1
|
Monaci V, Gasperini G, Banci L, Micoli F, Cantini F. 1H, 13C and 15N assignment of self-complemented MrkA protein antigen from Klebsiella pneumoniae. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:171-179. [PMID: 39018011 PMCID: PMC11511707 DOI: 10.1007/s12104-024-10185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Klebsiella pneumoniae (Kp) poses an escalating threat to public health, particularly given its association with nosocomial infections and its emergence as a leading cause of neonatal sepsis, particularly in low- and middle-income countries (LMICs). Host cell adherence and biofilm formation of Kp is mediated by type 1 and type 3 fimbriae whose major fimbrial subunits are encoded by the fimA and mrkA genes, respectively. In this study, we focus on MrkA subunit, which is a 20 KDa protein whose 3D molecular structure remains elusive. We applied solution NMR to characterize a recombinant version of MrkA in which the donor strand segment situated at the protein's N-terminus is relocated to the C-terminus, preceded by a hexaglycine linker. This construct yields a self-complemented variant of MrkA. Remarkably, the self-complemented MrkA monomer loses its capacity to interact with other monomers and to extend into fimbriae structures. Here, we report the nearly complete assignment of the 13C,15N labelled self-complemented MrkA monomer. Furthermore, an examination of its internal mobility unveiled that relaxation parameters are predominantly uniform across the polypeptide sequence, except for the glycine-rich region within loop 176-181. These data pave the way to a comprehensive structural elucidation of the MrkA monomer and to structurally map the molecular interaction regions between MrkA and antigen-induced antibodies.
Collapse
Affiliation(s)
- Valentina Monaci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100, Siena, Italy
| | | | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100, Siena, Italy
| | - Francesca Cantini
- Magnetic Resonance Center - CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
2
|
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Ganesan A, Murugan D, Baskaran A, Wannigama DL, Monk PN, Karunakaran E, Veeraraghavan B. Evaluation of mrkD, pgaC and wcaJ as biomarkers for rapid identification of K. pneumoniae biofilm infections from endotracheal aspirates and bronchoalveolar lavage. Sci Rep 2024; 14:23572. [PMID: 39384811 PMCID: PMC11464835 DOI: 10.1038/s41598-024-69232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/01/2024] [Indexed: 10/11/2024] Open
Abstract
Klebsiella pneumoniae has been identified as one of the most important opportunistic pathogens responsible for nosocomial infections. Antibiotic resistance and the ability to form biofilms are the two main factors involved in the persistence of infections. Conventional detection methods involve culture isolation and identification followed by biofilm assay that takes 48-72 h. Timely detection of biofilm-forming resistant pathogens is essential to appropriately treat the infection with the right dose and combinations. The present study focuses on evaluating an RT-PCR panel using mrkD, pgaC, and wcaJ genes to screen for biofilm-forming K. pneumoniae from ETA/BAL specimens. The assay accurately identified K. pneumoniae harboring samples with a limit of detection of 1 ng/µl total RNA. Representative culture-negative-PCR-positive samples were subjected to metagenomics which identified K. pneumoniae reads in these samples confirming the specificity of RT-PCR. mrkD and pgaC act as K. pneumoniae specific identification whereas wcaJ acts as a negative marker for biofilm-forming K. pneumoniae. In addition, RT-PCR results correlated well with the phenotypic biofilm-forming assay. This RT-PCR assay is the first of its kind for rapid identification of biofilm-forming K. pneumoniae. The result of this study highlights that the rapid detection of K. pneumoniae biofilms based on the RT-PCR results coupled with clinical conditions would be appropriate to treat emerging infections or to prevent re-infections in clinical settings.
Collapse
Affiliation(s)
- Naveen Kumar Devanga Ragupathi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK.
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
| | | | - Anju Ganesan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Dhivya Murugan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Dhammika Leshan Wannigama
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Peter N Monk
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
| | - Balaji Veeraraghavan
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries (BARCOD), The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
3
|
Yoshida S, Inaba H, Nomura R, Nakano K, Matsumoto-Nakano M. Role of fimbriae variations in Porphyromonas gulae biofilm formation. J Oral Biosci 2024:S1349-0079(24)00193-2. [PMID: 39216533 DOI: 10.1016/j.job.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Porphyromonas gulae is a major causative agent of periodontal disease in companion animals that possesses various virulence factors, including fimbriae, lipopolysaccharides, and proteases. P. gulae fimbriae are classified into three genotypes (A, B, and C) based on their nucleotide sequences. Type C fimbrial isolates have been reported to be more virulent than other fimA types, suggesting that different fimA types may aid in the regulation of periodontal pathogenesis. Detailed findings regarding the ability of P. gulae to form biofilms have yet to be reported. Here, we investigated the contributions of fimbrial genotypes in P. gulae biofilm formation. METHODS P. gulae and P. gingivalis biofilms were generated on plates and analyzed using confocal laser microscopy. Additionally, the biofilms formed were assessed by staining with crystal violet. Furthermore, the physical strength of P. gulae biofilms was examined by ultrasonication. RESULTS Biofilms formed by P. gulae type C were denser than those formed by types A and B. Moreover, the amount of biofilm formed by type C strains was significantly greater than that formed by type A and B strains, which was similar to the biofilms formed by P. gingivalis with type II fimbriae. Additionally, the physical strength of the type C biofilm was significantly greater than that of the other strains. CONCLUSIONS These results suggest that FimA variation may coordinate for biofilm formation. This is the first report on the observation and characterization of P. gulae biofilm formation.
Collapse
Affiliation(s)
- Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Dental Hygiene, Kyoto Koka Women's College, Kyoto, Japan.
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Fleeman R, Beckman R, Cella E, Azarian T, Rendueles O. Diverse polysaccharide production and biofilm formation abilities of clinical Klebsiella pneumoniae. RESEARCH SQUARE 2024:rs.3.rs-4630973. [PMID: 39149462 PMCID: PMC11326372 DOI: 10.21203/rs.3.rs-4630973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation in clinical isolates impedes our abilities to effectively predict K. pneumoniae infection outcomes. These traits are also associated with fitness in natural populations and more specifically within a host. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates encountered in the clinics today. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation abilities, percent mucoviscosity, and growth rates. We found most isolates formed limited biofilm, although a select group of isolates could form extremely robust biofilms. Variation in biofilm formation could not be explained by difference in growth rate, suggesting specific genetic and physical determinants. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Finally, confocal microscopy highlighted the structural and spatial heterogeneity of biofilm among the most robust biofilm formers not detected by traditional methods. The combination of phenotypic, genomic and image analyses allowed us to reveal an unexpected phenotypic diversity and an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.
Collapse
|
5
|
Herrera-Espejo S, Domínguez-Miranda JL, Rodríguez-Mogollo JI, Pachón J, Cordero E, Pachón-Ibáñez ME. Effects of pH on the Pathogenicity of Escherichia coli and Klebsiella pneumoniae on the Kidney: In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:7925. [PMID: 39063167 PMCID: PMC11277208 DOI: 10.3390/ijms25147925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Urine pH reflects the functional integrity of the body and may influence the virulence of uropathogenic Escherichia coli and Klebsiella pneumoniae, the main causes of urinary tract infections (UTIs). This study evaluated the effects of acidic pH on the pathogenicity of uropathogenic E. coli and K. pneumoniae strains, in vitro and in vivo. Four uropathogenic E. coli and four K. pneumoniae strains were used. Biofilm formation, growth competition indices, motility, and adhesion and invasion of human renal cells were analyzed in media with acidic, neutral, and alkaline pH. A murine lower UTI model was used, with urine adjusted to acidic, neutral, or alkaline pH. At acidic pH, E. coli and K. pneumoniae exhibited higher bacterial concentrations in the kidneys and systemic symptoms, including bacteremia. Alkaline urine pH did not affect bacterial concentrations of any strain. In mice with UTIs caused by E. coli Nu14 and K. pneumoniae HUVR42 and acidic urine pH, histopathological studies of the kidneys showed acute inflammation affecting the urothelium and renal parenchyma, which are traits of acute pyelonephritis. These results indicate that acidic pH could increase the pathogenicity of E. coli and K. pneumoniae in murine models of lower UTI, promoting renal infection and acute inflammation.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | | | - Juan Ignacio Rodríguez-Mogollo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (J.I.R.-M.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
7
|
Hou G, Ahmad S, Li Y, Yan D, Yang S, Chen S, Qiu Z, Yu X, Li N, Li Y, Liang Y, Leng Q, Qu Y. Epidemiological, Virulence, and Antibiotic Resistance Analysis of Klebsiella pneumoniae, a Major Source of Threat to Livestock and Poultry in Some Regions of Xinjiang, China. Animals (Basel) 2024; 14:1433. [PMID: 38791650 PMCID: PMC11117231 DOI: 10.3390/ani14101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is recognized as a zoonotic pathogen with an increasing threat to livestock and poultry. However, research on K. pneumoniae of animal origin remains limited. To address the gap, a comprehensive investigation was carried out by collecting a total of 311 samples from the farms of four animal species (dairy cow, chicken, sheep, and pig) in selected areas of Xinjiang, China. Isolates were identified by khe gene amplification and 16S rRNA gene sequencing. Genotyping of K. pneumonia isolates was performed using wzi typing and multilocus sequence typing (MLST). PCR was employed to identify virulence and resistance genes. An antibiotic susceptibility test was conducted using the Kirby-Bauer method. The findings revealed an isolation of 62 K. pneumoniae strains, with an average isolation rate of 19.94%, with the highest proportion originating from cattle sources (33.33%). Over 85.00% of these isolates harbored six virulence genes (wabG, uge, fimH, markD, entB, and ureA); while more than 75.00% of isolates possessed four resistance genes (blaTEM, blaSHV, oqxA, and gyrA). All isolates exhibited complete resistance to ampicillin and demonstrated substantial resistance to sulfisoxazole, amoxicillin/clavulanic acid, and enrofloxacin, with an antibiotic resistance rate of more than 50%. Furthermore, 48.39% (30/62) of isolates were classified as multidrug-resistant (MDR) strains, with a significantly higher isolation rate observed in the swine farms (66.67%) compared to other farms. Genetic characterization revealed the classification of the 62 isolates into 30 distinct wzi allele types or 35 different sequence types (STs). Notably, we identified K. pneumoniae strains of dairy and swine origin belonging to the same ST42 and wzi33-KL64 types, as well as strains of dairy and chicken origin belonging to the same wzi31-KL31-K31 type. These findings emphasize the widespread occurrence of drug-resistant K. pneumoniae across diverse animal sources in Xinjiang, underscoring the high prevalence of multidrug resistance. Additionally, our results suggest the potential for animal-to-animal transmission of K. pneumoniae and there was a correlation between virulence genes and antibiotic resistance genes. Moreover, the current study provides valuable data on the prevalence, antibiotic resistance, and genetic diversity of K. pneumoniae originating from diverse animal sources in Xinjiang, China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qingwen Leng
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (G.H.); (S.A.); (Y.L.); (D.Y.); (S.Y.); (S.C.); (Z.Q.); (X.Y.); (N.L.); (Y.L.); (Y.L.)
| | - Yonggang Qu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (G.H.); (S.A.); (Y.L.); (D.Y.); (S.Y.); (S.C.); (Z.Q.); (X.Y.); (N.L.); (Y.L.); (Y.L.)
| |
Collapse
|
8
|
Oliveira-Silva M, Goulart RS, Moraes MA, Nakamura-Silva R, Fujimoto RY, Sousa RC, Kobayashi RKT, Medeiros LP, Nakazato G, Pitondo-Silva A. Multidrug-resistant Escherichia coli strains isolated from swine manure biofertilizer in Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:534. [PMID: 38727864 DOI: 10.1007/s10661-024-12658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/30/2024] [Indexed: 06/21/2024]
Abstract
Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.
Collapse
Affiliation(s)
- Mariana Oliveira-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rafael Silva Goulart
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Miguel Augusto Moraes
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rafael Nakamura-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rodrigo Yudi Fujimoto
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Unidade Tabuleiros Costeios, Av. Beira Mar, 3250 Jardins, Aracaju, Sergipe, CEP 49025040, Brazil
| | - Ricardo Coelho Sousa
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Unidade Tabuleiros Costeios, Av. Beira Mar, 3250 Jardins, Aracaju, Sergipe, CEP 49025040, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - Leonardo Pinto Medeiros
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - Gerson Nakazato
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - André Pitondo-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil.
| |
Collapse
|
9
|
Perasoli FB, B Silva LS, C Figueiredo BI, Pinto IC, F Amaro LJ, S Almeida Bastos JC, Carneiro SP, R Araújo VP, G Beato FR, M Barboza AP, M Teixeira LF, Gallagher MP, Bradley M, Venkateswaran S, H dos Santos OD. Poly(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine (Lond) 2024; 19:1285-1296. [PMID: 38722243 PMCID: PMC11285241 DOI: 10.1080/17435889.2024.2345044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To investigate whether medical devices coated with a synthesized nanocomposite of poly(methylmethacrylate-co-dimethyl acrylamide) (PMMDMA) and silver nanoparticles (AgNPs) could improve their antibiofilm and antimicrobial activities. We also investigated the nanocomposite's safety. Materials & methods: The nanocomposite was synthesized and characterized using analytical techniques. Medical devices coated with the nanocomposite were evaluated for bacterial adhesion and hemolytic activity in vitro. Results: The nanocomposite formation was demonstrated with the incorporation of AgNPs into the polymer matrix. The nanocomposite proved to be nonhemolytic and significantly inhibited bacterial biofilm formation. Conclusion: The PMMDMA-AgNPs nanocomposite was more effective in preventing biofilm formation than PMMDMA alone and is a promising strategy for coating medical devices and reducing mortality due to hospital-acquired infections.
Collapse
Affiliation(s)
- Fernanda B Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luan S B Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruna I C Figueiredo
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabelle C Pinto
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Lorrane J F Amaro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Juliana C S Almeida Bastos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Simone P Carneiro
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vânia P R Araújo
- Nano Lab, Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Felipe R G Beato
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Ana P M Barboza
- Laboratório de Microscopia, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Luiz F M Teixeira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maurice P Gallagher
- School of Biological Sciences, University of Edinburgh, King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK
| | - Orlando D H dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
10
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
11
|
Saifi S, Ashraf A, Hasan GM, Shamsi A, Hassan MI. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024; 173:105811. [PMID: 38168570 DOI: 10.1016/j.fitote.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Sana Saifi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Luna-Pineda VM, Rodríguez-Martínez G, Salazar-García M, Romo-Castillo M. Plant-Origin Components: New Players to Combat Antibiotic Resistance in Klebsiella pneumoniae. Int J Mol Sci 2024; 25:2134. [PMID: 38396811 PMCID: PMC10888558 DOI: 10.3390/ijms25042134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Klebsiella pneumoniae (Kpn) is an opportunistic pathogen that causes intrahospital complications such as pneumonia, liver abscesses, soft tissue infections, urinary infections, bacteraemia, and, in some cases, death. Since this bacterium has a higher frequency than other Gram-negative pathogens, it has become an important pathogen to the health sector. The adaptative genome of Kpn likely facilitates increased survival of the pathogen in diverse situations. Therefore, several studies have been focused on developing new molecules, synergistic formulations, and biomaterials that make it possible to combat and control infections with and dispersion of this pathogen. Note that the uncontrolled antibiotic administration that occurred during the pandemic led to the emergence of new multidrug-resistant strains, and scientists were challenged to overcome them. This review aims to compile the latest information on Kpn that generates intrahospital infections, specifically their pathogenicity-associated factors. Furthermore, it explains the natural-product-based treatments (extracts and essential oils) developed for Kpn infection and dispersion control.
Collapse
Affiliation(s)
- Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (V.M.L.-P.); (G.R.-M.)
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Griselda Rodríguez-Martínez
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (V.M.L.-P.); (G.R.-M.)
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Marcela Salazar-García
- Departamento de Investigación Biomédica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Mariana Romo-Castillo
- IxM/CONAHCYT-HIMFG, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| |
Collapse
|
13
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
14
|
Lv H, Zhang Z, Fu B, Li Z, Yin T, Liu C, Xu B, Wang D, Li B, Hao J, Zhang L, Wang J. Characteristics of the gut microbiota of patients with symptomatic carotid atherosclerotic plaques positive for bacterial genetic material. Front Cell Infect Microbiol 2024; 13:1296554. [PMID: 38282614 PMCID: PMC10811106 DOI: 10.3389/fcimb.2023.1296554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research. Methods We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients. Results Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques. Conclusion In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.
Collapse
Affiliation(s)
- Hang Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bo Fu
- Department of Precision Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bin Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dawei Wang
- Department of Orthopedics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Baojie Li
- Bio-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
15
|
de Almeida FM, de Campos TA, Pappas Jr GJ. Scalable and versatile container-based pipelines for de novo genome assembly and bacterial annotation. F1000Res 2023; 12:1205. [PMID: 37970066 PMCID: PMC10646344 DOI: 10.12688/f1000research.139488.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 11/17/2023] Open
Abstract
Background: Advancements in DNA sequencing technology have transformed the field of bacterial genomics, allowing for faster and more cost effective chromosome level assemblies compared to a decade ago. However, transforming raw reads into a complete genome model is a significant computational challenge due to the varying quality and quantity of data obtained from different sequencing instruments, as well as intrinsic characteristics of the genome and desired analyses. To address this issue, we have developed a set of container-based pipelines using Nextflow, offering both common workflows for inexperienced users and high levels of customization for experienced ones. Their processing strategies are adaptable based on the sequencing data type, and their modularity enables the incorporation of new components to address the community's evolving needs. Methods: These pipelines consist of three parts: quality control, de novo genome assembly, and bacterial genome annotation. In particular, the genome annotation pipeline provides a comprehensive overview of the genome, including standard gene prediction and functional inference, as well as predictions relevant to clinical applications such as virulence and resistance gene annotation, secondary metabolite detection, prophage and plasmid prediction, and more. Results: The annotation results are presented in reports, genome browsers, and a web-based application that enables users to explore and interact with the genome annotation results. Conclusions: Overall, our user-friendly pipelines offer a seamless integration of computational tools to facilitate routine bacterial genomics research. The effectiveness of these is illustrated by examining the sequencing data of a clinical sample of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Felipe Marques de Almeida
- Programa de Pós-graduação em Biologia Molecular, Universidade de Brasilia, Brasília, FD, 70910-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Tatiana Amabile de Campos
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Programa de Pós-graduação em Biologia Microbiana, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Georgios Joannis Pappas Jr
- Programa de Pós-graduação em Biologia Molecular, Universidade de Brasilia, Brasília, FD, 70910-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
16
|
Veloso M, Arros P, Acosta J, Rojas R, Berríos-Pastén C, Varas M, Araya P, Hormazábal JC, Allende ML, Chávez FP, Lagos R, Marcoleta AE. Antimicrobial resistance, pathogenic potential, and genomic features of carbapenem-resistant Klebsiella pneumoniae isolated in Chile: high-risk ST25 clones and novel mobile elements. Microbiol Spectr 2023; 11:e0039923. [PMID: 37707451 PMCID: PMC10581085 DOI: 10.1128/spectrum.00399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joaquin Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Roberto Rojas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 2023; 14:1238482. [PMID: 37744914 PMCID: PMC10513181 DOI: 10.3389/fmicb.2023.1238482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Klebsiella pneumoniae is an important Gram-negative opportunistic pathogen that is responsible for a variety of nosocomial and community-acquired infections. Klebsiella pneumoniae has become a major public health issue owing to the rapid global spread of extensively-drug resistant (XDR) and hypervirulent strains. Biofilm formation is an important virulence trait of K. pneumoniae. A biofilm is an aggregate of microorganisms attached to an inert or living surface by a self-produced exo-polymeric matrix that includes proteins, polysaccharides and extracellular DNA. Bacteria within the biofilm are shielded from antibiotics treatments and host immune responses, making it more difficult to eradicate K. pneumoniae-induced infection. However, the detailed mechanisms of biofilm formation in K. pneumoniae are still not clear. Here, we review the factors involved in the biofilm formation of K. pneumoniae, which might provide new clues to address this clinical challenge.
Collapse
Affiliation(s)
| | - Ming Ni
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Mahrous SH, El-Balkemy FA, Abo-Zeid NZ, El-Mekkawy MF, El Damaty HM, Elsohaby I. Antibacterial and Anti-Biofilm Activities of Cinnamon Oil against Multidrug-Resistant Klebsiella pneumoniae Isolated from Pneumonic Sheep and Goats. Pathogens 2023; 12:1138. [PMID: 37764946 PMCID: PMC10536549 DOI: 10.3390/pathogens12091138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The primary objectives were to isolate and identify Klebsiella pneumoniae (K. pneumoniae), and determine the antimicrobial resistance patterns and biofilm formation abilities of the isolates. Additionally, the study aimed to investigate the antimicrobial and anti-biofilm effects of cinnamon oil against K. pneumoniae isolates. A cross-sectional study was conducted from March 2022 to April 2023 to collect 200 samples (including 156 nasal swabs and 44 lung specimens) from pneumonic sheep and goats admitted to the Veterinary Teaching Hospital of Zagazig University, Egypt. K. pneumoniae was isolated from a total of 72 (36%) samples, with 53 (73.6%) isolates recovered from nasal swabs and 19 (26.4%) from lung samples. Among the samples, 52 (36.9%) were from sheep and 20 (33.9%) were from goats. Antimicrobial susceptibility testing of the 72 K. pneumoniae isolates to 18 antimicrobials revealed that all isolates were resistant to ampicillin, amoxicillin/clavulanic acid, cefotaxime, ceftriaxone, tetracycline, colistin, fosfomycin, and trimethoprim/sulphamethoxazole. None of the isolates were resistant to amikacin, imipenem, and norfloxacin. Multidrug resistance (MDR) was observed in all K. pneumoniae isolates recovered from sheep and goats. The average MAR index was 0.71, ranging from 0.50 to 0.83. Regarding biofilm formation, among the K. pneumoniae isolates with a high MAR index (n = 30), 10% exhibited strong formation, 40% showed moderate formation, 43.3% displayed weak formation, and 6.7% did not form biofilms. Additionally, the biofilm-forming genes treC and fimA were present in all 28 biofilm-forming K. pneumoniae isolates, while the mrkA gene was detected in 15 (53.6%) of the 28 isolates. MDR K. pneumoniae isolates with strong biofilm formation abilities were treated with cinnamon oil at varying concentrations (100%, 75%, 50%, and 25%). This treatment resulted in inhibition zone diameters ranging from 35 to 45 mm. Cinnamon oil exhibited lower minimum inhibitory concentration and minimum bactericidal concentration values compared to norfloxacin for all isolates. Additionally, cinnamon oil significantly reduced the expression of biofilm-associated genes (treC, fimA, and mrkA) when compared to isolates treated with norfloxacin or untreated. In conclusion, this study identified a high level of MDR K. pneumoniae with strong and moderate biofilm formation abilities in pneumonic sheep and goats in Sharika Governorate, Egypt. Although cinnamon oil demonstrated potential antibacterial and anti-biofilm properties against K. pneumoniae, further research is required to investigate its effectiveness in treating K. pneumoniae infections in pneumonic sheep and goats.
Collapse
Affiliation(s)
- Sara H. Mahrous
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
| | - Farouk A. El-Balkemy
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
| | - Naser Z. Abo-Zeid
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
| | - Mamdouh F. El-Mekkawy
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
| | - Hend M. El Damaty
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
| | - Ibrahim Elsohaby
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City 44511, Egypt; (S.H.M.); (F.A.E.-B.); (N.Z.A.-Z.); (M.F.E.-M.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR 999077, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
19
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
20
|
Sheng J, Cave R, Ter-Stepanyan MM, Kotsinyan N, Chen J, Zhang L, Jiang T, Mkrtchyan HV. Whole-Genome Sequencing and Comparative Genomics Analysis of a Newly Emerged Multidrug-Resistant Klebsiella pneumoniae Isolate of ST967. Microbiol Spectr 2023; 11:e0401122. [PMID: 37022188 PMCID: PMC10269624 DOI: 10.1128/spectrum.04011-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Klebsiella pneumoniae is a common cause of hospital- and community-acquired infections globally, yet its population structure remains unknown for many regions, particularly in low- and middle-income countries (LMICs). Here, we report for the first-time whole-genome sequencing (WGS) of a multidrug-resistant K. pneumoniae isolate, ARM01, recovered from a patient in Armenia. Antibiotic susceptibility testing revealed that ARM01 was resistant to ampicillin, amoxicillin-clavulanic acid, ceftazidime, cefepime, norfloxacin, levofloxacin, and chloramphenicol. Genome sequencing analysis revealed that ARM01 belonged to sequence type 967 (ST967), capsule type K18, and antigen type O1. ARM01 carried 13 antimicrobial resistance (AMR) genes, including blaSHV-27, dfrA12, tet(A), sul1, sul2, catII.2, mphA, qnrS1, aadA2, aph3-Ia, strA, and strB and the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-15, but only one known virulence factor gene, yagZ/ecpA, and one plasmid replicon, IncFIB(K)(pCAV1099-114), were detected. The plasmid profile, AMR genes, virulence factors, accessory gene profile, and evolutionary analyses of ARM01 showed high similarity to isolates recovered from Qatar (SRR11267909 and SRR11267906). The date of the most recent common ancestor (MRCA) of ARM01 was estimated to be around 2017 (95% confidence interval [CI], 2017 to 2018). Although in this study, we report the comparative genomics analysis of only one isolate, it emphasizes the importance of genomic surveillance for emerging pathogens, urging the need for implementation of more effective infection prevention and control practices. IMPORTANCE Whole-genome sequencing and population genetics analysis of K. pneumoniae are scarce from LMICs, and none has been reported for Armenia. Multilevel comparative analysis revealed that ARM01 (an isolate belonging to a newly emerged K. pneumoniae ST967 lineage) was genetically similar to two isolates recovered from Qatar. ARM01 was resistant to a wide range of antibiotics, reflecting the unregulated usage of antibiotics (in most LMICs, antibiotic use is typically unregulated.) Understanding the genetic makeup of these newly emerging lineages will aid in optimizing antibiotic use for patient treatment and contribute to the worldwide efforts of pathogen and AMR surveillance and implementation of more effective infection prevention and control strategies.
Collapse
Affiliation(s)
- Jie Sheng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rory Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Mary M. Ter-Stepanyan
- Yerevan State Medical University after Mkhitar Heratsi, Faculty of Public Health, Department of Epidemiology, Yerevan, Republic of Armenia
- Research Center of Maternal and Child Health Protection, Yerevan, Armenia
| | - Nune Kotsinyan
- National Centre for Disease Control and Prevention, Yerevan, Armenia
| | - Jiazhen Chen
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Guangzhou Laboratory, Guangzhou, China
| | - Hermine V. Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
21
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
22
|
Khoshnood S, Akrami S, Saki M, Motahar M, Masihzadeh S, Daneshfar S, Meghdadi H, Abbasi Montazeri E, Abdi M, Farshadzadeh Z. Molecular evaluation of aminoglycosides resistance and biofilm formation in Klebsiella pneumoniae clinical isolates: A cross-sectional study. Health Sci Rep 2023; 6:e1266. [PMID: 37205937 PMCID: PMC10190123 DOI: 10.1002/hsr2.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Background and Aims Resistance to antibiotics and the capability to develop biofilm as two main virulent determinants of Klebsiella pneumoniae have important role in infection persistence. The aim of the study was to evaluate the association between the prevalence of aminoglycoside resistance and virulence genes and biofilm formation capacity in K. pneumoniae strains isolated from hospitalized patients in South-West of Iran. Methods A total of 114 non-duplicate clinical isolates of K. pneumoniae collected from Ahvaz teaching hospitals. Identification of species was performed by biochemical tests and then confirmed by polymerase chain reaction (PCR) of rpoB gene. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Biofilm formation was assessed by microtiter plate method. Finally, PCR was conducted to detect virulence gene determinants including fimbrial genes, aminoglycoside modifying enzymes- and 16S rRNA methylase (RMTase) genes. Results Totally, all collected strains were carbapenem resistant and showed multidrug- and extensively drug-resistance phenotype (75% and 25%, respectively). Seventy-one percent (n = 81) of isolates were non-susceptible to aminoglycosides. Among aminoglycoside antibiotics, K. pneumoniae isolates showed the highest and lowest resistance rates to tobramycin (71%) and the amikacin (25%), respectively. All biofilm producer strains were positive for the presence virulence determinants including ecpA, fimA, mrkD, and mrkA. Of 81 aminoglycosides non-susceptible isolates 33% were positive for the presence ant (2″)-Ia as the most prevalent gene followed by aac (3')-IIa and armA (27%), aac (6')-Ib (18%), and aph (3')-Ia (15%). Conclusion K. pneumoniae isolates showed the highest and the lowest aminoglycoside resistance rates to tobramycin and amikacin, respectively. Majority of isolates were biofilm producers and there was significant association between antibiotic resistance pattern and the strength of biofilm production. The ant(2″)-Ia, aac (3')-IIa, and armA genes in aminoglycoside-resistant isolates.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research CenterIlam University of Medical SciencesIlamIran
| | - Sousan Akrami
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Morteza Saki
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Moloudsadat Motahar
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sara Masihzadeh
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Sara Daneshfar
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Meghdadi
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Effat Abbasi Montazeri
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Marjan Abdi
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Zahra Farshadzadeh
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
23
|
Truşcă BS, Gheorghe-Barbu I, Manea M, Ianculescu E, Barbu IC, Măruțescu LG, Dițu LM, Chifiriuc MC, Lazăr V. Snapshot of Phenotypic and Molecular Virulence and Resistance Profiles in Multidrug-Resistant Strains Isolated in a Tertiary Hospital in Romania. Pathogens 2023; 12:pathogens12040609. [PMID: 37111495 PMCID: PMC10145626 DOI: 10.3390/pathogens12040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A current major healthcare problem is represented by antibiotic resistance, mainly due to multidrug resistant (MDR) Gram negative bacilli (GNB), because of their extended spread both in hospital facilities and in the community's environment. The aim of this study was to investigate the virulence traits of Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa MDR, XDR, and PDR strains isolated from various hospitalized patients. These GNB strains were investigated for the presence of soluble virulence factors (VF), such as hemolysins, lecithinase, amylase, lipase, caseinase, gelatinase, and esculin hydrolysis, as well as for the presence of virulence genes encoding for VF involved in adherence (TC, fimH, and fimA), biofilm formation (algD, ecpRAB, mrkA, mrkD, ompA, and epsA), tissue destruction (plcH and plcN), and in toxin production (cnfI, hlyA, hlyD, and exo complex). All P. aeruginosa strains produced hemolysins; 90% produced lecithinase; and 80% harbored algD, plcH, and plcN genes. The esculin hydrolysis was detected in 96.1% of the K. pneumoniae strains, whereas 86% of them were positive for the mrkA gene. All of the A. baumannii strains produced lecithinase and 80% presented the ompA gene. A significant association was found between the number of VF and the XDR strains, regardless of the isolation sources. This study opens new research perspectives related to bacterial fitness and pathogenicity, and it provides new insights regarding the connection between biofilm formation, other virulence factors, and antibiotic resistance.
Collapse
Affiliation(s)
- Bianca Simona Truşcă
- Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050567 Bucharest, Romania
| | - Marina Manea
- Fundeni Clinical Institute, 022328 Bucharest, Romania
- Fundeni Clinical Institute, University of Medicine and Pharmacy "Carol Davila" Bucharest, 020021 Bucharest, Romania
| | | | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050567 Bucharest, Romania
| | - Luminița Gabriela Măruțescu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050567 Bucharest, Romania
| | - Lia-Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050567 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050567 Bucharest, Romania
- Romanian Academy, 050045 Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| |
Collapse
|
24
|
Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf 2022; 8:100075. [PMID: 35198842 PMCID: PMC8841375 DOI: 10.1016/j.tcsw.2022.100075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
Gram-positive and Gram-negative bacterial pathogens are commonly found in Urinary Tract Infection (UTI), particularly infected in females like pregnant women, elder people, sexually active, or individuals prone to other risk factors for UTI. In this article, we review the expression of virulence surface proteins and their interaction with host cells for the most frequently isolated uropathogens: Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. In addition to the host cell interaction, surface protein regulation was also discussed in this article. The surface protein regulation serves as a key tool in differentiating the pathogen isotypes. Furthermore, it might provide insights on novel diagnostic methods to detect uropathogen that are otherwise easily overlooked due to limited culture-based assays. In essence, this review shall provide an in-depth understanding on secretion of virulence factors of various uropathogens and their role in host-pathogen interaction, this knowledge might be useful in the development of therapeutics against uropathogens.
Collapse
Affiliation(s)
| | - Kumaravel Kandaswamy
- Corresponding author at: Department of Biotechnology, Kumaraguru College of Technology (KCT), Chinnavedampatti, Coimbatore 641049, Tamil Nadu, India.
| |
Collapse
|
25
|
González-Villarreal JA, González-Lozano KJ, Aréchiga-Carvajal ET, Morlett-Chávez JA, Luévanos-Escareño MP, Balagurusamy N, Salinas-Santander MA. Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Exp Ther Med 2022; 24:753. [PMID: 36561977 PMCID: PMC9748766 DOI: 10.3892/etm.2022.11689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.
Collapse
Affiliation(s)
| | - Katia Jamileth González-Lozano
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Microbiology Department, Phytopathology and Mycology Laboratory, Faculty of Biological Sciences, Genetic Manipulation Unit, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 66459, Mexico
| | - Jesús Antonio Morlett-Chávez
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico
| | | | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Torreón, Coahuila 27275, Mexico
| | - Mauricio Andrés Salinas-Santander
- Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Saltillo, Coahuila 25000, Mexico,Correspondence to: Dr Mauricio Andrés Salinas-Santander, Research Department, Faculty of Medicine Saltillo Unit, Autonomous University of Coahuila, Calle Francisco Murguía Sur 205, Zona Centro, Saltillo, Coahuila 25000, Mexico
| |
Collapse
|
26
|
Hudson AW, Barnes AJ, Bray AS, Ornelles DA, Zafar MA. Klebsiella pneumoniae l-Fucose Metabolism Promotes Gastrointestinal Colonization and Modulates Its Virulence Determinants. Infect Immun 2022; 90:e0020622. [PMID: 36129299 PMCID: PMC9584338 DOI: 10.1128/iai.00206-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by Klebsiella pneumoniae is generally considered asymptomatic. However, gut colonization allows K. pneumoniae to either translocate to sterile site within the same host or transmit through the fecal-oral route to another host. K. pneumoniae gut colonization is poorly understood, but knowledge of this first step toward infection and spread is critical for combatting its disease manifestations. K. pneumoniae must overcome colonization resistance (CR) provided by the host microbiota to establish itself within the gut. One such mechanism of CR is through nutrient competition. Pathogens that metabolize a broad range of substrates have the ability to bypass nutrient competition and overcome CR. Herein, we demonstrate that in response to mucin-derived fucose, the conserved fucose metabolism operon (fuc) of K. pneumoniae is upregulated in the murine gut, and we subsequently show that fucose metabolism promotes robust gut colonization. Growth studies using cecal filtrate as a proxy for the gut lumen illustrate the growth advantage that the fuc operon provides K. pneumoniae. We further show that fucose metabolism allows K. pneumoniae to be competitive with a commensal Escherichia coli isolate (Nissle). However, Nissle is eventually able to outcompete K. pneumoniae, suggesting that it can be utilized to enhance CR. Finally, we observed that fucose metabolism positively modulates hypermucoviscosity, autoaggregation, and biofilm formation but not capsule biogenesis. Together, these insights enhance our understanding of the role of alternative carbon sources in K. pneumoniae gut colonization and the complex relationship between metabolism and virulence in this species.
Collapse
Affiliation(s)
- Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A. Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
27
|
Hypervirulence and Multiresistance to Antibiotics in Klebsiella pneumoniae Strains Isolated from Patients with Hospital- and Community-Acquired Infections in a Mexican Medical Center. Microorganisms 2022; 10:microorganisms10102043. [PMID: 36296319 PMCID: PMC9609718 DOI: 10.3390/microorganisms10102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae is a pathogenic bacterium associated with different infectious diseases. This study aimed to establish the different association profiles of virulence genes related to the hypermucoviscous phenotype (HM), capsular serotypes, biofilm formation, and multidrug resistance in K. pneumoniae strains from patients with hospital- and community-acquired infections. K. pneumoniae virulence genes and capsular serotypes were identified by PCR, antibiotic susceptibility by the Kirby-Bauer method, HM by the string test, and biofilm formation by measurement in polystyrene microtiter plates. Of a total of 150 strains from patients with hospital- (n = 25) and community-acquired infections (n = 125), 53.3% (80/150) were HM-positive and 46.7% (70/150) were HM-negative. HM-positive (68/80) and HM-negative (67/70) strains were biofilm-forming. Moreover, 58.7% (47/80) HM-positive and 57.1% (40/70) HM-negative strains were multidrug-resistant. Among HM-positive, HM-negative, and serotypes K1 (25/150), K2 (48/150), and non-K1/K2 strains, (77/150) the frequently detected adhesion genes were fimH, mrkD, ycfM, and kpn; entB, irp2, irp1, and ybtS, for iron acquisition; and rmpA for protectins. The gene association pattern fimH/kpn/mrkD/ycfM/entB/irp1/irp2/ybtS/fyuA (18/150) was frequent among the strains. K. pneumoniae strains from patients with hospital- and community-acquired infections demonstrated a wide diversity of virulence gene profiles related to phenotype (hypermucoviscosity, multidrug resistance, and biofilm formation) and serotypes.
Collapse
|
28
|
Phenotypic Characterization of Virulence Factors and Antibiogram of Klebsiella pneumoniae Isolates from Various Clinical Samples – A Cross Sectional Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
K. pneumoniae is known to cause hospital and community acquired infections. It is usually associated with upper & lower respiratory infections, septicaemia, urinary tract infection, wound infections, neonatal sepsis, meningitis, and endophthalmitis. The virulence factors play a role in its existence in different environmental conditions and therefore help in establishing Klebsiella pneumoniae infection in the human body. Multi drug resistant Klebsiella pneumoniae is an increasing threat to human health. Klebsiella pneumoniae is one of the species recognized as nosocomial pathogens that exhibit multidrug resistance and virulence in ESKAPE group as per WHO. The study was conducted to determine the various virulence factors & the antimicrobial pattern of Klebsiella pneumoniae isolates. A cross sectional observational study, conducted in Department of Microbiology of R.L. Jalappa Hospital and Research Centre, Kolar, Sample size of 150. All 150 Klebsiella pneumoniae isolates collected for the study, The Klebsiella pneumoniae isolates which were positive for various virulence factors were as follows on hemolysis 7(4.66%), capsule 150(100%), Hypermucoviscosity formation 66(44%), biofilm production 81(54%), siderophore production 110(73.33%), protease 135(90%), gelatinase 126(84%), lipase production 119(79.33%), lecithinase activity 82(54.66%). The drug resistance klebsiella pneumoniae were as follows: ESBL producers 24(16.67%), AmpC producers were 22(14.67%), MDR 116(74.20%), extensive drug resistant (XDR) 30(20%), pan drug resistant (PDR) 42(28%), Carbapenem resistance 65.33% reported. The increasing coexistence of virulence factors & antimicrobial resistance pattern is of particular concern. Hence active surveillance for antimicrobial resistance & virulence determinants is imperative now to implement effective control measures to prevent the rapid spread of drug resistance.
Collapse
|
29
|
Gual-de-Torrella A, Delgado-Valverde M, Pérez-Palacios P, Oteo-Iglesias J, Rojo-Molinero E, Macià MD, Oliver A, Pascual Á, Fernández-Cuenca F. Prevalence of the fimbrial operon mrkABCD, mrkA expression, biofilm formation and effect of biocides on biofilm formation in carbapenemase-producing Klebsiella pneumoniae isolates belonging or not to high-risk clones. Int J Antimicrob Agents 2022; 60:106663. [PMID: 35995073 DOI: 10.1016/j.ijantimicag.2022.106663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/03/2021] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of mrkA adhesin expression, biofilm production, biofilm viability and biocides in the biofilms of carbapenemase-producing K. pneumoniae isolates was investigated. METHODS Seventeen isolates representing different sequence types and carbapenemases were investigated. mrkA expression was determined by real-time RT-PCR. Biofilm production (25°C and 37°C, with and without humidity) was determined by the crystal violet assay. The effect of isopropanol, povidone-iodine, sodium hypochlorite, chlorhexidine digluconate, benzalkonium chloride, ethanol and triclosan on biofilms was determined. The effect of povidone-iodine on biofilm biomass and thickness was also determined by Confocal Laser Scanning Microscopy (CLSM). RESULTS mrkA expression ranged 28.2-1.3 (high or intermediate-level; 64% of HR clones) and 21.5-1.3 (50% of non-HR clones). At 25°C biofilm formation was observed in 41% of isolates (absence of humidity) and 35% of isolates (presence of humidity), whereas at 37°C it was observed in 76% of isolates, with and without humidity. At 25°C biofilm producers were more frequently observed in HR clones (45% with humidity and 55% without humidity) than non-HR clones (17% with and without humidity). Biofilm viability from day 21 was higher at 25°C than 37°C. The greatest decrease in biofilm formation was observed with povidone iodine (29% decrease), which also decrease biofilm thickness. CONCLUSIONS Biofilm formation in carbapenemase-producing K. pneumoniae is related to mrkA expression. Biofilm formation is affected by temperature (37°C>25°C) whereas humidity has little effect. Biofilm viability is affected by temperature (25°C>37°C). At 25°C, HR clones are more frequently biofilm producers than non-HR clones. Povidone-iodine can decrease biofilm production and biofilm thickness.
Collapse
Affiliation(s)
- Ana Gual-de-Torrella
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva. Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Delgado-Valverde
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva. Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva. Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Estrella Rojo-Molinero
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - María Dolores Macià
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - Álvaro Pascual
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva. Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla; Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Felipe Fernández-Cuenca
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva. Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla; Spanish Network for the Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Makhrmash JH, Al-Aidy SR, Qaddoori BH. Investigation of Biofilm Virulence Genes Prevalence in Klebsiella pneumoniae Isolated from the Urinary Tract Infections. ARCHIVES OF RAZI INSTITUTE 2022; 77:1421-1427. [PMID: 36883149 PMCID: PMC9985780 DOI: 10.22092/ari.2022.357626.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/16/2022] [Indexed: 03/09/2023]
Abstract
Klebsiella pneumonia is a pathogen and an agent that causes hospital-acquired infections. Klebsiella pneumonia is the first and most common causative agent in community-acquired infections and urinary tract diseases. This study aimed to detect common genes, (i.e., fimA, mrkA, and mrkD) in the isolates of K. pneumoniae, isolated from urine specimens using the polymerase chain reaction (PCR) method. The isolates of K. pneumoniae were collected from urine specimens in health centers in Wasit Governorate, Iraq, and diagnosed using Analytical Profile Index 20Eand 16S rRNA techniques. The microtiter plate (MTP) method was used to detect biofilm formation. A total of 56 isolates were identified as K. pneumonia cases. The results led to the detection of biofilms; accordingly, all K. pneumoniae isolates showed biofilm production by MTP, however, at different levels. The PCR method was employed to detect biofilm genes and showed that 49 (87.5%), 26 (46.4%), and 30 (53.6%) of isolates carried fimH, mrkA, and mrkD, respectively. Furthermore, susceptibility tests for different antibiotics revealed that K. pneumoniae isolates were resistant to amoxicillin-clavulanic acid (n=11, 19.5%), ceftazidime (n=13, 22.4%), ofloxacin (n=16, 28.1%), and tobramycin (n=27, 48.4%). It was also found all K. pneumonia isolates were sensitive to polymyxin B (92.6%), imipenem (88.3%), meropenem (79.4%), and amikacin (60.5%).
Collapse
Affiliation(s)
- J H Makhrmash
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| | - S R Al-Aidy
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| | - B H Qaddoori
- Department of Medical Microbiology, Faculty of Medicine, Wasit University, Wasit, Iraq
| |
Collapse
|
31
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
32
|
In Vitro and In Vivo Assessments of Two Newly Isolated Bacteriophages against an ST13 Urinary Tract Infection Klebsiella pneumoniae. Viruses 2022; 14:v14051079. [PMID: 35632820 PMCID: PMC9144312 DOI: 10.3390/v14051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance represents a major public health concern requiring new alternatives including phage therapy. Klebsiella pneumoniae belongs to the ESKAPE bacteria and can cause urinary tract infections (UTIs). The aims of this study were to isolate and characterize new bacteriophages against a K. pneumoniae strain isolated from UTIs and to assess their efficacy in vitro and in vivo in a Galleria (G.) mellonella larvae model. For this purpose, two bacteriophages were newly isolated against an ST13 K. pneumoniae strain isolated from a UTI and identified as K3 capsular types by wzi gene PCR. Genomic analysis showed that these bacteriophages, named vB_KpnP_K3-ULINTkp1 and vB_KpnP_K3-ULINTkp2, belong to the Drulisvirus genus. Bacteriophage vB_KpnP_K3-ULINTkp1 had the narrowest host spectrum (targeting only K3), while vB_KpnP_K3-ULINTkp2 also infected other Klebsiella types. Short adsorption times and latent periods were observed for both bacteriophages. In vivo experiments showed their ability to replicate in G. mellonella larvae and to decrease host bacterial titers. Moreover, both bacteriophages improved the survival of the infected larvae. In conclusion, these two bacteriophages had different in vitro properties and showed in vivo efficacy in a G. mellonella model with a better efficiency for vB_KpnP_K3-ULINTkp2.
Collapse
|
33
|
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Darrieux M, Converso TR. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol 2022; 12:877995. [PMID: 35646720 PMCID: PMC9132050 DOI: 10.3389/fcimb.2022.877995] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae – a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae, which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.
Collapse
Affiliation(s)
- Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Alice S. Lima
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucio Fabio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
- *Correspondence: Thiago Rojas Converso,
| |
Collapse
|
34
|
Ahmed HA, Ibrahim EHS, Abdelhaliem E, Elariny EYT. Biotyping, Virulotyping and Biofilm Formation Ability of ESBL-Klebsiella pneumoniae Isolates from Nosocomial Infections. J Appl Microbiol 2022; 132:4555-4568. [PMID: 35384170 DOI: 10.1111/jam.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/05/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the frequency, molecular characterization, virulence genes, resistance genes and antimicrobial profile of nosocomial extended spectrum beta lactamase producing Klebsiella species. A total of 22 (12.2%) K. pneumoniae strains were isolated from 180 clinical samples collected from hospitalized patients in Egypt. K. pneumoniae biotypes were B1 (72.8%), B3 (13.6%) and B4 (13.6%). The isolates were classified for the capsular serotypes, 86.4% (20/22) were of K1 serotype, while only two isolates (13.64%) were of K2 serotype. Hypermucoviscous K. pneumoniae isolates accounted for 68.2%. Biofilm formation ability of K. pneumoniae was determined by microtitre plate method. The majority of the isolates (40.9%) were moderate biofilm producers, while 27.3% were strong biofilm producers. All K. pneumoniae strains were positive for fimH and traT genes, while magA was identified in only 63.6% of the isolates. The antibiotic susceptibility profile of the isolates (n=22) was determined by the disc diffusion technique using 23 different antibiotics. Streptomycin and imipenem are the most effective antibiotics against 22 tested K. pneumoniae isolates with sensitivity rates of 63.64% and 54.54%, respectively. All tested K. pneumoniae isolates showed high resistance to amoxicillin∕clavulanate (100%), cefuroxime (100%) and ceftazidime (95.45%). Extended spectrum beta lactamases (ESBL) production and the presence of ESBL related genes were tested in the isolates. All the isolates tested positive for blaVIM, NDM1, and blaTEM, while only 81.8 percent tested positive for the blaSHV gene. Increasing antimicrobial resistance in K. pneumoniae causing nosocomial infections limits the use of antimicrobial agents for treatment. Furthermore, the spread of biofilm, multiple drug resistant and ESBL-producing K. pneumoniae isolates is a public threat for hospitalized patients.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Sharkia Governorate, Zagazig City, Egypt
| | - Eman H S Ibrahim
- Department of Microbiology, Faculty of Science, Zagazig University, Sharkia Governorate, Egypt
| | - Ekram Abdelhaliem
- Cytology and Molecular genetics, Faculty of Science,, Zagazig University, Sharkia Governorate, Egypt
| | - Eman Y T Elariny
- Department of Microbiology, Faculty of Science, Zagazig University, Sharkia Governorate, Egypt
| |
Collapse
|
35
|
Xu C, Dong N, Chen K, Yang X, Zeng P, Hou C, Chi Chan EW, Yao X, Chen S. Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. iScience 2022; 25:103894. [PMID: 35243252 PMCID: PMC8873610 DOI: 10.1016/j.isci.2022.103894] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Corresponding author
| |
Collapse
|
36
|
Zaborskytė G, Wistrand-Yuen E, Hjort K, Andersson DI, Sandegren L. Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies. Front Cell Infect Microbiol 2022; 11:802303. [PMID: 35186780 PMCID: PMC8851424 DOI: 10.3389/fcimb.2021.802303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Medical device-related biofilms are a major cause of hospital-acquired infections, especially chronic infections. Numerous diverse models to study surface-associated biofilms have been developed; however, their usability varies. Often, a simple method is desired without sacrificing throughput and biological relevance. Here, we present an in-house developed 3D-printed device (FlexiPeg) for biofilm growth, conceptually similar to the Calgary Biofilm device but aimed at increasing ease of use and versatility. Our device is modular with the lid and pegs as separate units, enabling flexible assembly with up- or down-scaling depending on the aims of the study. It also allows easy handling of individual pegs, especially when disruption of biofilm populations is needed for downstream analysis. The pegs can be printed in, or coated with, different materials to create surfaces relevant to the study of interest. We experimentally validated the use of the device by exploring the biofilms formed by clinical strains of Escherichia coli and Klebsiella pneumoniae, commonly associated with device-related infections. The biofilms were characterized by viable cell counts, biomass staining, and scanning electron microscopy (SEM) imaging. We evaluated the effects of different additive manufacturing technologies, 3D printing resins, and coatings with, for example, silicone, to mimic a medical device surface. The biofilms formed on our custom-made pegs could be clearly distinguished based on species or strain across all performed assays, and they corresponded well with observations made in other models and clinical settings, for example, on urinary catheters. Overall, our biofilm device is a robust, easy-to-use, and relevant assay, suitable for a wide range of applications in surface-associated biofilm studies, including materials testing, screening for biofilm formation capacity, and antibiotic susceptibility testing.
Collapse
|
37
|
Liu X, Wu Y, Zhu Y, Jia P, Li X, Jia X, Yu W, Cui Y, Yang R, Xia W, Xu Y, Yang Q. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg Microbes Infect 2022; 11:648-661. [PMID: 35086435 PMCID: PMC8896207 DOI: 10.1080/22221751.2022.2036078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colistin is regarded as a last-resort agent to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, especially carbapenem-resistant isolates. In recent years, reports of colistin-resistant Klebsiella pneumoniae (CoRKp) are increasing. However, the molecular mechanism and relevance of colistin resistance and virulence remain unclear. Fourteen CoRKp strains were retrospectively screened from 1884 clinical K. pneumoniae isolates during 2017–2018 in China. Six CoRKp strains belonging to ST11 were MDR strains. Plasmid-mediated mobile colistin-resistance genes had a low prevalence in CoRKp. Our results revealed that up-regulated expression of two-component systems, especially phoPQ, contributed more to colistin resistance. mgrB mutation was the most common molecular mechanism of colistin resistance, caused by either nonsense mutations or insertion sequences, which drove the overexpression of phoPQ system. This study also identified three novel point mutations in pmrAB system, in which D313N mutation in pmrB was proved to increase the MIC to colistin by 16-fold. In addition, 6 out of 14 CoRKP strains independently carried hypervirulence genes. All six strains showed medium-to-high virulence phenotype compared with NTUH-K2044 strain in mice intraperitoneal challenge models. We found that 4 strains were biofilm strong producers and transcriptome analysis revealed that three of them significantly up-regulated expression of type III fimbrial shaft gene mrkA. In conclusion, our result revealed the emergence of colistin-resistant and hypervirulent MDR K. pneumoniae, which is a noticeable superbug and could cause a severe challenge to public health.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Medical Technology Academy, Beihua University, Jilin, Jilin Province, China; Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinmiao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei Xia
- Medical Technology Academy, Beihua University, Jilin, Jilin Province, China; Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China; Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Vendeville JB, Kyriakides MJ, Takebayashi Y, Rama S, Preece J, Samphire J, Ramos-Soriano J, Amieva AM, Holbrow-Wilshaw ME, Gordon Newman HR, Kou SL, Medina-Villar S, Dorh N, Dorh JN, Spencer J, Galan MC. Fast Identification and Quantification of Uropathogenic E. coli through Cluster Analysis. ACS Biomater Sci Eng 2021; 8:242-252. [PMID: 34894660 DOI: 10.1021/acsbiomaterials.1c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid diagnostic tools to detect, identify, and enumerate bacteria are key to maintaining effective antibiotic stewardship and avoiding the unnecessary prescription of broad-spectrum agents. In this study, a 15 min agglutination assay is developed that relies on the use of mannose-functionalized polymeric microspheres in combination with cluster analysis. This allows for the identification and enumeration of laboratory (BW25113), clinical isolate (NCTC 12241), and uropathogenic Escherichia coli strains (NCTC 9001, NCTC 13958, J96, and CFT073) at clinically relevant concentrations in tryptic soy broth (103-108 CFU/mL) and in urine (105-108 CFU/mL). This fast, simple, and efficient assay offers a step forward toward efficient point-of-care diagnostics for common urinary tract infections.
Collapse
Affiliation(s)
| | | | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - Sylvain Rama
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Preece
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Jenny Samphire
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | - Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | | | | | | | - Sio Lou Kou
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Sandra Medina-Villar
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Neciah Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Josephine Ndoa Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
39
|
Stallbaum LR, Pruski BB, Amaral SC, de Freitas SB, Wozeak DR, Hartwig DD. Phenotypic and molecular evaluation of biofilm formation in Klebsiella pneumoniae carbapenemase (KPC) isolates obtained from a hospital of Pelotas, RS, Brazil. J Med Microbiol 2021; 70. [PMID: 34779756 DOI: 10.1099/jmm.0.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. A significant cause of mortality in the intensive care unit (ICU) is multidrug-resistant (MDR) Gram-negative bacteria, such as Klebsiella pneumoniae carbapenemase (KPC). Biofilm production is a key factor in KPC colonization and persistence in the host, making the treatment difficult.Gap Statement. The aim of this study was to evaluate the antibiotic resistance, molecular and phenotypic biofilm profiles of 12 KPC isolates associated with nosocomial infection in a hospital in Pelotas, Rio Grande do Sul, Brazil.Methodology. Clinical isolates were obtained from different sources, identified and characterized by antibiotic resistance and carbapenemase synthesis following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to evaluate the presence of carbapenemase (blaKPC) and biofilm formation-associated genes (fimA, fimH, rmpA, ecpA, mrkD and wabG). Additionally, phenotypic evaluation of in vitro biofilm formation capacity was evaluated by Congo red agar (CRA) assay and the crystal violet staining method.Results. The 12 isolates evaluated in this study presented the blaKPC gene and were positive for synthesizing carbapenemases in vitro. In the carbapenem class, 83.3 % isolates were resistant and 16.7 % intermediately resistant to imipenem and meropenem. Molecular analyses found that the fimA and wabG genes were detected in 75 % of isolates, while fimH and ecpA were detected in 42 % and mrkD were detected in 8.3 % (1). The CRA assay demonstrated that all isolates were slime producers and 91.7 % (11) of isolates were classified as strong and 8.3 % (1) as moderate biofilm producers by the crystal violet staining method. The optical density (OD540nm) for strong biofilm formers ranged from 0.80±0.05 to 2.47±0.28 and was 0.55±0.12 for moderate biofilm formers.Conclusion. Our study revealed a high level of antibiotic resistance and biofilm formation in KPC isolates obtained from a hospital in Pelotas, RS, Brazil.
Collapse
Affiliation(s)
- Letícia Roloff Stallbaum
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Beatriz Bohns Pruski
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Suelen Cavalheiro Amaral
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Stella Buchhorn de Freitas
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daniela Rodriguero Wozeak
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
40
|
Ochońska D, Ścibik Ł, Brzychczy-Włoch M. Biofilm Formation of Clinical Klebsiella pneumoniae Strains Isolated from Tracheostomy Tubes and Their Association with Antimicrobial Resistance, Virulence and Genetic Diversity. Pathogens 2021; 10:pathogens10101345. [PMID: 34684294 PMCID: PMC8541166 DOI: 10.3390/pathogens10101345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Due to the commonness of tracheotomy procedures and the wide use of biomaterials in the form of tracheostomy tubes (TTs), the problem of biomaterial-associated infections (BAIs) is growing. Bacterial colonization of TTs results in the development of biofilms on the surface of biomaterials, which may contribute to the development of invasive infections in tracheostomized patients. (2) Methods: Clinical strains of K. pneumoniae, isolated from TTs, were characterized according to their ability to form biofilms, as well as their resistance to antibiotics, whether they harbored ESβL genes, the presence of selected virulence factors and genetic diversity. (3) Results: From 53 patients, K. pneumoniae were detected in 18 of the TTs examined, which constituted 34% of all analyzed biomaterials. Three of the strains (11%) were ESβL producers and all had genes encoding CTX-M-1, SHV and TEM enzymes. 44.4% of isolates were biofilm formers, SEM demonstrating that K. pneumoniae formed differential biofilms on the surface of polyethylene (PE) and polyvinyl chloride (PVC) TTs in vitro. A large range of variation in the share of fimbrial genes was observed. PFGE revealed sixteen genetically distinct profiles. (4) Conclusions: Proven susceptibility of TT biomaterials to colonization by K. pneumoniae means that the attention of research groups should be focused on achieving a better understanding of the bacterial pathogens that form biofilms on the surfaces of TTs. In addition, research efforts should be directed at the development of new biomaterials or the modification of existing materials, in order to prevent bacterial adhesion to their surfaces.
Collapse
Affiliation(s)
- Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
- Correspondence: (D.O.); (M.B.-W.); Tel.: +48-12633-2567 (D.O. & M.B.-W.); Fax: +48-91454-0733 (D.O. & M.B.-W.)
| | - Łukasz Ścibik
- Department of Otolaryngology and Oncological Surgery of the Head and Neck, 5th Military Hospital with Polyclinic in Krakow, 1-3 Wrocławska Street, 30-901 Krakow, Poland;
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
- Correspondence: (D.O.); (M.B.-W.); Tel.: +48-12633-2567 (D.O. & M.B.-W.); Fax: +48-91454-0733 (D.O. & M.B.-W.)
| |
Collapse
|
41
|
Flores-Valdez M, Ares MA, Rosales-Reyes R, Torres J, Girón JA, Weimer BC, Mendez-Tenorio A, De la Cruz MA. Whole Genome Sequencing of Pediatric Klebsiella pneumoniae Strains Reveals Important Insights Into Their Virulence-Associated Traits. Front Microbiol 2021; 12:711577. [PMID: 34489901 PMCID: PMC8418058 DOI: 10.3389/fmicb.2021.711577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella pneumoniae is recognized as a common cause of nosocomial infections and outbreaks causing pneumonia, septicemia, and urinary tract infections. This opportunistic bacterium shows an increasing acquisition of antibiotic-resistance genes, which complicates treatment of infections. Hence, fast reliable strain typing methods are paramount for the study of this opportunistic pathogen’s multi-drug resistance genetic profiles. In this study, thirty-eight strains of K. pneumoniae isolated from the blood of pediatric patients were characterized by whole-genome sequencing and genomic clustering methods. Genes encoding β-lactamase were found in all the bacterial isolates, among which the blaSHV variant was the most prevalent (53%). Moreover, genes encoding virulence factors such as fimbriae, capsule, outer membrane proteins, T4SS and siderophores were investigated. Additionally, a multi-locus sequence typing (MLST) analysis revealed 24 distinct sequence types identified within the isolates, among which the most frequently represented were ST76 (16%) and ST70 (11%). Based on LPS structure, serotypes O1 and O3 were the most prevalent, accounting for approximately 63% of all infections. The virulence capsular types K10, K136, and K2 were present in 16, 13, and 8% of the isolates, respectively. Phylogenomic analysis based on virtual genome fingerprints correlated with the MLST data. The phylogenomic reconstruction also denoted association between strains with a higher abundance of virulence genes and virulent serotypes compared to strains that do not possess these traits. This study highlights the value of whole-genomic sequencing in the surveillance of virulence attributes among clinical K. pneumoniae strains.
Collapse
Affiliation(s)
- Mauricio Flores-Valdez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional De Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
42
|
Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express 2021; 11:122. [PMID: 34460016 PMCID: PMC8405773 DOI: 10.1186/s13568-021-01282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant (MDR) opportunistic pathogen that causes nosocomial infections. Virulence analysis and molecular typing as powerful approaches can provide relevant information on K. pneumoniae infection. In the current study, antibiotic resistance, virulence-associated genes analysis, as well as molecular typing of K. pneumoniae strains were investigated. Out of 505 clinical samples collected from hospitalized patients, 100 K. pneumoniae strains were isolated by standard microbiological methods and subjected to the phenotypic and genotyping analysis. The highest prevalence of resistance was observed against ciprofloxacin (75%), trimethoprim-sulfamethoxazole (73%) and nitrofurantoin (68%). Virulence associated genes including entB, traT, ybts, magA, iucC, htrA and rmpA were found in 80%, 62%, 75%, 5%, 30%, 72% and 48%, of the isolates, respectively. The prevalence of biofilm-associated genes including mrkA, fimH, and mrkD were equally 88% for all tested isolates. Moreover, the efflux pump genes including AcrAB, TolC and mdtK were observed in 41 (41%), 33 (33%) and 26 (26%) of the strains respectively. A significant statistical association was observed between MDR strains and high expression of efflux pump and biofilm genes. The K. pneumoniae strains were differentiated into 11 different genetic patterns using the repetitive element sequence-based PCR (rep-PCR) technique. High prevalence of resistance, presence of various virulence factors, high level of efflux pump, and biofilm gene expression in diverse clones of K. pneumoniae strains pose an important health issue in clinical settings.
Collapse
Affiliation(s)
- Amir Mirzaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
44
|
Wysocka M, Zamudio R, Oggioni MR, Gołębiewska J, Bronk M, Krawczyk B. Genetic Background and Antibiotic Resistance Profiles of K. pneumoniae NDM-1 Strains Isolated from UTI, ABU, and the GI Tract, from One Hospital in Poland, in Relation to Strains Nationally and Worldwide. Genes (Basel) 2021; 12:genes12081285. [PMID: 34440459 PMCID: PMC8394471 DOI: 10.3390/genes12081285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been an observed increase in infections caused by carbapenem-resistant Klebsiella pneumonia (Kp) strains. The aim of this study was the phenotypic and genotypic analysis of eight K. pneumoniae NDM (Kp NDM) isolates, recovered in Poland during the years 2016 and 2018 from seven patients with urinary tract infections (UTIs), asymptomatic bacteriuria (ABU), or colonization of the gut. PCR melting profile genotyping indicated a close relationship between the strains derived from 2018, which were not related to the strain isolated in 2016. WGS results were analyzed in relation to international Kp isolates. Clonal and phylogenetic analyses were performed based on multilocus sequence typing (MLST) and single nucleotide polymorphisms (SNPs) of the core genome. The metallo-β-lactamase was assigned to the NDM-1 type and the sequence was identified as ST11. Eleven antimicrobial resistance genes were detected, mostly from plasmid contigs. Unprecedented profiles of plasmid replicons were described with the IncFII/pKPX-1 dominant replicon. In terms of the KL24 and O2v1 capsular antigen profiles, these isolates corresponded to Greek strains. Strains isolated from UTI, ABU, and colonization GI tract patients were not carrying environment-specific virulence genes. Based on the assessment of strain relationships at the genome level and their direction of evolution, the international character of the sublines was demonstrated, with a documented epidemic potential in Poland and Greece. In conclusion, some groups of patients, e.g., renal transplant recipients or those with complicated UTIs, who are frequently hospitalized and undergoing antibiotic therapy, should be monitored not only for the risk of UTI, but also for colonization by Kp NDM strains.
Collapse
Affiliation(s)
- Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (R.Z.); (M.R.O.)
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK; (R.Z.); (M.R.O.)
| | - Justyna Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, ul. Dębinki 7, 80-952 Gdańsk, Poland;
| | - Marek Bronk
- Laboratory of Clinical Microbiology, University Centre for Laboratory Diagnostics, Medical University of Gdańsk Clinical Centre, ul. Dębinki 7, 80-952 Gdańsk, Poland;
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Correspondence:
| |
Collapse
|
45
|
Minnullina L, Kostennikova Z, Evtugin V, Akosah Y, Sharipova M, Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int Microbiol 2021; 25:111-122. [PMID: 34363151 DOI: 10.1007/s10123-021-00197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.
Collapse
Affiliation(s)
- Leyla Minnullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia.
| | - Zarina Kostennikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Vladimir Evtugin
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga region) Federal University, Kazan, Russia
| | - Yaw Akosah
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
46
|
Fuentes-Castillo D, Shiva C, Lincopan N, Sano E, Fontana H, Streicker DG, Mahamat OO, Falcon N, Godreuil S, Benavides JA. Global high-risk clone of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae ST307 emerging in livestock in Peru. Int J Antimicrob Agents 2021; 58:106389. [PMID: 34166775 DOI: 10.1016/j.ijantimicag.2021.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Danny Fuentes-Castillo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Shiva
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- Department of Microbiology, Instituto de Ciências Biomédicas, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Oumar O Mahamat
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad; Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nestor Falcon
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sylvain Godreuil
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; Laboratoire Mixte International, DRISA, IRD, Montpellier, France
| | - Julio A Benavides
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, Scotland, UK; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
47
|
Pacheco T, Gomes AÉI, Siqueira NMG, Assoni L, Darrieux M, Venter H, Ferraz LFC. SdiA, a Quorum-Sensing Regulator, Suppresses Fimbriae Expression, Biofilm Formation, and Quorum-Sensing Signaling Molecules Production in Klebsiella pneumoniae. Front Microbiol 2021; 12:597735. [PMID: 34234747 PMCID: PMC8255378 DOI: 10.3389/fmicb.2021.597735] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has become a worldwide concern due to the emergence of multidrug-resistant isolates responsible for various invasive infectious diseases. Biofilm formation constitutes a major virulence factor for K. pneumoniae and relies on the expression of fimbrial adhesins and aggregation of bacterial cells on biotic or abiotic surfaces in a coordinated manner. During biofilm aggregation, bacterial cells communicate with each other through inter- or intra-species interactions mediated by signallng molecules, called autoinducers, in a mechanism known as quorum sensing (QS). In most Gram-negative bacteria, intra-species communication typically involves the LuxI/LuxR system: LuxI synthase produces N-acyl homoserine lactones (AHLs) as autoinducers and the LuxR transcription factor is their cognate receptor. However, K. pneumoniae does not produce AHL but encodes SdiA, an orphan LuxR-type receptor that responds to exogenous AHL molecules produced by other bacterial species. While SdiA regulates several cellular processes and the expression of virulence factors in many pathogens, the role of this regulator in K. pneumoniae remains unknown. In this study, we describe the characterization of sdiA mutant strain of K. pneumoniae. The sdiA mutant strain has increased biofilm formation, which correlates with the increased expression of type 1 fimbriae, thus revealing a repressive role of SdiA in fimbriae expression and bacterial cell adherence and aggregation. On the other hand, SdiA acts as a transcriptional activator of cell division machinery assembly in the septum, since cells lacking SdiA regulator exhibited a filamentary shape rather than the typical rod shape. We also show that K. pneumoniae cells lacking SdiA regulator present constant production of QS autoinducers at maximum levels, suggesting a putative role for SdiA in the regulation of AI-2 production. Taken together, our results demonstrate that SdiA regulates cell division and the expression of virulence factors such as fimbriae expression, biofilm formation, and production of QS autoinducers in K. pneumoniae.
Collapse
Affiliation(s)
- Thaisy Pacheco
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Ana Érika Inácio Gomes
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | | | - Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
48
|
Silva-Sanchez J, Barrios-Camacho H, Hernández-Rodriguez E, Duran-Bedolla J, Sanchez-Perez A, Martínez-Chavarría LC, Xicohtencatl-Cortes J, Hernández-Castro R, Garza-Ramos U. Molecular characterization of KPC-2-producing Klebsiella pneumoniae ST258 isolated from bovine mastitis. Braz J Microbiol 2021; 52:1029-1036. [PMID: 33580865 PMCID: PMC8105462 DOI: 10.1007/s42770-021-00445-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bovine mastitis, an inflammation of the mammary gland of dairy cattle, is the most prevalent disease causing economically important losses, reduced milk production, early culling, veterinary expenses, and higher death rates. Bovine mastitis infections are the main cause for the use of antibiotics; however, the emergence of multidrug-resistant bacteria and the poor or nil response to antibiotics has become a critical global health problem. The goal of this study was the characterization of bacterial infections associated with clinical bovine mastitis. All the isolates were multidrug-resistant and were negative for the production of extended spectrum β-lactamases. However, all isolates were identified as carbapenemase-producing organisms by the Carba NP test. The carbapenemase identified was the product of the KPC-2 gene. The isolates were identified as Klebsiella pneumoniae and contained virulence genes for fimbriae, lipopolysaccharides, nitrogen starvation genes, and siderophores. Sixty-nine percent of the KPC-2-producing isolates had the same plasmid profile, although the genetic mobilization of resistance by bacterial conjugation was unsuccessful. The carbapenemase corresponded to the plasmid-borne KPC-2 gene identified by Southern blot hybridization. The assay showed a positive signal in the 90 kb (69% of the isolates), 165 kb (31% of the isolates), and 130 kb (6% of the isolates) plasmids. The IncFIIy and IncFIIk replicons were detected among these K. pneumoniae isolates. The PFGE and MLST analysis showed that all of the isolates are comprised by two clones (A and B) belonging to Sequence Type 258. This is the first report of K. pneumoniae producing carbapenemase KPC-2 isolated from bovine mastitis.
Collapse
Affiliation(s)
- Jesús Silva-Sanchez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Emmanuel Hernández-Rodriguez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Josefina Duran-Bedolla
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Alejandro Sanchez-Perez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México, Dr. Federico Gómez, Cuauhtémoc, 06720, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan 4800, 14080. Tlalpan, Cd de Mexico, Mexico.
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
49
|
Khonsari MS, Behzadi P, Foroohi F. The prevalence of type 3 fimbriae in Uropathogenic Escherichia coli isolated from clinical urine samples. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Alghoribi MF, Alqurashi M, Okdah L, Alalwan B, AlHebaishi YS, Almalki A, Alzayer MA, Alswaji AA, Doumith M, Barry M. Successful treatment of infective endocarditis due to pandrug-resistant Klebsiella pneumoniae with ceftazidime-avibactam and aztreonam. Sci Rep 2021; 11:9684. [PMID: 33958683 PMCID: PMC8102575 DOI: 10.1038/s41598-021-89255-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pandrug-resistant (PDR) K. pneumoniae refractory to conventional treatment has been reported worldwide, causing a huge burden on the healthcare system, patient safety and the economy. K. pneumoniae is a prominent opportunistic pathogen causing hospital-acquired and community-acquired infections, but is rarely associated with infective endocarditis. Currently, there are sparse data guiding the optimal regimen when commonly used antibiotics fail, notably for the treatment of endocarditis infections. Here we report our experience in treating a 40-year-old female with PDR K. pneumoniae infection of cardiovascular implantable electronic device (CIED) and right-sided infective endocarditis. Initial susceptibility testing of the incriminated pathogen showed an apparent susceptibility to colistin but the prolonged course of colistin, gentamicin and meropenem did not resolve the infection. However, the synergistic combinations of aztreonam with ceftazidime-avibactam was able to overcome resistance and clear the infection rapidly. Genome sequencing showed that the PDR K. pneumoniae isolate belongs to the international high-risk clone ST14. The isolate harbored genes encoding NDM-1, OXA-48, CTX-M-14b, SHV-28 and OXA-1, explaining resistance to all β-lactams, including carbapenems. It carried the armA gene conferring resistance to all clinically important aminoglycosides and had alterations in GyrA, ParC and MgrB, explaining resistance to ciprofloxacin and colistin.
Collapse
Affiliation(s)
- Majed F Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.
| | - Moayad Alqurashi
- Division of Adult Infectious Diseases, Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Liliane Okdah
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bassam Alalwan
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Yahya S AlHebaishi
- Department of Adult Cardiology, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| | - Abdulmajeed Almalki
- Division of Adult Infectious Diseases, Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maha A Alzayer
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman A Alswaji
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mazin Barry
- Division of Infectious Diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|