DOI: 10.1093/hmg/ddy438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Domenico Supino
- Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| |
Collapse
|
33
|
Zhang J, Harvey SE, Cheng C. A high-throughput screen identifies small molecule modulators of alternative splicing by targeting RNA G-quadruplexes. Nucleic Acids Res 2019; 47:3667-3679. [PMID: 30698802 PMCID: PMC6468248 DOI: 10.1093/nar/gkz036] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
RNA secondary structures have been increasingly recognized to play an important regulatory role in post-transcriptional gene regulation. We recently showed that RNA G-quadruplexes, which serve as cis-elements to recruit splicing factors, play a critical role in regulating alternative splicing during the epithelial-mesenchymal transition. In this study, we performed a high-throughput screen using a dual-color splicing reporter to identify chemical compounds capable of regulating G-quadruplex-dependent alternative splicing. We identify emetine and its analog cephaeline as small molecules that disrupt RNA G-quadruplexes, resulting in inhibition of G-quadruplex-dependent alternative splicing. Transcriptome analysis reveals that emetine globally regulates alternative splicing, including splicing of variable exons that contain splice site-proximal G-quadruplexes. Our data suggest the use of emetine and cephaeline for investigating mechanisms of G-quadruplex-associated alternative splicing.
Collapse
Affiliation(s)
- Jing Zhang
- Lester & Sue Smith Breast Center, Department of Molecular & Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel E Harvey
- Lester & Sue Smith Breast Center, Department of Molecular & Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester & Sue Smith Breast Center, Department of Molecular & Human Genetics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Panousis NI, Bertsias GK, Ongen H, Gergianaki I, Tektonidou MG, Trachana M, Romano-Palumbo L, Bielser D, Howald C, Pamfil C, Fanouriakis A, Kosmara D, Repa A, Sidiropoulos P, Dermitzakis ET, Boumpas DT. Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann Rheum Dis 2019; 78:1079-1089. [PMID: 31167757 PMCID: PMC6691930 DOI: 10.1136/annrheumdis-2018-214379] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Objectives Systemic lupus erythematosus (SLE) diagnosis and treatment remain empirical and the molecular basis for its heterogeneity elusive. We explored the genomic basis for disease susceptibility and severity. Methods mRNA sequencing and genotyping in blood from 142 patients with SLE and 58 healthy volunteers. Abundances of cell types were assessed by CIBERSORT and cell-specific effects by interaction terms in linear models. Differentially expressed genes (DEGs) were used to train classifiers (linear discriminant analysis) of SLE versus healthy individuals in 80% of the dataset and were validated in the remaining 20% running 1000 iterations. Transcriptome/genotypes were integrated by expression-quantitative trail loci (eQTL) analysis; tissue-specific genetic causality was assessed by regulatory trait concordance (RTC). Results SLE has a ‘susceptibility signature’ present in patients in clinical remission, an ‘activity signature’ linked to genes that regulate immune cell metabolism, protein synthesis and proliferation, and a ‘severity signature’ best illustrated in active nephritis, enriched in druggable granulocyte and plasmablast/plasma–cell pathways. Patients with SLE have also perturbed mRNA splicing enriched in immune system and interferon signalling genes. A novel transcriptome index distinguished active versus inactive disease—but not low disease activity—and correlated with disease severity. DEGs discriminate SLE versus healthy individuals with median sensitivity 86% and specificity 92% suggesting a potential use in diagnostics. Combined eQTL analysis from the Genotype Tissue Expression (GTEx) project and SLE-associated genetic polymorphisms demonstrates that susceptibility variants may regulate gene expression in the blood but also in other tissues. Conclusion Specific gene networks confer susceptibility to SLE, activity and severity, and may facilitate personalised care.
Collapse
Affiliation(s)
- Nikolaos I Panousis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iG3), University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - George K Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Halit Ongen
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iG3), University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Irini Gergianaki
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Maria G Tektonidou
- Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Maria Trachana
- First Department of Pediatrics, Pediatric Immunology and Rheumatology Referral Center, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | - Luciana Romano-Palumbo
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Deborah Bielser
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Cedric Howald
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iG3), University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonis Fanouriakis
- 4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Despoina Kosmara
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Argyro Repa
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Heraklion, Greece
| | - Prodromos Sidiropoulos
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete, Medical School, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland .,Institute of Genetics and Genomics in Geneva (iG3), University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitrios T Boumpas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece .,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Medical school, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
35
|
Hecker M, Rüge A, Putscher E, Boxberger N, Rommer PS, Fitzner B, Zettl UK. Aberrant expression of alternative splicing variants in multiple sclerosis - A systematic review. Autoimmun Rev 2019; 18:721-732. [PMID: 31059848 DOI: 10.1016/j.autrev.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alternative splicing is an important form of RNA processing that affects nearly all human genes. The differential expression of specific transcript and protein isoforms holds the potential of novel biomarkers for complex diseases. In this systematic review, we compiled the existing literature on aberrant alternative splicing events in multiple sclerosis (MS). METHODS A systematic literature search in the PubMed database was carried out and supplemented by screening the reference lists of the identified articles. We selected only MS-related original research studies which compared the levels of different isoforms of human protein-coding genes. A narrative synthesis of the research findings was conducted. Additionally, we performed a case-control analysis using high-density transcriptome microarray data to reevaluate the genes that were examined in the reviewed studies. RESULTS A total of 160 records were screened. Of those, 36 studies from the last two decades were included. Most commonly, peripheral blood samples were analyzed (32 studies), and PCR-based techniques were usually employed (27 studies) for measuring the expression of selected genes. Two studies used an exploratory genome-wide approach. Overall, 27 alternatively spliced genes were investigated. Nine of these genes appeared in at least two studies (CD40, CFLAR, FOXP3, IFNAR2, IL7R, MOG, PTPRC, SP140 and TNFRSF1A). The microarray data analysis confirmed differential alternative pre-mRNA splicing for 19 genes. CONCLUSIONS An altered RNA processing of genes mediating immune signaling pathways has been repeatedly implicated in MS. The analysis of individual exon-level expression patterns is stimulated by the advancement of transcriptome profiling technologies. In particular, the examination of genes encoded in MS-associated genetic regions may provide important insights into the pathogenesis of the disease and help to identify new biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | - Annelen Rüge
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Elena Putscher
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Nina Boxberger
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Paulus Stefan Rommer
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; Medical University of Vienna, Department of Neurology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Brit Fitzner
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Uwe Klaus Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
36
|
Paraboschi EM, Cardamone G, Soldà G, Duga S, Asselta R. Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions. Front Genet 2018; 9:647. [PMID: 30619471 PMCID: PMC6304422 DOI: 10.3389/fgene.2018.00647] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological disorder in young adults. Despite extensive studies, only a fraction of MS heritability has been explained, with association studies focusing primarily on protein-coding genes, essentially for the difficulty of interpreting non-coding features. However, non-coding RNAs (ncRNAs) and functional elements, such as super-enhancers (SE), are crucial regulators of many pathways and cellular mechanisms, and they have been implicated in a growing number of diseases. In this work, we searched for possible enrichments in non-coding elements at MS genome-wide associated loci, with the aim to highlight their possible involvement in the susceptibility to the disease. We first reconstructed the linkage disequilibrium (LD) structure of the Italian population using data of 727,478 single-nucleotide polymorphisms (SNPs) from 1,668 healthy individuals. The genomic coordinates of the obtained LD blocks were intersected with those of the top hits identified in previously published MS genome-wide association studies (GWAS). By a bootstrapping approach, we hence demonstrated a striking enrichment of non-coding elements, especially of circular RNAs (circRNAs) mapping in the 73 LD blocks harboring MS-associated SNPs. In particular, we found a total of 482 circRNAs (annotated in publicly available databases) vs. a mean of 194 ± 65 in the random sets of LD blocks, using 1,000 iterations. As a proof of concept of a possible functional relevance of this observation, we experimentally verified that the expression levels of a circRNA derived from an MS-associated locus, i.e., hsa_circ_0043813 from the STAT3 gene, can be modulated by the three genotypes at the disease-associated SNP. Finally, by evaluating RNA-seq data of two cell lines, SH-SY5Y and Jurkat cells, representing tissues relevant for MS, we identified 18 (two novel) circRNAs derived from MS-associated genes. In conclusion, this work showed for the first time that MS-GWAS top hits map in LD blocks enriched in circRNAs, suggesting circRNAs as possible novel contributors to the disease pathogenesis.
Collapse
Affiliation(s)
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
37
|
Differential Expression of Tissue Transglutaminase Splice Variants in Peripheral Blood Mononuclear Cells of Primary Progressive Multiple Sclerosis Patients. Med Sci (Basel) 2018; 6:medsci6040108. [PMID: 30486475 PMCID: PMC6313466 DOI: 10.3390/medsci6040108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 02/03/2023] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory and neurodegenerative disorder of the central nervous system (CNS) characterized by inflammation and immune cell infiltration in the brain parenchyma. Tissue transglutaminase (TG2), a calcium-dependent cross-linking enzyme, has been shown to be present in infiltrating MHC-II positive cells in lesions of patients suffering from MS. Moreover, TG2 mRNA levels in peripheral blood mononuclear cells (PBMC)-derived from primary progressive (PP)-MS patients correlated with clinical parameters, thus highlighting the importance of TG2 in MS pathology. In the present study, we further characterized TG2 expression by measuring the mRNA levels of full-length TG2 and four TG2 alternative splice variants in PBMCs derived from PP-MS patients and healthy control (HC) subjects. In PP-MS-derived PBMCs, TG2 variant V4b was significantly higher expressed, and both V4a and V4b variants were relatively more expressed in relation to full-length TG2. These observations open new avenues to unravel the importance of TG2 alternative splicing in the pathophysiology of PP-MS.
Collapse
|
38
|
Association Between IL7R Promoter Polymorphisms and Multiple Sclerosis in Turkish Population. J Mol Neurosci 2018; 67:38-47. [PMID: 30443838 DOI: 10.1007/s12031-018-1205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive neurodegenerative disease that affects myelin fibers within the central nervous system resulting in neurological impairment. Although the etiology of MS is not fully understood, environmental and genetic factors are thought to play important roles. IL7R gene polymorphisms which are associated with several autoimmune diseases have also been implicated as a genetic factor for MS following genome-wide association studies. To further examine this association, we investigated the association between MS and IL7R gene - 449 (A/G), - 504 (T/C), and - 1085 (G/T) promoter polymorphisms in Turkish population. Three hundred sixty-four MS patients and 191 healthy controls were involved in this study. Three polymorphic regions in the promoter of IL7R were identified and these regions were amplified by appropriate primers. The PCR products were digested by PstI enzyme for - 504 (T/C) SNP and HphI enzyme for - 1085 (G/T) and - 449 (A/G) SNPs and genotyping was done based on digested PCR product sizes. Genotype distributions and allele frequencies of - 449 polymorphism did not show any significant association with MS directly (p = 0.120 and p = 0.490, respectively). But the genotypes of IL7R - 449 GA for AOMS and AA for EOMS were a risk factor in according to age of onset (p = 0.002, OR = 4.021, 95% CI = 1.642-9.845). Furthermore, IL7R - 449 A allele was found to be a risk factor for EOMS (p = 0.011, OR = 1.3, 95% CI = 1.107-1.527). Significant association was seen between IL7R - 504 TC heterozygote genotype and MS (p = 0.02, OR = 1.702, 95% CI = 1.169-2.478). The IL7R - 1085 (G/T) polymorphism did not show association with MS; however, the haplotype of ACG may be susceptibility to MS and RRMS (p = 0.035, OR = 1.349, 95% CI = 1.020-1.785, and p = 0.041, OR = 1.368, 95% CI = 1.012-1.850, respectively) and the haplotypes of ACG, ATT, and GTG demonstrate a protective effect in EOMS (p = 0.008, OR = 0.326, 95% CI = 0.136-0.782, p = 0.012 and p = 0.012, OR = 0.462, 95% CI = 0.249-0.859, respectively). RRMS frequency in the Turkish population was decreased and SPMS frequency was strongly increased based on comparison to results from other populations. Furthermore, male patients had an increased frequency of SPMS significantly (p = 0.033, OR = 1.667, 95% CI = 1.036-2.682). In conclusion, this is the first study to show a significant association between the IL7R promoter polymorphisms and the age of onset of MS.
Collapse
|
39
|
Zheng W, Chen Y, Chen H, Xiao W, Liang Y, Wang N, Jiang X, Wen S. Identification of key target genes and biological pathways in multiple sclerosis brains using microarray data obtained from the Gene Expression Omnibus database. Neurol Res 2018; 40:883-891. [PMID: 30074468 DOI: 10.1080/01616412.2018.1497253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate critical genes in multiple sclerosis (MS) using microarray data from brain tissue in MS. MATERIALS The expression profile data set of MS (GSE38010) downloaded from the Gene Expression Omnibus database contained gene information from five plaque tissues from MS brains and two white matter tissues from healthy controls. An R package was applied to process these raw chip data. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) network analysis were performed to investigate interactions between differentially expressed genes (DEGs) in MS brain tissues. RESULTS This study identified a total of 1065 DEGs, including 530 up-regulated genes and 535 down-regulated genes, in MS brain tissue samples compared to those in normal white matter tissue samples. GO and KEGG pathway enrichment analyses showed that the up-regulated DEGs were mainly related to neuron development, neuron projection morphogenesis and neuron differentiation. Furthermore, the down-regulated DEGs were largely related to axon ensheathment, ensheathment of neurons and nervous system development. Seven key genes were found as hub genes in the maintenance of the PPI network. CONCLUSION Several key target genes and their GO and KEGG pathway enrichment identified in the present study may serve as feasible targets for MS therapies.
Collapse
Affiliation(s)
- Weipeng Zheng
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Yimin Chen
- b First Clinical College of Guangzhou Medical University , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Haoyi Chen
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Wende Xiao
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - YingJie Liang
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Ning Wang
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Xin Jiang
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Shifeng Wen
- a Department of Orthopedics, Guangzhou First People's Hospital , Guangzhou Medical University , Guangzhou , People's Republic of China
| |
Collapse
|
40
|
Dlamini Z, Mokoena F, Hull R. Abnormalities in alternative splicing in diabetes: therapeutic targets. J Mol Endocrinol 2017; 59:R93-R107. [PMID: 28716821 DOI: 10.1530/jme-17-0049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is a non-communicable, metabolic disorder that affects 416 million individuals worldwide. Type 2 diabetes contributes to a vast 85-90% of the diabetes incidences while 10-15% of patients suffer from type 1 diabetes. These two predominant forms of DM cause a significant loss of functional pancreatic β-cell mass causing different degrees of insulin deficiency, most likely, due to increased β-cell apoptosis. Treatment options involve the use of insulin sensitisers, α-glucosidase inhibitors, and β-cell secretagogues which are often expensive, limited in efficacy and carry detrimental adverse effects. Cost-effective options for treatment exists in the form of herbal drugs, however, scientific validations of these widely used medicinal plants are still underway. Alternative splicing (AS) is a co-ordinated post-transcriptional process in which a single gene generates multiple mRNA transcripts which results in increased amounts of functionally different protein isoforms and in some cases aberrant splicing leads to metabolic disease. In this review, we explore the association of AS with metabolic alterations in DM and the biological significance of the abnormal splicing of some pathogenic diabetes-related genes. An understanding of the molecular mechanism behind abnormally spliced transcripts will aid in the development of new diagnostic, prognostic and therapeutic tools.
Collapse
Affiliation(s)
- Zodwa Dlamini
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| | - Fortunate Mokoena
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| | - Rodney Hull
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
41
|
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med 2017. [PMID: 28623084 DOI: 10.1016/j.molmed.2017.05.006] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs. A complex interaction of genetics, environment, and hormones leads to immune dysregulation and breakdown of tolerance to self-antigens, resulting in autoantibody production, inflammation, and destruction of end-organs. Emerging evidence on the role of these factors has increased our knowledge of this complex disease, guiding therapeutic strategies and identifying putative biomarkers. Recent findings include the characterization of genetic/epigenetic factors linked to SLE, as well as cellular effectors. Novel observations have provided an improved understanding of the contribution of tissue-specific factors and associated damage, T and B lymphocytes, as well as innate immune cell subsets and their corresponding abnormalities. The intricate web of involved factors and pathways dictates the adoption of tailored therapeutic approaches to conquer this disease.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Abel Suarez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esra Meidan
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Gallego-Paez LM, Bordone MC, Leote AC, Saraiva-Agostinho N, Ascensão-Ferreira M, Barbosa-Morais NL. Alternative splicing: the pledge, the turn, and the prestige : The key role of alternative splicing in human biological systems. Hum Genet 2017; 136:1015-1042. [PMID: 28374191 PMCID: PMC5602094 DOI: 10.1007/s00439-017-1790-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a tightly controlled process conducted by the spliceosome, with the assistance of several regulators, resulting in the expression of different transcript isoforms from the same gene and increasing both transcriptome and proteome complexity. The differences between alternative isoforms may be subtle but enough to change the function or localization of the translated proteins. A fine control of the isoform balance is, therefore, needed throughout developmental stages and adult tissues or physiological conditions and it does not come as a surprise that several diseases are caused by its deregulation. In this review, we aim to bring the splicing machinery on stage and raise the curtain on its mechanisms and regulation throughout several systems and tissues of the human body, from neurodevelopment to the interactions with the human microbiome. We discuss, on one hand, the essential role of alternative splicing in assuring tissue function, diversity, and swiftness of response in these systems or tissues, and on the other hand, what goes wrong when its regulatory mechanisms fail. We also focus on the possibilities that splicing modulation therapies open for the future of personalized medicine, along with the leading techniques in this field. The final act of the spliceosome, however, is yet to be fully revealed, as more knowledge is needed regarding the complex regulatory network that coordinates alternative splicing and how its dysfunction leads to disease.
Collapse
Affiliation(s)
- L M Gallego-Paez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M C Bordone
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A C Leote
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N Saraiva-Agostinho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Ascensão-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - N L Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
43
|
Cardamone G, Paraboschi EM, Rimoldi V, Duga S, Soldà G, Asselta R. The Characterization of GSDMB Splicing and Backsplicing Profiles Identifies Novel Isoforms and a Circular RNA That Are Dysregulated in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18030576. [PMID: 28272342 PMCID: PMC5372592 DOI: 10.3390/ijms18030576] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023] Open
Abstract
Abnormalities in alternative splicing (AS) are emerging as recurrent features in autoimmune diseases (AIDs). In particular, a growing body of evidence suggests the existence of a pathogenic association between a generalized defect in splicing regulatory genes and multiple sclerosis (MS). Moreover, several studies have documented an unbalance in alternatively-spliced isoforms in MS patients possibly contributing to the disease etiology. In this work, using a combination of PCR-based techniques (reverse-transcription (RT)-PCR, fluorescent-competitive, real-time, and digital RT-PCR assays), we investigated the alternatively-spliced gene encoding Gasdermin B, GSDMB, which was repeatedly associated with susceptibility to asthma and AIDs. The in-depth characterization of GSDMB AS and backsplicing profiles led us to the identification of an exonic circular RNA (ecircRNA) as well as of novel GSDMB in-frame and out-of-frame isoforms. The non-productive splicing variants were shown to be downregulated by the nonsense-mediated mRNA decay (NMD) in human cell lines, suggesting that GSDMB levels are significantly modulated by NMD. Importantly, both AS isoforms and the identified ecircRNA were significantly dysregulated in peripheral blood mononuclear cells of relapsing-remitting MS patients compared to controls, further supporting the notion that aberrant RNA metabolism is a characteristic feature of the disease.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089 Rozzano, Milan, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
44
|
Barann M, Zimmer R, Birzele F. Manananggal - a novel viewer for alternative splicing events. BMC Bioinformatics 2017; 18:120. [PMID: 28222683 PMCID: PMC5319012 DOI: 10.1186/s12859-017-1548-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Alternative splicing is an important cellular mechanism that can be analyzed by RNA sequencing. However, identification of splicing events in an automated fashion is error-prone. Thus, further validation is required to select reliable instances of alternative splicing events (ASEs). There are only few tools specifically designed for interactive inspection of ASEs and available visualization approaches can be significantly improved. RESULTS Here, we present Manananggal, an application specifically designed for the identification of splicing events in next generation sequencing data. Manananggal includes a web application for visual inspection and a command line tool that allows for ASE detection. We compare the sashimi plots available in the IGV Viewer, the DEXSeq splicing plots and SpliceSeq to the Manananggal interface and discuss the advantages and drawbacks of these tools. We show that sashimi plots (such as those used by the IGV Viewer and SpliceSeq) offer a practical solution for simple ASEs, but also indicate short-comings for highly complex genes. CONCLUSION Manananggal is an interactive web application that offers functions specifically tailored to the identification of alternative splicing events that other tools are lacking. The ability to select a subset of isoforms allows an easier interpretation of complex alternative splicing events. In contrast to SpliceSeq and the DEXSeq splicing plot, Manananggal does not obscure the gene structure by showing full transcript models that makes it easier to determine which isoforms are expressed and which are not.
Collapse
Affiliation(s)
- Matthias Barann
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Nonnenwald 2, 82377, Penzberg, Germany
| | - Ralf Zimmer
- Practical Informatics and Bioinformatics Group, Department of Informatics, Ludwig-Maximilians-Universität München, Amalienstrasse 17, D-80333, Munich, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstraße 124, 4052, Basel, Switzerland.
| |
Collapse
|
45
|
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ 2016; 4:e2775. [PMID: 28028462 PMCID: PMC5183126 DOI: 10.7717/peerj.2775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein-protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. METHODS Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. RESULTS The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. DISCUSSION This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University , Tehran , Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
46
|
Yurova KA, Sokhonevich NA, Khaziakhmatova OG, Litvinova LS. [Cytokine-mediated regulation of expression of Gfi1 and U2afll4 genes activated by T-cells with different differentiation status in vitro]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:180-6. [PMID: 27143377 DOI: 10.18097/pbmc20166202180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.
Collapse
Affiliation(s)
- K A Yurova
- Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | | |
Collapse
|
47
|
Juan-Mateu J, Villate O, Eizirik DL. MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research. Eur J Endocrinol 2016; 174:R225-38. [PMID: 26628584 PMCID: PMC5331159 DOI: 10.1530/eje-15-0916] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Olatz Villate
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| | - Décio L Eizirik
- Medical FacultyULB Center for Diabetes Research and Welbio, Université Libre de Bruxelles (ULB), Route de Lennik, 808 - CP618, B-1070 Brussels, Belgium
| |
Collapse
|
48
|
Paraboschi EM, Cardamone G, Rimoldi V, Gemmati D, Spreafico M, Duga S, Soldà G, Asselta R. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes. Int J Mol Sci 2015; 16:23463-81. [PMID: 26437396 PMCID: PMC4632709 DOI: 10.3390/ijms161023463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Giulia Cardamone
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Donato Gemmati
- Center Haemostasis & Thrombosis, Department of Medical Sciences, Corso Giovecca 203, University of Ferrara, Ferrara 44121, Italy.
| | - Marta Spreafico
- Department of Transfusion Medicine and Hematology, Azienda Ospedaliera della Provincia di Lecco, Alessandro Manzoni Hospital, Via dell'Eremo 9/11, Lecco 23900, Italy.
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
49
|
Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems. Biomolecules 2015; 5:2073-100. [PMID: 26371053 PMCID: PMC4598789 DOI: 10.3390/biom5032073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.
Collapse
|
50
|
Li J, Fung I, Glessner JT, Pandey R, Wei Z, Bakay M, Mentch FD, Pellegrino R, Wang T, Kim C, Hou C, Wang F, Chiavacci RM, Thomas KA, Spergel JM, Hakonarson H, Sleiman PMA. Copy Number Variations in CTNNA3 and RBFOX1 Associate with Pediatric Food Allergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1599-607. [PMID: 26188062 DOI: 10.4049/jimmunol.1402310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
Food allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays. CNV calls from a total of 357 cases with confirmed food allergy and 3980 controls were analyzed within a discovery cohort, followed by a replication analysis composed of 167 cases and 1573 controls. We identified that CNVs in CTNNA3 were significantly associated with food allergy in both the discovery cohort and the replication cohort. Of particular interest, CTNNA3 CNVs hit exons or intron regions rich in histone marker H3K4Me1. CNVs in a second gene (RBFOX1) showed a significant association (p = 7.35 × 10(-5)) with food allergy at the genome-wide level in our meta-analysis of the European ancestry cohorts. The presence of these CNVs was confirmed by quantitative PCR. Furthermore, knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation, suggesting a role in sensitization to allergen. We uncovered at least two plausible genes harboring CNV loci that are enriched in pediatric patients with food allergies. The novel gene candidates discovered in this study by genome-wide CNV analysis are compelling drug and diagnostic targets for food allergy.
Collapse
Affiliation(s)
- Jin Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Irene Fung
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rahul Pandey
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 08540
| | - Marina Bakay
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Frank D Mentch
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cecilia Kim
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cuiping Hou
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Fengxiang Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly A Thomas
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Center for Pediatric Eosinophilic Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patrick M A Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|