1
|
Mennini M, Piccirillo M, Furio S, Valitutti F, Ferretti A, Strisciuglio C, De Filippo M, Parisi P, Peroni DG, Di Nardo G, Ferrari F. Probiotics and other adjuvants in allergen-specific immunotherapy for food allergy: a comprehensive review. FRONTIERS IN ALLERGY 2024; 5:1473352. [PMID: 39450374 PMCID: PMC11499231 DOI: 10.3389/falgy.2024.1473352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
This review delves into the potential of manipulating the microbiome to enhance oral tolerance in food allergy, focusing on food allergen-specific immunotherapy (FA-AIT) and the use of adjuvants, with a significant emphasis on probiotics. FA-AIT, including oral (OIT), sublingual (SLIT), and epicutaneous (EPIT) immunotherapy, has shown efficacy in desensitizing patients and achieving sustained unresponsiveness (SU). However, the long-term effectiveness and safety of FA-AIT are still under investigation. Probiotics, particularly strains of Lactobacillus, play a crucial role in enhancing immune tolerance by promoting regulatory T cells (Tregs) and modulating cytokine profiles. These probiotics can induce semi-mature dendritic cells, enhance CD40 expression, inhibit IL-4 and IL-5, and promote IL-10 and TGF-β, thus contributing to mucosal defense and immunological tolerance. Clinical trials combining probiotics with FA-AIT have demonstrated improved desensitization rates and immune tolerance in food-allergic patients. For example, the combination of Lactobacillus rhamnosus with peanut OIT resulted in a significantly higher rate of SU compared to the placebo group, along with notable immune changes such as reduced peanut-specific IgE and increased IgG4 levels. The review also explores other adjuvants in FA-AIT, such as biologic drugs, which target specific immune pathways to improve treatment outcomes. Additionally, nanoparticles and herbal therapies like food allergy herbal formula 2 (FAHF-2) are discussed for their potential to enhance allergen delivery and immunogenicity, reduce adverse events, and improve desensitization. In conclusion, integrating probiotics and other adjuvants into FA-AIT protocols could significantly enhance the safety and efficacy of FA-AIT, leading to better patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maurizio Mennini
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Marisa Piccirillo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Silvia Furio
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesco Valitutti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Ferretti
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria De Filippo
- Department of Maternal Infantile and Urological Sciences, AOU Policlinico Umberto I, Rome, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Pasquale Parisi
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Diego Giampietro Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Di Nardo
- Pediatric Unit, NESMOS Department, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Tian S, Xia J, Liu K, Ma Y, Tian H, Wang W, Zhang R, Zhao C, Gong S. The role of CD24 hiCD27 + regulatory B cells in human chronic rhinosinusitis with/without nasal polyps. Immunobiology 2024; 229:152854. [PMID: 39340956 DOI: 10.1016/j.imbio.2024.152854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Regulatory B cells (Bregs) reduce allergic and autoimmune inflammation. However, their role in chronic rhinosinusitis (CRS) remains unknown. This study investigated the frequency and function of Breg subsets in the peripheral blood of patients with CRS. METHODS The demographic and clinical characteristics were compared among control, CRSsNP, neCRSwNP, and eCRSwNP groups. The expression of various Breg subtypes was evaluated in peripheral blood mononuclear cells (PBMCs) of patients with eosinophilic CRS with nasal polyps (eCRSwNP), non-eosinophilic CRS with nasal polyps (neCRSwNP), CRS without nasal polyps (CRSsNP). CD19+CD24hiCD27+ B cells (B10 cells) were isolated by flow cytometry, followed by RNA sequencing (RNA-seq). Finally, IL-10 secreted by B10 cells were evaluated through the intracellular stain. RESULTS A higher number of eosinophils in peripheral blood and nasal polyps were found in eCRSwNP compared with neCRSwNP, CRSsNP, and control groups. The frequency of B10 in the peripheral blood B cells (B10%) of patients with eCRSwNP was significantly lower than that in the neCRSwNP and control groups. B10% was negatively correlated with the quantity of tissue eosinophils, and the percentage and absolute value of peripheral blood eosinophils. The eCRSwNP, neCRSwNP and control groups had 1403 differentially expressed genes, 35 of which were identified in four highly enriched pathways. Additionally, the frequency of IL-10+B10 cells in peripheral blood was lower in patients with eCRSwNP than in the neCRSwNP and control groups. CONCLUSION This study is the first to reveal differences in both the quantity and IL-10 secretion of B10 cells in patients with eCRSwNP and neCRSwNP. These variations were strongly negatively associated with eosinophils in nasal polyps and peripheral blood. IL-10+B10 cells may play a key role in the pathological mechanisms of CRS, particularly the recurrence of eCRSwNP.
Collapse
Affiliation(s)
- Shiyu Tian
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Youxiang Ma
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Tian
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weiwei Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruxiang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Lee D, Jo MG, Min KY, Choi MY, Kim YM, Kim HS, Choi WS. IL-10 + regulatory B cells mitigate atopic dermatitis by suppressing eosinophil activation. Sci Rep 2024; 14:18164. [PMID: 39107352 PMCID: PMC11303538 DOI: 10.1038/s41598-024-68660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Atopic dermatitis (AD) presents significant therapeutic challenges due to its poorly understood etiology. Eosinophilia, a hallmark of allergic inflammation, is implicated in AD pathogenesis. Interleukin-10 (IL-10)-producing regulatory B (Breg) cells exhibit potent anti-inflammatory effects. However, their role in controlling AD-related eosinophilia is not well understood. To investigate the impact of eosinophils on AD, we employed IL-5Rα-deficient (Il5ra-/-) mice, which lack functional eosinophils. Induction of AD in these mice resulted in attenuated disease symptoms, underscoring the critical role of eosinophils in AD development. Additionally, the adoptive transfer of purified Breg cells into mice with AD significantly alleviated disease severity. Mechanistic studies revealed that IL-10 produced by Breg cells directly inhibits eosinophil activation and infiltration into the skin. In vitro experiments further confirmed that Breg cells inhibited eosinophil peroxidase secretion in an IL-10-dependent manner. Our collective findings demonstrate that IL-10 from Breg cells alleviates AD by suppressing eosinophil activation and tissue infiltration. This study elucidates a novel regulatory mechanism of Breg cells, providing a foundation for future Breg-mediated therapeutic strategies for AD.
Collapse
Affiliation(s)
- Dajeong Lee
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Geun Jo
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Yeong Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea.
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
4
|
Ren ZY, Wang J, Xu F, Gao Y, He Q, Pan B, Lyu SC. IL-10 dependent modulatory effect of regulatory B10 cells on local scar formation following Roux-en-Y choledochojejunostomy in a novel rat model. Int Immunopharmacol 2024; 126:111309. [PMID: 38048666 DOI: 10.1016/j.intimp.2023.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023]
Abstract
Choledochojejunostomy has been common surgical treatment of biliary tract disease. Scar formation at anastomotic often results in postoperative complications associated with bleak post-operative recovery, in which local inflammation may be a potential target to modulate local scar formation. This study investigated the effect of regulatory B10 cells on local scar formation through interleukin-10 signal pathway following Roux-en-Y choledochojejunostomy (RCJS) in a novel rat model. Sprague-Dawley (SD) rats with RCJS were randomly divided into blank group, experimental group, IL-10 blocking group, control group, and received different interventions and duration. Injected through dorsal vein of penis, rats in different groups were treated respectively according to scheme. These interventions were performed during surgery, on 1st day, and 2nd day after surgery. Related indexes, including blood examination, specimen tissue of anastomotic detection, were recorded and compared in different interventional groups. Rats in experimental groups had more rapid recovery in liver function and inflammatory index, and higher in IL-10 level. Flow cytometry analysis showed that rats in experimental groups had highest content of B10 cells and lowest content of CD4+CD25- T cells in peripheral blood. Wider anastomotic by macroscopical observation, and slighter proliferation of collagen fiber and smooth muscle fiber, lower α-SMA and TGF-β1 levels by pathological staining were detected in experimental groups. Higher expression of the IL-10 gene and lower expression of TGF-β1 at anastomotic were detected in experimental groups. B10 cells may relieve local inflammation of anastomotic following RCJS in rats through IL-10-dependent modulatory effect, and improve local scar formation.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepaticbiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Jing Wang
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Feng Xu
- School of Biomedicine, Beijing City University, Beijing 100083, PR China
| | - Ya Gao
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Qiang He
- Department of Hepaticbiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Bing Pan
- Department of Hepaticbiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Shao-Cheng Lyu
- Department of Hepaticbiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
5
|
Deficiency in TLR4 impairs regulatory B cells production induced by Schistosome soluble egg antigen. Mol Biochem Parasitol 2023; 253:111532. [PMID: 36450338 DOI: 10.1016/j.molbiopara.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Regulatory B cells (Bregs) producing IL-10 have negative regulatory function. Several studies have shown the important roles for Toll-like receptor 2 (TLR2), TLR4, and TLR9 ligation in the development of Bregs. We have reported that Schistosome soluble egg antigen (SEA) induced the production of Bregs. However, it remains unclear whether such activation is via the TLR pathway. The present study showed that IL-10 and TLR4 mRNA expression in spleen B cells of significantly increased in C57BL/10 J mice spleen B cells following SEA stimulation. The level of secreted IL-10 and IL-10+ B cell proportion decreased in spleen B cells derived from TLR4-deficient C57BL/10ScNJ (TLR4-/-) mice following SEA or LPS stimulation compared with C57BL/10 J mice. The CD1dhiCD5+ B cells proportion decreased in spleen B cells of TLR4-/- mice following SEA stimulation compared with control mice. NF-κB, ERK, p38MAPK and JNK signal transduction inhibitors significantly suppressed IL-10 secretion in CD1dhiCD5+ B cells induced by SEA or LPS. The phosphorylation levels of IκBα, p65, ERK, JNK and p38 were increased in CD1dhiCD5+ B cell of C57BL/10 J mice treated with LPS or SEA. In conclusion, this study suggests that TLR4 plays a critical role in Bregs activation induced by SEA. And the TLR4-triggered NF-κB and MAPK pathways activation in CD1dhiCD5+ B cells stimulated with SEA. The findings elucidated the mechanism of SEA induction of CD1dhiCD5+ B cells and helped us to understand the immune regulation during Schistosoma japonicum infection.
Collapse
|
6
|
Vollmer CM, Dias ASO, Lopes LM, Kasahara TM, Delphim L, Silva JCC, Lourenço LP, Gonçalves HC, Linhares UC, Gupta S, Bento CAM. Leptin favors Th17/Treg cell subsets imbalance associated with allergic asthma severity. Clin Transl Allergy 2022; 12:e12153. [PMID: 35734271 PMCID: PMC9194742 DOI: 10.1002/clt2.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Obesity has often been associated with severe allergic asthma (AA). Here, we analyzed the frequency of different circulating CD4+T-cell subsets from lean, overweight and obese AA patients. Methods Mononuclear cells from peripheral blood were obtained from 60 AA patients and the frequency of different CD4+T-cell subsets and type 1 regulatory B cells (Br1) was determined by cytometry. The effect of obese-related leptin dose on cytokine production and Treg cell function in AA-derived CD4+ T cell cultures was evaluated by ELISA and 3H thymidine uptake, respectively. Leptin levels were quantified in the plasma by ELISA. According to the BMI, patients were stratified as lean, overweight and obese. Results AA severity, mainly among obese patients, was associated with an expansion of hybrid Th2/Th17 and Th17-like cells rather than classic Th2-like cells. On the other hand, the frequencies of Th1-like, Br1 cells and regulatory CD4+ T-cell subsets were lower in patients with severe AA. While percentages of the hybrid Th2/Th17 phenotype and Th17-like cells positively correlated with leptin levels, the frequencies of regulatory CD4+ T-cell subsets and Br1 cells negatively correlated with this adipokine. Interestingly, the obesity-related leptin dose not only elevated Th2 and Th17 cytokine levels, but also directly reduced the Treg function in CD4+ T cell cultures from lean AA patients. Conclusion In summary, our results indicated that obesity might increase AA severity by favoring the expansion of Th17-like and Th2/Th17 cells and decreasing regulatory CD4+T cell subsets, being adverse effects probably mediated by leptin overproduction.
Collapse
Affiliation(s)
- Carolina M. Vollmer
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Aleida S. O. Dias
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Lana M. Lopes
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Taissa M. Kasahara
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Letícia Delphim
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Júlio Cesar C. Silva
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Lucas Paulo Lourenço
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | | | - Ulisses C. Linhares
- Department of Morphological SciencesFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Sudhir Gupta
- Department of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Cleonice A. M. Bento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
7
|
Paris JL, de la Torre P, Flores AI. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021; 13:pharmaceutics13122149. [PMID: 34959429 PMCID: PMC8707403 DOI: 10.3390/pharmaceutics13122149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Allergy constitutes a major health issue due to its large prevalence. The established therapeutic approaches (allergen avoidance, antihistamines, and corticosteroids) do not address the underlying causes of the pathology, highlighting the need for other long-term treatment options. Antigen-specific immunotherapy enables the long-term control of allergic diseases by promoting immunological tolerance to the allergen. However, efficacious immunotherapies are not available for all possible allergens, and the risk of undesired reactions during therapy remains a concern, especially in patients with severe allergic reactions. In this context, two types of therapeutic strategies appear especially promising for the future in the context of allergy: cell therapy and bio- or nano-material-based therapy. In this review, the main strategies developed this far in these two types of strategies are discussed, with several examples illustrating the different approaches.
Collapse
Affiliation(s)
- Juan L. Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
8
|
Li M, Wang H, Ni Y, Li C, Xu X, Chang H, Xu Z, Hou M, Ji M. Helminth-induced CD9 + B-cell subset alleviates obesity-associated inflammation via IL-10 production. Int J Parasitol 2021; 52:111-123. [PMID: 34863801 DOI: 10.1016/j.ijpara.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
It has been shown that helminth infection can protect against obesity and improve insulin sensitivity to a certain extent, based on epidemiological investigations and animal experiments. Meanwhile, helminths induce a network of regulatory immune cells, including regulatory B cells (Bregs). However, the molecule characteristics and function of these Bregs in improving whole-body metabolic homeostasis remains largely unclear. We established a mouse model with chronic Schistosoma japonicum infection, and compared the differences in B10 cells (CD19+CD5+CD1dhi) and B10- cells (CD19+CD5-CD1d-) from splenic B cells of infected mice using RNA-seq. A unique Breg population was identified. Furthermore, these Bregs were evaluated for their ability to produce inhibitory cytokines in vitro and suppress obesity when adoptively transferred into mice on a high-fat diet. We found that schistosome infection could expand Breg cell populations in mice. CD9 was demonstrated to be a key surface marker for most murine IL-10+ B cells in spleen. CD19+CD9+ B cells produced more IL-10 than conventional B10 cells. Adoptive transfer of CD9+ B cells had the capacity to alleviate obesity-associated inflammation via promoting Tregs, Th2 cells and decreasing Th1, Th17 cells in high-fat diet mice. In conclusion, schistosome infection can induce regulatory CD9+ B cell production, which plays a critical role in the regulation of metabolic disorders through IL-10 production.
Collapse
Affiliation(s)
- Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejun Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy 2021; 76:1707-1717. [PMID: 33274454 DOI: 10.1111/all.14684] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of people suffer from IgE-mediated food allergies. The immunological mechanisms that cause IgE-mediated food allergy have been extensively studied. B cells play a key role in the development of IgE-mediated food allergies through the production of allergen-specific antibodies. While this particular function of B cells has been known for many years, we still do not fully understand the mechanisms that regulate the induction and maintenance of allergen-specific IgE production. It is still not fully understood where in the body IgE class switch recombination of food allergen-specific B cells occurs, and what processes are involved in the immunological memory of allergen-specific IgE responses. B cells can also contribute to the regulation of allergen-specific immune responses through other mechanisms such as antigen presentation and cytokine production. Recent technological advances have enabled highly detailed analysis of small subsets of B cells down to the single-cell level. In this review, we provide an overview of the current knowledge on the biology of B cells in relation to IgE-mediated food allergies.
Collapse
Affiliation(s)
| | - Monique Daanje
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
- Department of Pathology Stanford University School of Medicine Stanford CA USA
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
10
|
Oliveria JP, Agayby R, Gauvreau GM. Regulatory and IgE + B Cells in Allergic Asthma. Methods Mol Biol 2021; 2270:375-418. [PMID: 33479910 DOI: 10.1007/978-1-0716-1237-8_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Allergic asthma is triggered by inhalation of environmental allergens resulting in bronchial constriction and inflammation, which leads to clinical symptoms such as wheezing, coughing, and difficulty breathing. Asthmatic airway inflammation is initiated by inflammatory mediators released by granulocytic cells. However, the immunoglobulin E (IgE) antibody is necessary for the initiation of the allergic cascade, and IgE is produced and released exclusively by memory B cells and plasma cells. Acute allergen exposure has also been shown to increase IgE levels in the airways of patients diagnosed with allergic asthma; however, more studies are needed to understand local airway inflammation. Additionally, regulatory B cells (Bregs) have been shown to modulate IgE-mediated inflammatory processes in allergic asthma pathogenesis, particularly in mouse models of allergic airway disease. However, the levels and function of these IgE+ B cells and Bregs remain to be elucidated in human models of asthma. The overall objective for this chapter is to provide detailed methodological, and insightful technological advances to study the biology of B cells in allergic asthma pathogenesis. Specifically, we will describe how to investigate the frequency and function of IgE+ B cells and Bregs in allergic asthma, and the kinetics of these cells after allergen exposure in a human asthma model.
Collapse
Affiliation(s)
- John Paul Oliveria
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Rita Agayby
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Gail M Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Yu ED, Westernberg L, Grifoni A, Frazier A, Sutherland A, Wang E, Peters B, da Silva Antunes R, Sette A. B cells modulate mouse allergen-specific T cells in nonallergic laboratory animal-care workers. JCI Insight 2021; 6:145199. [PMID: 33616085 PMCID: PMC7934936 DOI: 10.1172/jci.insight.145199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms of allergen-specific immune modulation in nonallergic individuals is key to recapitulate immune tolerance and to develop novel allergy treatments. Herein, we characterized mouse-specific T cell responses in nonallergic laboratory animal-care workers before and after reexposure to mice. PBMCs were collected and stimulated with developed peptide pools identified from high-molecular-weight fractions of mouse allergen extracts. Sizable CD4 T cell responses were noted and were temporarily decreased in most subjects upon reexposure, with the magnitude of decrease positively correlated with time of reexposure but not the duration of the break. Interestingly, the suppression was specific to mouse allergens without affecting responses of bystander antigens. Further, PBMC fractioning studies illustrated that the modulation is unlikely from T cells, while B cell depletion and exchange reversed the suppression of responses, suggesting that B cells may be the key modulators. Increased levels of regulatory cytokines (IL-10 and TGF-β1) in the cell culture supernatant and plasma mouse-specific IgG4 were also observed after reexposure, consistent with B cell–mediated modulation mechanisms. Overall, these results suggest that nonallergic status is achieved by an active, time-related, allergen-specific, B cell-dependent regulatory process upon reexposure, the mechanisms of which should be detailed by further molecular studies.
Collapse
Affiliation(s)
- Esther Dawen Yu
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Alba Grifoni
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - April Frazier
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Eric Wang
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Azeem M, Kader H, Kerstan A, Hetta HF, Serfling E, Goebeler M, Muhammad K. Intricate Relationship Between Adaptive and Innate Immune System in Allergic Contact Dermatitis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:699-709. [PMID: 33380932 PMCID: PMC7757059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a complex immunological allergic disease characterized by the interplay between the innate and adaptive immune system. Initially, the role of the innate immune system was believed to be confined to the initial sensitization phase, while adaptive immune reactions were linked with the advanced elicitation phase. However, recent data predicted a comparatively mixed and interdependent role of both immune systems throughout the disease progression. Therefore, the actual mechanisms of disease progression are more complex and interlinked. The aim of this review is to combine such findings that enhanced our understanding of the pathomechanisms of ACD. Here, we focused on the main cell types from both immune domains, which are involved in ACD, such as CD4+ and CD8+ T cells, B cells, neutrophils, and innate lymphoid cells (ILCs). Such insights can be useful for devising future therapeutic interventions for ACD.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Hidaya Kader
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology,
Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
The Potential of IgG to Induce Murine and Human Thymic Maturation of IL-10+ B Cells (B10) Revealed in a Pilot Study. Cells 2020; 9:cells9102239. [PMID: 33027887 PMCID: PMC7600151 DOI: 10.3390/cells9102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory B (B10) cells can control several inflammatory diseases, including allergies; however, the origin of peripheral B10 cells is not fully understood, and the involvement of primary lymphoid organs (PLOs) as a primary site of maturation is not known. Here, using a murine model of allergy inhibition mediated by maternal immunization with ovalbumin (OVA), we aimed to evaluate whether B10 cells can mature in the thymus and whether IgG can mediate this process. Female mice were immunized with OVA, and offspring thymus, bone marrow, spleen, lung, and serum samples were evaluated at different times and after passive transfer of purified IgG or thymocytes. A translational approach was implemented using human nonatopic thymus samples, nonatopic peripheral blood mononuclear cells (PBMCs), and IgG from atopic or nonatopic individuals. Based on the expression of CD1d on B cells during maturation stages, we suggest that B10 cells can also mature in the murine thymus. Murine thymic B10 cells can be induced in vitro and in vivo by IgG and be detected in the spleen and lungs in response to an allergen challenge. Like IgG from atopic individuals, human IgG from nonatopic individuals can induce B10 cells in the infant thymus and adult PBMCs. Our observations suggest that B10 cells may mature in the thymus and that this mechanism may be mediated by IgG in both humans and mice. These observations may support the future development of IgG-based immunoregulatory therapeutic strategies.
Collapse
|
14
|
Gu Y, Li K, Sun J, Zhang J. Characterization of CD19 + CD24 hi CD38 hi B cells in Chinese adult patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2020; 34:2863-2870. [PMID: 32242984 DOI: 10.1111/jdv.16399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease. Human interleukin-10+ B cells (B10 cells) is one of regulatory B cells and is enriched in CD19+ CD24hi CD38hi B cells. A little is known about these cells in atopic dermatitis. OBJECTIVE To study CD19+ CD24hi CD38hi B cells and their clinical significance in Chinese adult patients with atopic dermatitis. METHODS Thirty-two adult patients with AD and nineteen healthy controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and stained with fluorescein-conjugated monoclonal antibodies for CD19, CD24, CD27, CD38 and Annexin V. The stained PBMCs were analysed by flow cytometry. B10 cells were prepared by stimulating PBMCs with CpG, LPS and CD40L followed by restimulation with phorbol12-myristate 13-acetate (PMA) and ionomycin. Serum IL-10, B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) levels were measured by using the ELISA. Apoptosis and proliferation of CD19+ CD24hi CD38hi B cells were measured by flow cytometry. 4/P-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (Erk) phosphorylation were also studied. RESULTS The number of CD19+ CD24hi CD38hi B cells in patients with AD was similar to that in healthy controls. However, B10 cells were decreased in patients with AD. The proportion of B10 cells was negatively associated with blood basophil counts but not associated with disease activity. CD19+ CD24hi CD38hi B cells from AD patients were more susceptible to apoptosis upon stimulation with CpG, LPS and CD40L. B cells from AD patients showed lower STAT3 and Erk phosphorylation. CONCLUSIONS CD19+ CD24hi CD38hi B cells were unchanged in atopic dermatitis while B10 cells were decreased. The increased B-cell apoptosis, decreased STAT3 and Erk phosphorylation might contribute to these changes.
Collapse
Affiliation(s)
- Y Gu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - K Li
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Sun
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Fan Z, Che H, Yang S, Chen C. Estrogen and estrogen receptor signaling promotes allergic immune responses: Effects on immune cells, cytokines, and inflammatory factors involved in allergy. Allergol Immunopathol (Madr) 2019; 47:506-512. [PMID: 31248582 DOI: 10.1016/j.aller.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Hypersensitivity occurs when the body is stimulated by an antigen, resulting in an immune response, and leads to a physiological disorder or abnormal tissue trauma. Various immune cells, cytokines, and inflammatory mediators are involved in the immune responses related to allergic diseases, which are the core of anaphylaxis. Estrogen receptors are widely distributed in immune cells, which combine with estrogen and participate in allergic responses by affecting immune cells, cytokines, and inflammatory factors. We aimed to summarize the association between estrogen and allergic reactions to provide a scientific basis for understanding and studying the mechanisms of allergic diseases.
Collapse
|
16
|
Valizadeh A, Sanaei R, Rezaei N, Azizi G, Fekrvand S, Aghamohammadi A, Yazdani R. Potential role of regulatory B cells in immunological diseases. Immunol Lett 2019; 215:48-59. [PMID: 31442542 DOI: 10.1016/j.imlet.2019.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Regulatory B cells (Bregs) are immune-modulating cells that affect the immune system by producing cytokines or cellular interactions. These cells have immunomodulatory effects on the immune system by cytokine production. The abnormalities in Bregs could be involved in various disorders such as autoimmunity, chronic infectious disease, malignancies, allergies, and primary immunodeficiencies are immune-related scenarios. Ongoing investigation could disclose the biology and the exact phenotype of these cells and also the assigned mechanisms of action of each subset, as a result, potential therapeutic strategies for treating immune-related anomalies. In this review, we collect the findings of human and mouse Bregs and the therapeutic efforts to change the pathogenicity of these cells in diverse disease.
Collapse
Affiliation(s)
- Amir Valizadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Roozbeh Sanaei
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
17
|
Guan L, Yu D, Wu GH, Ning HJ, He SD, Li SS, Hu TY, Yang G, Liu ZQ, Yu HQ, Sun XZ, Liu ZG, Yang PC. Vasoactive intestinal peptide is required in the maintenance of immune regulatory competency of immune regulatory monocytes. Clin Exp Immunol 2019; 196:276-286. [PMID: 30636174 DOI: 10.1111/cei.13259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of the immune regulatory system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Vasoactive intestinal peptide (VIP) has multiple bioactivities. This study aims to investigate the role of VIP in the maintenance of the immune regulatory capacity of monocytes (Mos). Human peripheral blood samples were collected from RA patients and healthy control (HC) subjects. Mos and CD14+ CD71- CD73+ CD25+ regulatory Mos (RegMos) were isolated from the blood samples and characterized by flow cytometry. A rat RA model was developed to test the role of VIP in the maintenance of the immune regulatory function of Mos. The results showed that RegMos of HC subjects had immune suppressive functions. RegMos of RA patients expressed less interleukin (IL)-10 and showed an incompetent immune regulatory capacity. Serum levels of VIP were lower in RA patients, which were positively correlated with the expression of IL-10 in RegMos. In-vitro experiments showed that the IL-10 mRNA decayed spontaneously in RegMos, which could be prevented by the presence of VIP in the culture. VIP suppressed the effects of tristetraprolin (TTP) on inducing IL-10 mRNA decay in RegMos. Administration of VIP inhibited experimental RA in rats through restoring the IL-10 expression in RegMos. RegMos have immune suppressive functions. VIP is required in maintaining IL-10 expression in RegMos. The data suggest that VIP has translational potential in the treatment of immune disorders such as RA.
Collapse
Affiliation(s)
- L Guan
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - D Yu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - G-H Wu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - H-J Ning
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-D He
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - S-S Li
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - T-Y Hu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - G Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Z-Q Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - H-Q Yu
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - X-Z Sun
- Department of Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Z-G Liu
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - P-C Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
18
|
de Oliveira MG, Lira AADL, Sgnotto FDR, Inoue AHS, Beltrame GR, da Silva D, Menghini RP, Duarte AJDS, Victor JR. Maternal immunization downregulates offspring TCD4 regulatory cells (Tregs) thymic maturation without implications for allergy inhibition. Scand J Immunol 2018; 88:e12721. [PMID: 30403024 DOI: 10.1111/sji.12721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The regulation of offspring allergy development mediated by maternal immunization was evidenced by several groups, and this mechanism seems to involve the induction of regulatory T cells (Tregs) on offspring. Here, we aimed to evaluate whether the effect of maternal immunization on offspring Tregs occurs as a result of peripheral or central modulation. Briefly, C57BL/6 female mice were immunized with OVA in Alum or Alum alone and boosted with OVA in saline or saline only after 10 and 20 days. Non-immunized offspring serum, thymus and spleen were evaluated at 3 or 20 days old, and some groups of pups were submitted to neonatal OVA-immunization protocol for the subsequent evaluation of antibody production and allergic response. Our experimental protocol could be validated because maternal OVA-immunization inhibited offspring allergic response as evidenced by the suppression of offspring IgE production and allergic lung inflammation. Interestingly, maternal immunization reduced the frequency of offspring thymic Tregs with an opposite effect on spleen Tregs. Furthermore, after neonatal immunization, the frequency of lung-infiltrated Tregs was also augmented on offspring from immunized mothers. In conclusion, maternal OVA-immunization can inhibit the thymic maturation of offspring Tregs without implications on peripheral Tregs induction and allergy inhibition.
Collapse
Affiliation(s)
- Marília Garcia de Oliveira
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Aparecida de Lima Lira
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Amanda Harumi Sabô Inoue
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Rossi Beltrame
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Débora da Silva
- Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| | | | - Alberto José da Silva Duarte
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Jefferson Russo Victor
- Division of Dermatology, Laboratory of Medical Investigation LIM 56, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| |
Collapse
|
19
|
Esteve-Solé A, Luo Y, Vlagea A, Deyà-Martínez Á, Yagüe J, Plaza-Martín AM, Juan M, Alsina L. B Regulatory Cells: Players in Pregnancy and Early Life. Int J Mol Sci 2018; 19:ijms19072099. [PMID: 30029515 PMCID: PMC6073150 DOI: 10.3390/ijms19072099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Pregnancy and early infancy represent two very particular immunological states. During pregnancy, the haploidentical fetus and the pregnant women develop tolerance mechanisms to avoid rejection; then, just after birth, the neonatal immune system must modulate the transition from the virtually sterile but haploidentical uterus to a world full of antigens and the rapid microbial colonization of the mucosa. B regulatory (Breg) cells are a recently discovered B cell subset thought to play a pivotal role in different conditions such as chronic infections, autoimmunity, cancer, and transplantation among others in addition to pregnancy. This review focuses on the role of Breg cells in pregnancy and early infancy, two special stages of life in which recent studies have positioned Breg cells as important players.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Yiyi Luo
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Alexandru Vlagea
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ángela Deyà-Martínez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Ana María Plaza-Martín
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
| | - Manel Juan
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
- Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain.
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, 08950 Barcelona, Spain.
- Functional Unit of Clinical Immunology, Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Shao JB, Luo XQ, Wu YJ, Li MG, Hong JY, Mo LH, Liu ZG, Li HB, Liu DB, Yang PC. Histone deacetylase 11 inhibits interleukin 10 in B cells of subjects with allergic rhinitis. Int Forum Allergy Rhinol 2018; 8:1274-1283. [PMID: 30007011 DOI: 10.1002/alr.22171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The interleukin (IL)-10 expression in B cells plays an important role in immune tolerance. The regulation of IL-10 expression in B cells is not fully understood yet. Tumor necrosis factor (TNF) is increased in allergic rhinitis (AR) patients. This study tests a hypothesis that TNF enhances histone deacetylase (HDAC)11 expression to inhibit the expression of IL-10 in B cells of AR patients. METHODS Peripheral B cells were collected from healthy persons and patients with AR. The B cells were analyzed by immune assay and molecular biological approaches for the expression of IL-10. RESULTS The expression of HDAC11 was higher in B cells of patients with AR than that in healthy persons. The expression of IL-10 in B cells was lower in AR patients than that in healthy subjects. The levels of HDAC11 in B cells were negatively correlated with the levels of IL-10. Exposure of B cells to TNF in the culture inhibited the expression of IL-10, in which HDAC11 played a critical role in the interference with the Il10 gene transcription. Inhibition of HDAC11 restored the IL-10 expression in B cells from AR patients and attenuated the experimental AR. CONCLUSION TNF can suppress the expression of IL-10 in B cells via enhancing the expression of HDAC11. Inhibition of HDAC11 restores the IL-10 expression in B cells of AR subjects. HDAC11 may be a novel target for the treatment of AR.
Collapse
Affiliation(s)
- Jian-Bo Shao
- Department of Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Yong-Jin Wu
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Rhinology, Longgang ENT Hospital, Shenzhen, China
| | - Mao-Gang Li
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jing-Yi Hong
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Li-Hua Mo
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Rhinology, Longgang ENT Hospital, Shenzhen, China
| | - Zhi-Gang Liu
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hua-Bin Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Da-Bo Liu
- Department of Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Pediatric Otolaryngology, Southern Medical University Shenzhen Hospital, Shenzhen, China
| | - Ping-Chang Yang
- ENT Institute and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
21
|
Xu X, Wang Y, Zhang B, Lan X, Lu S, Sun P, Li X, Shi G, Zhao Y, Han H, Du C, Wang H. Treatment of experimental colitis by endometrial regenerative cells through regulation of B lymphocytes in mice. Stem Cell Res Ther 2018; 9:146. [PMID: 29784012 PMCID: PMC5963178 DOI: 10.1186/s13287-018-0874-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Endometrial regenerative cells (ERCs), a novel type of mesenchymal-like stem cell derived from menstrual blood, have been recently evaluated as an attractive candidate source in ulcerative colitis (UC); however, the mechanism is not fully understood. The present study was designed to investigate the effects of ERCs, especially on B-cell responses in UC. METHODS In this study, colitis was induced by administering 3% dextran sodium sulfate (DSS) via free drinking water for 7 days to BALB/c mice. In the treated group, mice were injected intravenously with 1 × 106 ERCs on days 2, 5, and 8 after DSS induction. Therapeutic effects were assessed by monitoring body weight, disease activity, and pathological changes. Subpopulations of lymphocytes were determined by flow cytometry. IgG deposition in the colon was examined by immunohistochemistry staining. Cytokine levels were measured by enzyme-linked immunosorbent assay (ELISA), Western blot, or polymerase chain reaction (PCR) analysis. Adoptive transfer of regulatory B cells (Bregs) into colitis mice was performed. RESULTS Here, we demonstrated that ERC treatment prolonged the survival of colitis mice and attenuated disease activity with fewer pathological changes in colon tissue. ERCs decreased the proportion of immature plasma cells in the spleen and IgG deposition in the colon. On the other hand, ERCs increased the production of Bregs and the interleukin (IL)-10 level. Additionally, adoptive transferred Bregs exhibited significant therapeutic effects on colitis mice. CONCLUSIONS In conclusion, our results unravel the therapeutic role of ERCs on experimental colitis through regulating the B-lymphocyte responses.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xu Lan
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shanzheng Lu
- Department of Anorectal Surgery, People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Peng Sun
- Department of General Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Ganggang Shi
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongqiu Han
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Caigan Du
- Department of Urologic Sciences, the University of British Columbia, Vancouver, British Columbia, Canada.,Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
22
|
Yamamoto T, Iwasaki K, Murotani K, Takeda A, Futamura K, Okada M, Tsujita M, Hiramitsu T, Goto N, Narumi S, Watarai Y, Morozumi K, Uchida K, Kobayashi T. Peripheral blood immune response-related gene analysis for evaluating the potential risk of chronic antibody-mediated rejection. Hum Immunol 2018; 79:432-438. [PMID: 29614336 DOI: 10.1016/j.humimm.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
Noninvasive methods for the early diagnosis of chronic antibody-mediated rejection (cAMR) are desired for patients with de novo (dn) donor-specific HLA antibody (DSA). This study aimed to elucidate the clinical relevance of immune-related gene expression in peripheral blood of kidney transplant recipients. The expression levels of fourteen key molecules (Foxp3, CTLA-4, CCR7, TGF-β, IGLL-1, IL-10, ITCH, CBLB, Bcl-6, CXCR5, granzyme B, CIITA, Baff, TOAG-1/TCAIM) related to regulatory/cytotoxic function of immune cells were compared in 93 patients, which were divided into Groups A (clinical cAMR with dn DSA, n = 16), B (subclinical cAMR with dn DSA, n = 17), C (negative cAMR with dn DSA, n = 21) and D (stable function without dn DSA, n = 39). CIITA mRNA expression levels in groups B and C were significantly lower than those in group D (p < 0.01). Moreover, the CTLA-4 mRNA expression in group A was significantly higher than that in groups B and C (p < 0.01). ROC curve analysis suggested that CIITA (AUC = 0.902) and CTLA-4 (AUC = 0.785) may serve as valuable biomarkers of the stage of dn DSA production and clinical cAMR, respectively. In addition to dn DSA screening, monitoring of CIITA and CTLA-4 in peripheral blood could offer useful information on the time course of the development of cAMR.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan; Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Kenta Iwasaki
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenta Murotani
- Division of Biostatistics, Clinical Research Center, Aichi Medical University Hospital, Nagakute, Japan
| | - Asami Takeda
- Department of Nephrology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Kenta Futamura
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Manabu Okada
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Makoto Tsujita
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takahisa Hiramitsu
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Norihiko Goto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shunji Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Yoshihiko Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Kunio Morozumi
- Department of Nephrology, Masuko Memorial Hospital, Nagoya, Japan
| | - Kazuharu Uchida
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Japan.
| |
Collapse
|
23
|
Satitsuksanoa P, Jansen K, Głobińska A, van de Veen W, Akdis M. Regulatory Immune Mechanisms in Tolerance to Food Allergy. Front Immunol 2018; 9:2939. [PMID: 30619299 PMCID: PMC6299021 DOI: 10.3389/fimmu.2018.02939] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Oral tolerance can develop after frequent exposure to food allergens. Upon ingestion, food is digested into small protein fragments in the gastrointestinal tract. Small food particles are later absorbed into the human body. Interestingly, some of these ingested food proteins can cause allergic immune responses, which can lead to food allergy. So far it has not been completely elucidated how these proteins become immunogenic and cause food allergies. In contrast, oral tolerance helps to prevent the pathologic reactions against different types of food antigens from animal or plant origin. Tolerance to food is mainly acquired by dendritic cells, epithelial cells in the gut, and the gut microbiome. A subset of CD103+ DCs is capable of inducing T regulatory cells (Treg cells) that express anti-inflammatory cytokines. Anergic T cells also contribute to oral tolerance, by reducing the number of effector cells. Similar to Treg cells, B regulatory cells (Breg cells) suppress effector T cells and contribute to the immune tolerance to food allergens. Furthermore, the human microbiome is an essential mediator in the induction of oral tolerance or food allergy. In this review, we outline the current understanding of regulatory immune mechanisms in oral tolerance. The biological changes reflecting early consequences of immune stimulation with food allergens should provide useful information for the development of novel therapeutic treatments.
Collapse
|
24
|
Galectin-1 inhibits oral-intestinal allergy syndrome. Oncotarget 2017; 8:13214-13222. [PMID: 28086216 PMCID: PMC5355090 DOI: 10.18632/oncotarget.14571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022] Open
Abstract
Background and aims The pathogenesis of oral-intestinal allergy syndrome (OIAS) has not been well understood. Published data indicate that galectin (Gal) 1 has immune regulatory functions. This study tests a hypothesis that Gal1 inhibits oral-intestinal allergy syndrome. Methods Mice were sensitized to peanut extracts (PE) via the buccal mucosa with or without using Gal1 together. Results Upon re-exposure to specific antigen, the OIAS mice showed the systemic allergic response, the oral allergic reactions, and intestinal allergic inflammation, including increases in serum histamine, drop of the core temperature, higher levels of PE-specific IgE and interleukin (IL)-4. Increases in mast cell and eosinophil in the oral mucosa and intestinal mucosa were also observed. The OIAS was inhibited by co-administration with Gal1 via a mechanism of suppressing micro RNA (miR)-98 and reversing the expression of IL-10 in CD14+ cells in the intestine. Conclusions The OIAS can be induced by applying specific antigens to the oral mucosa, which can be inhibited by co-administration with Gal1.
Collapse
|
25
|
Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KC. Deciphering the black box of food allergy mechanisms. Ann Allergy Asthma Immunol 2017; 118:21-27. [PMID: 28007085 DOI: 10.1016/j.anai.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review our current understanding of immunotherapy, the immune mechanisms underlying food allergy, and the methodological advances that are furthering our understanding of the role of immune cells and other molecules in mediating food allergies. DATA SOURCES Literature searches were performed using the following combination of terms: allergy, immunotherapy, food, and mechanisms. Data from randomized clinical studies using state-of-the-art mechanistic tools were prioritized. STUDY SELECTIONS Articles were selected based on their relevance to food allergy. RESULTS Current standard of care for food allergies is avoidance of allergenic foods and the use of epinephrine in case of severe reaction during unintentional ingestion. During the last few decades, great strides have been made in understanding the cellular and molecular mechanisms underlying food allergy, and this information is spearheading the development of exciting new treatments. CONCLUSION Immunotherapy protocols are effective in desensitizing individuals to specific allergens; however, recurrence of allergic sensitization is common after discontinuation of therapy. Interestingly, in a subset of individuals, immunotherapy is protective against allergens even after discontinuation of immunotherapy. Whether this protection is permanent is currently unknown because of inadequate long-term follow-up data. Research on understanding the underlying mechanisms may assist in modifying protocols to improve outcome and enable sustained unresponsiveness, rather than a temporary relief against food allergies. The cellular changes brought about by immunotherapy are still a black box, but major strides in our understanding are being made at an exciting pace.
Collapse
Affiliation(s)
- Vanitha Sampath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Dana Tupa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Michelle Toft Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jonathan M Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kari C Nadeau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
26
|
IL-10-Producing B Cells Suppress Effector T Cells Activation and Promote Regulatory T Cells in Crystalline Silica-Induced Inflammatory Response In Vitro. Mediators Inflamm 2017; 2017:8415094. [PMID: 28831210 PMCID: PMC5558645 DOI: 10.1155/2017/8415094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to crystalline silica leads to silicosis, which is characterized by persistent lung inflammation and lung fibrosis. Multiple immune cells have been demonstrated to participate in crystalline silica-induced immune responses. Our previous study indicated that B10 could control lung inflammation through modulating the Th balance in experimental silicosis in mice. However, the regulatory mechanism of B10 on CD4+ T cells is still unclear. MACS-sorted CD19+ B cells from the three different groups were cultured with CD4+ T cells either with or without transwell insert plates to evaluate the effects of B10 on CD4+ T cells, including Teff and Treg. B10 was eliminated by anti-CD22 application in vivo. Flow cytometry was used to test the frequencies of CD4+ T cells, and the expressions of the related cytokines were detected by real-time PCR and CBA. Insufficient B10 elevated the levels of proinflammatory cytokines and promoted Th responses in a way independent upon cell-cell contact in the Teff and B cell coculture system. B10 could both increase Treg activity and enhance conversion of Teff into Treg. Our findings demonstrated that B10 could affect Th responses by the release of IL-10, enhancing Treg functions and converting Teff into Treg.
Collapse
|
27
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
28
|
Soares RR, Antinarelli LMR, Abramo C, Macedo GC, Coimbra ES, Scopel KKG. What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? Pathog Glob Health 2017; 111:107-115. [PMID: 28353409 PMCID: PMC5445636 DOI: 10.1080/20477724.2017.1308902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases, such as malaria and leishmaniasis, are relevant public health problems worldwide. For both diseases, the alarming number of clinical cases and deaths reported annually has justified the incentives directed to better understanding of host's factors associated with susceptibility to infection or protection. In this context, over recent years, some studies have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells. Essentially important in the maintenance of immunological tolerance, especially in autoimmune disease models such as rheumatoid arthritis and experimentally induced autoimmune encephalomyelitis, the function of these lymphocytes has so far been poorly explored during the course of diseases caused by parasites. As the activation of Breg cells has been proposed as a possible therapeutic or vaccine strategy against several diseases, here we reviewed studies focused on understanding the relation of parasite and Breg cells in malaria and leishmaniasis, and the possible implications of these strategies in the course of both infections.
Collapse
|
29
|
Preconception allergen sensitization can induce B10 cells in offspring: a potential main role for maternal IgG. Allergy Asthma Clin Immunol 2017; 13:22. [PMID: 28428801 PMCID: PMC5392917 DOI: 10.1186/s13223-017-0195-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background The mechanisms through which allergies can be inhibited after preconception immunization with allergens are not fully understood. We aimed to evaluate whether maternal immunization can induce a regulatory B (B10) cell population in offspring in concert with allergy inhibition. Methods C57BL/6 females were or were not immunized with OVA and were mated with normal WT males. Their offspring were evaluated at 3 days of age or 20 days after neonatal immunization. Human peripheral B cells from atopic and non-atopic individuals were also evaluated. Results Preconception OVA immunization induced B10 cells in offspring, and IL-10 production appeared to be critical for FcγRIIB upregulation in offspring B cells. Murine and human IL-10-producing B cells responded in vitro to IgG according to the atopic repertoire of the cells. Conclusions Our results reveal that maternal immunization induces allergen-specific B10 cells in offspring and a pivotal role for the IgG repertoire in IL-10 production by murine and human B cells. Electronic supplementary material The online version of this article (doi:10.1186/s13223-017-0195-8) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Liu F, Lu X, Dai W, Lu Y, Li C, Du S, Chen Y, Weng D, Chen J. IL-10-Producing B Cells Regulate T Helper Cell Immune Responses during 1,3-β-Glucan-Induced Lung Inflammation. Front Immunol 2017; 8:414. [PMID: 28428789 PMCID: PMC5382153 DOI: 10.3389/fimmu.2017.00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
With the rapid development of industry and farm, fungi contamination widely exists in occupational environment. Inhalation of fungi-contaminated organic dust results in hypersensitivity pneumonitis. 1,3-β-Glucan is a major cell wall component of fungus and is considered as a biomarker of fungi exposure. Current studies showed that 1,3-β-glucan exposure induced lung inflammation, which involved uncontrolled T helper (Th) cell immune responses, such as Th1, Th2, Th17, and regulatory T cell (Treg). A recently identified IL-10-producing B cells (B10) was reported in regulating immune homeostasis. However, its regulatory role in hypersensitivity pneumonitis is still subject to debate. In our study, we comprehensively investigated the role of B10 and the relationship between B10 and Treg in 1,3-β-glucan-induced lung inflammation. Mice with insufficient B10 exhibited more inflammatory cells accumulation and severer pathological inflammatory changes. Insufficient B10 led to increasing Th1, Th2, and Th17 responses and restricted Treg function. Depletion of Treg before the onset of inflammation could suppress B10. Whereas, Treg depletion only at the late stage of inflammation failed to affect B10. Our study demonstrated that insufficient B10 aggravated the lung inflammation mediated by dynamic shifts in Th immune responses after 1,3-β-glucan exposure. The regulatory function of B10 on Th immune responses might be associated with Treg and IL-10. Treg could only interact with B10 at an early stage.
Collapse
Affiliation(s)
- Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Wujing Dai
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Sitong Du
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Dong Weng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China.,Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Chen Y, Li C, Lu Y, Zhuang H, Gu W, Liu B, Liu F, Sun J, Yan B, Weng D, Chen J. IL-10-Producing CD1d hiCD5 + Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients. Front Immunol 2017; 8:110. [PMID: 28243231 PMCID: PMC5303715 DOI: 10.3389/fimmu.2017.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Silicosis is characterized by chronic lung inflammation and fibrosis, which are extremely harmful to human health. The pathogenesis of silicosis involves uncontrolled immune processes. Evidence supports that regulatory B cells (Bregs) produce negative regulatory cytokines, such as IL-10, which can negatively regulate immune responses in inflammation and autoimmune diseases. Our previous study found that IL-10-producing B cells were involved in the development of silica-induced lung inflammation and fibrosis of mice. However, little is known about the role of Bregs in silicosis patients (SP). In this study, we found that serum concentrations of IL-10 were significantly increased in SP by using protein array screening. We further determined that the frequency of IL-10-producing CD1dhiCD5+ Bregs, not IL-10-producing non-B lymphocytes, was significantly higher in SP compared to subjects under surveillance (SS) and healthy workers (HW) by flow cytometry. We also found that regulatory T cells (Tregs) and Th2 cytokines (IL-4, IL-5, and IL-13) were significantly increased in SP. Th1 cytokines (IFN-γ, IL-2, and IL-12) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) were not significantly different between SP, SS, and HW. Our study indicated that IL-10-producing CD1dhiCD5+ Bregs might maintain Tregs and regulate Th1/Th2 polarization in SP, suggesting that IL-10-producing Bregs may play a critical role in modulating immune homeostasis in SP.
Collapse
Affiliation(s)
- Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Huiying Zhuang
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Weijia Gu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Bo Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Jinkai Sun
- Department of Respiratory Medicine, Shenyang No. 9 Hospital , Shenyang , China
| | - Bo Yan
- Department of Respiratory Medicine, Shenyang No. 9 Hospital , Shenyang , China
| | - Dong Weng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China; Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| |
Collapse
|
32
|
Luo XQ, Yang SB, Qiu SQ, Xie RD, Yang LT, Ke YX, Zhao HX, Geng XR, Yang G, Liu ZQ, Liu JQ, Wang S, Liu DB, Liu J. Post-transcriptional regulation of interleukin-10 in peripheral B cells of airway allergy patients. Am J Transl Res 2016; 8:5766-5772. [PMID: 28078048 PMCID: PMC5209528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
The dysfunction of peripheral immune tolerance plays an important role in the pathogenesis of allergic diseases. Recent reports indicate that micro RNA (miR)-98 is associated with the process of aberrant immune responses. This study aims to test a hypothesis that miR-98 is associated with the pathogenesis of airway allergy via interfering with the development of regulatory B cells (Breg). In this study, patients with airway allergy were recruited into this study. The frequency of Bregs was assessed by flow cytometry. The levels of miR-98 in peripheral B cells were determined by RT-qPCR. A cell-culture model of B cells was developed to test the role of miR-98 in the repressing of interleukin (IL)-10 in B cells. The results showed that the levels of IL-10 in peripheral B cells were significantly lower in patients with airway allergy as compared with healthy subjects. High levels of miR-98 (one of the miR-98 members) were detected in peripheral B cells of patients with airway allergy, which was mimicked by stimulating B cells with IL-4. Histone acetyltransferase p300 was involved in the IL-4-induced miR-98 expression. miR-98 mediated the IL-4-inhibited IL-10 expression in B cells. In conclusion, miR-98 affects the expression of IL-10 in B cells and may be a novel therapeutic target for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Xiang-Qian Luo
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou 510010, China
| | - Shao-Bo Yang
- Department of Cadre Clinic, Chinese PLA General HospitalBeijing 100853, China
| | - Shu-Qi Qiu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Rui-Di Xie
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
| | - Li-Tao Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Yu-Xing Ke
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| | - Hong-Xia Zhao
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| | - Xiao-Rui Geng
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Gui Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Zhi-Qiang Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Jiang-Qi Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Shuai Wang
- The Research Center of Allergy & Immunology, Shenzhen University School of MedicineShenzhen 518060, China
- Longgang ENT HospitalShenzhen 518116, China
| | - Da-Bo Liu
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou 510010, China
| | - Jun Liu
- Shenzhen Maternity & Child Health HospitalShenzhen 518052, China
| |
Collapse
|
33
|
Liu F, Dai W, Li C, Lu X, Chen Y, Weng D, Chen J. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis. Sci Rep 2016; 6:28911. [PMID: 27354007 PMCID: PMC4926212 DOI: 10.1038/srep28911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion.
Collapse
Affiliation(s)
- Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Wujing Dai
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Xiaowei Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, P. R. China
| |
Collapse
|
34
|
Hinz D, Seumois G, Gholami AM, Greenbaum JA, Lane J, White B, Broide DH, Schulten V, Sidney J, Bakhru P, Oseroff C, Wambre E, James EA, Kwok WW, Peters B, Vijayanand P, Sette A. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity. Clin Exp Allergy 2016; 46:705-19. [PMID: 26662458 PMCID: PMC4846575 DOI: 10.1111/cea.12692] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. OBJECTIVE The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. METHODS Peripheral blood mononuclear cells (PBMCs) obtained from allergic individuals and non-allergic controls, either during the pollen season or out of season, were stimulated with either TG extract or a pool of previously identified immunodominant antigenic regions. RESULTS PBMCs from allergic subjects exhibit higher IL-5 and IL-10 responses in season than when collected out of season. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN-γ compared to allergic individuals. Strikingly, non-allergic donors exhibited an opposing pattern, with decreased immune reactivity in season. The broad down-regulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure, but rather react with an active modulation of responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with the allergen exposure and inhibition of responses in non-allergic donors. CONCLUSION AND CLINICAL RELEVANCE Magnitude and functionality of T helper cell responses differ substantially in season vs. out of season in allergic and non-allergic subjects. The results indicate the specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programmes associated with health and allergic disease.
Collapse
MESH Headings
- Allergens/immunology
- Case-Control Studies
- Cytokines/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunologic Memory
- Immunomodulation
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Lymphocyte Count
- Male
- Phenotype
- Phleum/immunology
- Pollen/immunology
- RNA, Messenger/genetics
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- Seasons
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amin M. Gholami
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Jerome Lane
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Brandie White
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Pearl Bakhru
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Zakeri A, Borji H, Haghparast A. Interaction Between Helminths and Toll-Like Receptors: Possibilities and Potentials for Asthma Therapy. Int Rev Immunol 2016; 35:219-48. [PMID: 27120222 DOI: 10.3109/08830185.2015.1096936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are essential components of the innate immune system. They play an important role in the pathogenesis of allergic diseases, especially asthma. Since TLRs significantly orchestrate innate and adaptive immune response, their manipulation has widely been considered as a potential approach to control asthma symptoms. It is well established that helminths have immunoregulatory effects on host immune responses, especially innate immunity. They release bioactive molecules such as excretory-secretory (ES) products manipulating TLRs expression and signaling. Thus, given the promising results derived from preclinical studies, harnessing helminth-derived molecules affecting TLRs can be considered as a potential biological therapy for allergic diseases. Prospectively, the data that are available at present suggest that, in the near future, it is possible that helminth antigens will offer new therapeutic strategies and druggable targets for fighting allergic diseases. This review describes the interactions between helminths and TLRs and discusses the potential possibilities for asthma therapy. In this opinion paper, the authors aimed to review the updated literatures on the interplay between helminths, TLRs, and asthma with a view to proposing helminth-based asthma therapy.
Collapse
Affiliation(s)
- Amin Zakeri
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Hassan Borji
- a Parasitology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Alireza Haghparast
- b Immunology Sections, Department of Pathobiology, Faculty of Veterinary Medicine , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran.,c Biotechnology Section, Department of Pathobiology , Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
36
|
Mohr A, Renaudineau Y, Bagacean C, Pers JO, Jamin C, Bordron A. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1132977. [PMID: 27467951 DOI: 10.1080/2162402x.2015.1132977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.
Collapse
Affiliation(s)
- Audrey Mohr
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Yves Renaudineau
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Cristina Bagacean
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Jacques-Olivier Pers
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Christophe Jamin
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Anne Bordron
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| |
Collapse
|
37
|
A link: Allergic rhinitis, Asthma & Systemic Lupus Erythematosus. Autoimmun Rev 2016; 15:487-91. [PMID: 26851551 DOI: 10.1016/j.autrev.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/29/2023]
Abstract
This review has discussed a link between allergic rhinitis, asthma and systemic lupus erythematosus (SLE) and a case report in this area. A clear link with symptoms of allergic rhinitis, asthma and SLE exists. Several articles found on pubmed in the literature are listed on allergic rhinitis and allergy, Th1-immune responses, mast cells in autoimmunity, total immunoglobulin E levels in lupus, atopic diseases and SLE are reviewed. In addition, risks and correlations, genetic predisposition, environmental factors, immune regulation, elevated serum IgE levels, regulatory B cells for both allergic and autoimmune diseases are mentioned, Asthma and the vascular endothelial cell growth factor, asthma and autoimmune diseases, allergy and autoimmunity, neutrophils, innate and adaptive immunity in the development of SLE, the (Tim) gene family, complement activation in SLE and immunomodulation, hypersensitivity reactions in autoimmunity are discussed.
Collapse
|
38
|
Kim AR, Kim HS, Kim DK, Nam ST, Kim HW, Park YH, Lee D, Lee MB, Lee JH, Kim B, Beaven MA, Kim HS, Kim YM, Choi WS. Mesenteric IL-10-producing CD5+ regulatory B cells suppress cow's milk casein-induced allergic responses in mice. Sci Rep 2016; 6:19685. [PMID: 26785945 PMCID: PMC4726293 DOI: 10.1038/srep19685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Food allergy is a hypersensitive immune reaction to food proteins. We have previously demonstrated the presence of IL-10-producing CD5(+) B cells and suggested their potential role in regulating cow's milk casein allergy in humans and IgE-mediated anaphylaxis in mice. In this study, we determined whether IL-10-producing CD5(+) regulatory B cells control casein-induced food allergic responses in mice and, if so, the underlying mechanisms. The induction of oral tolerance (OT) by casein suppressed casein-induced allergic responses including the decrease of body temperature, symptom score, diarrhea, recruitment of mast cells and eosinophils into jejunum, and other biological parameters in mice. Notably, the population of IL-10-producing CD5(+) B cells was increased in mesenteric lymph node (MLN), but not in spleen or peritoneal cavity (PeC) in OT mice. The adoptive transfer of CD5(+) B cells from MLN, but not those from spleen and PeC, suppressed the casein-induced allergic responses in an allergen-specific and IL-10-dependent manner. The inhibitory effect of IL-10-producing CD5(+) B cells on casein-induced allergic response was dependent on Foxp3(+) regulatory T cells. Taken together, mesenteric IL-10-producing regulatory B cells control food allergy via Foxp3(+) regulatory T cells and could potentially act as a therapeutic regulator for food allergy.
Collapse
Affiliation(s)
- A-Ram Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Do Kyun Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Seung Taek Nam
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Hwan Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dajeong Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Min Bum Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jun Ho Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bokyung Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul 132-714, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
39
|
Li H, Wang CC, Zhang M, Li XL, Zhang P, Yue LT, Miao S, Wang S, Liu Y, Li YB, Duan RS. Statin-modified dendritic cells regulate humoral immunity in experimental autoimmune myasthenia gravis. Mol Cell Neurosci 2015; 68:284-92. [DOI: 10.1016/j.mcn.2015.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2022] Open
|
40
|
Clinical significance of regulatory B cells in the peripheral blood of patients with oesophageal cancer. Cent Eur J Immunol 2015; 40:263-5. [PMID: 26557042 PMCID: PMC4637401 DOI: 10.5114/ceji.2015.52840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023] Open
Abstract
B cell subsets have been found to exhibit a negative regulatory function, like Tregs. The present study investigates the effects of CD5+CD19+ interleukin (IL)-10 (B10) on the occurrence and development of oesophageal carcinoma by analysing B10 levels in the peripheral blood of patients with oesophageal carcinoma. Peripheral blood of 120 oesophageal cancer patients and 120 healthy controls were collected, and regulatory B cell counts were determined by flow cytometry. The level of B10 cells in the peripheral blood of patients with oesophageal carcinoma was significantly higher than that in healthy controls (p < 0.05). In addition, B10 levels in stage III-IV patients (3.5 ±0.7%) were higher than those in stage I-II patients (2.5 ±0.6%), which were in turn higher than those in the healthy controls (1.3 ±0.3%). The level of B10 increased with clinical progression of oesophageal cancer, suggesting that B10 cells may influence the development or progression of oesophageal cancer.
Collapse
|
41
|
Tian F, Hu X, Xian K, Zong D, Liu H, Wei H, Yang W, Qian L. B10 cells induced by Schistosoma japonicum soluble egg antigens modulated regulatory T cells and cytokine production of T cells. Parasitol Res 2015; 114:3827-34. [PMID: 26149531 DOI: 10.1007/s00436-015-4613-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 11/29/2022]
Abstract
A distinct subset of B cells, also known as regulatory B cells, can negatively regulate T cell immune responses, but the role of these cells in schistosomiasis has not been clarified. Soluble egg antigen (SEA) and soluble adult worm antigen preparation (SWAP), which are two important antigen sources during Schistosoma japonicum infection, both can induce Th1, Th2, Th17, and Treg cells and the corresponding cytokines. However, whether they can induce the production of regulatory B cells and the regulatory function of schistosome-induced regulatory B cells remains unclear. In our studies, we first analyzed the production of regulatory B cells stimulated by SEA or SWAP using flow cytometry and enzyme-linked immunosorbent assay, and observed these cells in mice immunized by SEA or SWAP. Then, B10 cells sorted by MicroBeads were co-cultured with CD4(+) T cells, and the proportion of Treg cells were detected. At the same time, the IFN-γ, IL-4, and IL-17 levels in the culture supernatant were measured. The results showed that B10 cells were preferentially induced by SEA in vitro, and B10 could also be induced in mice immunized by SEA. SEA-induced B10 cells promoted the expansion of regulatory T cells and induced IL-4 secretion, but inhibited IL-17 production. These findings reveal that the generation of B10 cells is determined by parasitic antigen, and suggest the function of B10 cell induced by SEA. This study significantly contributes to the understanding of the immune regulatory role in schistosomiasis and may help protect hosts from infection.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathogen Biology and Immunology, School of Medince, Yangzhou University, Yangzhou, Jiangsu, 225001, China,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sorrentino R, Bertolino A, Terlizzi M, Iacono VM, Maiolino P, Cirino G, Roviezzo F, Pinto A. B cell depletion increases sphingosine-1-phosphate-dependent airway inflammation in mice. Am J Respir Cell Mol Biol 2015; 52:571-83. [PMID: 25250941 DOI: 10.1165/rcmb.2014-0207oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) has been widely associated with inflammation-based lung pathologies. Because B cells play a critical role as antigen-presenting and/or Ig-producing cells during asthmatic conditions, we wanted to dissect the role of these cells in S1P-dependent airway hyperreactivity and inflammation. Mice were sensitized to ovalbumin or exposed to S1P. Ovalbumin sensitization caused airway hyperreactivity coupled to an increased lung infiltration of B cells, which was significantly reduced after the inhibition of sphingosine kinases I/II. Similarly, the sole administration of S1P increased bronchial reactivity compared with vehicle and was accompanied by a higher influx of B cells in a time-dependent manner. This effect was associated with higher levels of IL-13, transforming growth factor-β, IL-10, and T regulatory cells. In addition, isolated S1P-derived lung B cells increased CD4(+) and CD8(+) T cell proliferation in vitro, and their suppressive nature at Day 14 was associated with the higher release of transforming growth factor-β and IL-10 when they were cocultured. Therefore, to prove the role of B cells in S1P-mediated airway inflammation, and because CD20 expression, contrary to major hystocompatibility complex I and major hystocompatibility complex II, was up-regulated at Day 14, CD20(+) B cells were depleted by means of a specific monoclonal antibody. The absence of CD20(+) B cells increased airway reactivity and inflammation in S1P-treated mice compared with control mice. These data imply that sphingosine kinase/S1P-mediated airway inflammation is countered by B cells via the induction of an immune-suppressive environment to reduce asthma-like outcomes in mice.
Collapse
|
43
|
Jeong YI, Hong SH, Cho SH, Lee WJ, Lee SE. Toxoplasma gondii Infection Suppresses House Dust Mite Extract-Induced Atopic Dermatitis in NC/Nga Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:557-64. [PMID: 26333702 PMCID: PMC4605928 DOI: 10.4168/aair.2015.7.6.557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/29/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects humans and animals via congenital or postnatal routes, and it is found worldwide. Modulation of the immune system by parasite infection is proposed to suppress allergic inflammation. Growing evidences have shown that interleukin (IL)-10-producing regulatory B cells (B(regs)) and CD4+CD25+FoxP3+ regulatory T cells (T(regs)) induced by parasite infection play a critical role in allergic or autoimmune diseases because these cells regulate negatively cellular immune responses and inflammation. Currently, the role of IL-10-producing regulatory B cells in host immune response during T. gondii infection is unknown. In this study, we investigate whether T. gondii infection can suppress the development of unrelated atopic dermatitis (AD)-like lesions. METHODS AD is a chronically relapsing inflammatory skin disease accompanied by severe itching; for this, we used NC/Nga mice, a well-known experimental model of systemic AD. Repeated exposure to Dermatophagoides farinae crude extract (DfE), known as a major environmental allergen, evokes AD-like skin lesions in NC/Nga mice under specific pathogen-free conditions. NC/Nga mice were intraperitoneally infected with 10 cysts of T. gondii. RESULTS T. gondii infection significantly ameliorated AD-like skin lesions in NC/Nga mice. The subpopulation of B(regs) and T(regs) in the AD mice was expanded in the course of T. gondii infection. In addition, T. gondii infection inhibited Th2 and enhanced Th1 immune response in the DfE-treated AD mice. CONCLUSIONS We have experimentally demonstrated for the first time that T. gondii infection ameliorated AD-like skin lesions in a mouse model of AD. Our study could in part explain the mechanisms of how parasite infection prevents the development of allergic disorder. Therefore, these immunemechanisms induced by T. gondii infection may be beneficial for the host in terms of reduced risk of allergic immune reactions.
Collapse
Affiliation(s)
- Young Il Jeong
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Sung Hee Hong
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Shin Hyeong Cho
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Won Ja Lee
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Sang Eun Lee
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea.
| |
Collapse
|
44
|
Hsu LH, Li KP, Chu KH, Chiang BL. A B-1a cell subset induces Foxp3(-) T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol 2015; 12:354-65. [PMID: 25132452 PMCID: PMC4654317 DOI: 10.1038/cmi.2014.56] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/19/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells play a critical role in the maintenance of tolerance. B-1a cells belong to a specific and functionally important B-cell subset that exerts its regulatory role through the production of IL-10. While IL-10 has been correlated with the induction of type 1 Treg (Tr1) cells or Tr1-like cells, whether IL-10-producing B-1a cells are able to induce Treg cells, especially the Tr1 lineage, is poorly understood. We have demonstrated that, similar to the reported B-2 cells, B-1a cells are able to convert naïve CD4(+)CD25(-) T cells into a subset of T cells with suppressive function, which we called 'Treg-of-B1a' cells. Treg-of-B1a cells do not express Foxp3, but upregulate the Treg markers OX40, programmed death 1 (PD-1), inducible costimulator (ICOS) and IL-10R. Moreover, Treg-of-B1a cells do not express Foxp3 and produce high levels of IFN-γ and IL-10, but minimal amounts of IL-4; therefore, they resemble Tr1 cells. However, utilizing IL-10(-/-) mice, we showed that IL-10 was not involved in the induction of Treg-of-B1a cells. On the contrary, CD86-mediated costimulation was essential for B-1a cells to drive the induction of Treg-of-B1a cells. Finally, we demonstrated that, in contrast to the Treg cells generated by B-2 cells that mediate contact-dependent suppression, Treg-of-B1a cells suppress through secreting soluble factors. While Tr1 cells mediate suppression mainly through IL-10 or TGF-β secretion, Treg-of-B1a cells mediate suppression through an IL-10- and TGF-β-independent pathway. Together, these findings suggest that B-1a cells induce a functionally and phenotypically distinct Treg population that is dissimilar to the reported Foxp3(+) Treg or Tr1 cells.
Collapse
Affiliation(s)
- Ling-Hui Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Kun-Po Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Kuan-Hua Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Bor-Luen Chiang
- 1] Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China [2] Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, China
| |
Collapse
|
45
|
Joly MS, Martin RP, Mitra-Kaushik S, Phillips L, D'Angona A, Richards SM, Joseph AM. Transient low-dose methotrexate generates B regulatory cells that mediate antigen-specific tolerance to alglucosidase alfa. THE JOURNAL OF IMMUNOLOGY 2014; 193:3947-58. [PMID: 25210119 DOI: 10.4049/jimmunol.1303326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biologic drugs, including enzyme-replacement therapies, can elicit anti-drug Abs (ADA) that may interfere with drug efficacy and impact patient safety. In an effort to control ADA, we focused on identifying regimens of immune tolerance induction that may be readily available for clinical use. Data generated in both wild-type mice and a Pompe disease mouse model demonstrate that single-cycle, low-dose methotrexate can be as effective as three cycles of methotrexate in providing a long-lived reduction in alglucosidase alfa-specific ADA. In addition, we show that methotrexate induces Ag-specific tolerance as mice generate similar Ab responses to an irrelevant Ag regardless of prior methotrexate treatment. Methotrexate-induced immune tolerance does not seem to involve cell depletion, but rather a specific expansion of IL-10- and TGF-β-secreting B cells that express Foxp3, suggesting an induction of regulatory B cells. The mechanism of immune tolerance induction appears to be IL-10 dependent, as methotrexate does not induce immune tolerance in IL-10 knockout mice. Splenic B cells from animals that have been tolerized to alglucosidase alfa with methotrexate can transfer tolerance to naive hosts. We hypothesize that methotrexate induction treatment concomitant with initial exposure to the biotherapeutic can induce Ag-specific immune tolerance in mice through a mechanism that appears to involve the induction of regulatory B cells.
Collapse
|
46
|
Abstract
PURPOSE The function of regulatory B lymphocytes is known to be abnormal in inflammatory diseases. However, a recent study indicates that IL-10+ B cells seem to be expanded in rheumatoid arthritis (RA). Therefore, the state of IL-10+ B cells in the peripheral blood from RA patients and healthy controls were investigated. MATERIALS AND METHODS CD19+ cells in peripheral blood mononuclear cells were purified from blood samples of RA patients and age and gender-matched healthy controls, and stimulated with CD40 ligand and CpG for 48 hours. Then, intracellular IL-10 in CD19+ cells was analyzed using flow cytometry. RESULTS There was no significant difference in the proportion of IL-10+ B cells between 10 RA patients and 10 healthy controls (RA, 0.300±0.07 vs. healthy control 0.459±0.07, p=0.114). The proportion of induced IL-10+ B cells to total B cells in RA patients was significantly higher than those in controls (RA, 4.44±3.44% vs. healthy control 2.44±1.64%, p=0.033). However, the proportion of IL-10+ B cells to total B cells correlated negatively with disease activity in RA patients (r=-0.398, p=0.040). Erythrocyte sedimentation rate or C-reactive protein or medication was not associated with the proportion of IL-10+ B cells. CONCLUSION The proportion of induced IL-10+ B cell increased in RA patients compared to healthy control, however, negatively correlated with disease activity in RA.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Ji Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - In Seol Yoo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jae Ho Lee
- Department of Paediatrics, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
47
|
Lessons learned from mice and man: mimicking human allergy through mouse models. Clin Immunol 2014; 155:1-16. [PMID: 25131136 DOI: 10.1016/j.clim.2014.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023]
Abstract
The relevance of using mouse models to represent human allergic pathologies is still unclear. Recent studies suggest the limitations of using models as a standard for assessing immune response and tolerance mechanisms, as mouse models often do not sufficiently depict human atopic conditions. Allergy is a combination of aberrant responses to innocuous environmental agents and the subsequent TH2-mediated inflammatory responses. In this review, we will discuss current paradigms of allergy - specifically, TH2-mediated and IgE-associated immune responses - and current mouse models used to recreate these TH2-mediated pathologies. Our overall goal is to highlight discrepancies that exist between mice and men by examining the advantages and disadvantages of allergic mouse models with respect to the human allergic condition.
Collapse
|
48
|
Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol 2014; 20:9653-9664. [PMID: 25110405 PMCID: PMC4123356 DOI: 10.3748/wjg.v20.i29.9653] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/26/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer’s patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.
Collapse
|
49
|
SHI JIAZHEN, LI SHIBAO, ZHOU YAN, WANG LIXIN, WEN JIANGTAO, WANG YONGHONG, KANG ZHIHUA. Perioperative changes in peripheral regulatory B cells of patients with esophageal cancer. Mol Med Rep 2014; 10:1525-30. [DOI: 10.3892/mmr.2014.2347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
|
50
|
Influence of maternal immunization with allergens on the thymic maturation of lymphocytes with regulatory potential in children: a broad field for further exploration. J Immunol Res 2014; 2014:780386. [PMID: 25009823 PMCID: PMC4070472 DOI: 10.1155/2014/780386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
A variety of mechanisms are involved in the regulation of offspring allergy development through maternal immunization with allergens. The passive transfer of antigens, antibodies, and cytokines, the induction of phenotypic alterations in offspring lymphocytes, and the induction of regulatory populations in offspring have been proposed, but these mechanisms remain incompletely understood. It is likely that maternal immunization could affect the intrathymic maturation of offspring TCD4+, TCD8+, γδT, nTreg, iNKT, and B lymphocytes, although there are currently no human maternal immunization protocols for the regulation of allergic responses in children. Some studies have suggested a direct interaction between the maternal immune status and the offspring intrathymic microenvironment; this interaction could influence the maturation of offspring regulatory cells and must be explored for the development of therapies to control allergy development in children.
Collapse
|