1
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Nowowiejska J, Baran A, Pryczynicz A, Hermanowicz JM, Sieklucka B, Pawlak D, Flisiak I. Gasdermin B (GSDMB) in psoriatic patients-a preliminary comprehensive study on human serum, urine and skin. Front Mol Biosci 2024; 11:1382069. [PMID: 38693919 PMCID: PMC11061620 DOI: 10.3389/fmolb.2024.1382069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Psoriasis is one of the most common skin diseases and a crucial issue to manage in contemporary dermatology. The search for the details of its pathogenesis, markers and treatment is continuously ongoing. Our aim was to investigate the role of gasdermin B (GSDMB) in psoriasis, the second protein from the gasdermin family, involved in cell death and proliferation. GSDMB serum and urinary concentrations have never been studied in psoriatics, neither tissue expression of GSDMB by immunohistochemistry. The study included 60 psoriatic patients and 30 volunteers without dermatoses as controls. The serum and urinary GSDMB were evaluated by ELISA. Tissue expression of GSDMB was analyzed by immunohistochemistry. The serum and absolute urine concentrations of GSDMB were significantly higher in psoriatic patients than controls without skin diseases (p = 0.0137, p = 0.039 respectively). Urinary GSDMB/creatinine concentration ratio was significantly lower in patients compared to controls (p = 0.0241). The expression of GSDMB in the dermis and epidermis was significantly more prevalent in psoriatic plaque compared to the non-lesional skin and healthy skin of controls (p = 0.0012, p = 0.017, respectively). Serum GSDMB correlated positively with the age of patients (R = 0.41; p = 0.001). Our study adds to the current state of knowledge about psoriasis concerning the potential involvement of GSDMB. Possibly it could be engaged in keratinocytes migration, which requires further research. Elevated serum GSDMB and decreased urinary GSDMB/creatinine concentration ratio could potentially be investigated as psoriasis biomarkers. GSDMB could be investigated in the future as a potential therapeutic target.
Collapse
Affiliation(s)
- Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Almacioglu M, Keskin O, Ozkars MY, Balci SO, Kucukosmanoglu E, Pehlivan S, Keskin M. Association of childhood asthma with Gasdermin B (GSDMB) and Oromucoid-like 3 (ORMDL3) genes. North Clin Istanb 2023; 10:769-777. [PMID: 38328715 PMCID: PMC10846573 DOI: 10.14744/nci.2023.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Genome-length association studies have shown that Gasdermin B (GSDMB) and Orosomucoid-like 3 (ORMDL3) genes located on the long arm of chromosome 17 are associated with asthma. In this study, it was aimed to determine the possible relationship between asthma control test (ACT), exercise provocation test (ECT), and fractional nitric oxide (FENO) levels and GSDMB and ORMDL3 gene expressions. METHODS 59 asthmatic and 38 non-asthmatic children were included in the study. We divided the patient group into two subgroups as mild persistent asthma (29 patients) and moderate persistent asthma (30 patients). ORMDL3, GSDMB gene expression levels, ECT, total IgE levels, and eosinophil counts were measured in all cases. In addition, ACT and FeNO levels were measured in children with asthma. Afterward, the relationship of ORMDL3 and GSDMB gene expression coefficient changes with ECT, ACT, and FeNO was examined. RESULTS When patients with ACT ≤15 were compared with patients with ACT ≥20, ORMDL3 and GSDMB gene expressions were increased 6.74 and 11.74 times, respectively. Comparing patients with ACT ≥20 and ACT ≤15 in terms of coefficient changes (ΔCq), higher change values were observed for ΔCq ORMDL3 in patients with ACT ≤15 (p=0.015). Similarly, when patients with FENO ≤25 ppb were compared with patients with FENO >25 ppb, ORMDL3 and GSDMB gene expressions were increased by 2.93 and 3.56 times, respectively. When the coefficient changes were compared, no significant difference was found between FENO≤25 and FENO >25 patients. There was a slight negative correlation between ΔCq values and ACT score (p=0.003, r=-0.418 for ORMDL3, and p=0.016, r=-0.345 for GSDMB). In addition, we observed a statistically significant positive correlation between ORMDL3 and GSDMB gene expressions (r=0.80, p<0.001). CONCLUSION We showed that increased ORMDL3 and GSDMB gene expression levels may be associated with ACT scores, FeNO and ECT in asthma. These findings may encourage future studies with larger numbers of subjects that can use gene expression levels in various asthma phenotypes for prognostic prediction.
Collapse
Affiliation(s)
- Mehmet Almacioglu
- Department of Pediatrics, SANKO University Faculty of Medicine, Gaziantep, Turkiye
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Mehmet Yasar Ozkars
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sibel Oguzkan Balci
- Department of Biology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sacide Pehlivan
- Department of Biology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Mehmet Keskin
- Department of Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| |
Collapse
|
5
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
6
|
Wang X, Wei X, Lu Y, Wang Q, Fu R, Wang Y, Wang Q, Wang X, Chen S, Xu A, Yuan S. Characterization of GSDME in amphioxus provides insights into the functional evolution of GSDM-mediated pyroptosis. PLoS Biol 2023; 21:e3002062. [PMID: 37134086 PMCID: PMC10155998 DOI: 10.1371/journal.pbio.3002062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/06/2023] [Indexed: 05/04/2023] Open
Abstract
Members of the gasdermin (GSDM) family are pore-forming effectors that cause membrane permeabilization and pyroptosis, a lytic proinflammatory type of cell death. To reveal the functional evolution of GSDM-mediated pyroptosis at the transition from invertebrates to vertebrates, we conducted functional characterization of amphioxus GSDME (BbGSDME) and found that it can be cleaved by distinct caspase homologs, yielding the N253 and N304 termini with distinct functions. The N253 fragment binds to cell membrane, triggers pyroptosis, and inhibits bacterial growth, while the N304 performs negative regulation of N253-mediated cell death. Moreover, BbGSDME is associated with bacteria-induced tissue necrosis and transcriptionally regulated by BbIRF1/8 in amphioxus. Interestingly, several amino acids that are evolutionarily conserved were found to be important for the function of both BbGSDME and HsGSDME, shedding new lights on the functional regulation of GSDM-mediated inflammation.
Collapse
Affiliation(s)
- Xinli Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Xuxia Wei
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Yan Lu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qinghuan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Rong Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiangyan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
8
|
Nowakowska J, Olechnowicz A, Langwiński W, Koteluk O, Lemańska Ż, Jóźwiak K, Kamiński K, Łosiewski W, Stegmayr J, Wagner D, Alsafadi HN, Lindstedt S, Dziuba M, Bielicka A, Graczyk Z, Szczepankiewicz A. Increased expression of ORMDL3 in allergic asthma: a case control and in vitro study. J Asthma 2023; 60:458-467. [PMID: 35321632 DOI: 10.1080/02770903.2022.2056896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Asthma is the most frequent chronic disease in children. One of the most replicated genetic findings in childhood asthma is the ORMDL3 gene confirmed in several GWA studies in several pediatric populations. OBJECTIVES The purpose of this study was to analyze ORMDL3 variants and expression in childhood asthma in the Polish population. METHODS In the study we included 416 subject, 223 asthmatic children and 193 healthy control subjects. The analysis of two SNPs (rs3744246 and rs8076131) was performed using genotyping with TaqMan probes. The methylation of the ORMDL3 promoter was examined with Methylation Sensitive HRM (MS-HRM), covering 9 CpG sites. The expression of ORMDL3 was analyzed in PBMCs from pediatric patients diagnosed with allergic asthma and primary human bronchial epithelial cells derived from healthy subjects treated with IL-13, IL-4, or co-treatment with both cytokines to model allergic airway inflammation. RESULTS We found that ORMDL3 expression was increased in allergic asthma both in PBMCs from asthmatic patients as well as in human bronchial epithelial cells stimulated with the current cytokines. We did not observe significant differences between cases and controls either in the genotype distribution of analyzed SNPs (rs3744246 and rs8076131) nor in the level of promoter methylation. CONCLUSIONS Increased ORMDL3 expression is associated with pediatric allergic asthma and upregulated in the airways upon Th2-cytokines stimulation, but further functional studies are required to fully understand its role in this disease.
Collapse
Affiliation(s)
- Joanna Nowakowska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olechnowicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Koteluk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Żaneta Lemańska
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Jóźwiak
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Kamiński
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Łosiewski
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - John Stegmayr
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maria Dziuba
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Bielicka
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Graczyk
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Afzal S, Ramzan K, Ullah S, Jamal A, Basit S, AlKattan KM, Waqar AB. Association between 17q21 variants and asthma predisposition in Pashtun population from Pakistan. J Asthma 2023; 60:63-75. [PMID: 34982638 DOI: 10.1080/02770903.2021.2025391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Asthma is a heterogeneous and genetically complex respiratory disease, and more than 300 million people are affected worldwide. In this study, frequencies of four SNPs (rs3816470, rs7216389, rs8067378, rs12603332) in chromosome 17q21 region were analyzed and their relationship with the asthma susceptibility, in the Pashtun population of Khyber Pakhtunkhwa province (KPK) of Pakistan were investigated. METHODS DNA samples from 500 subjects (asthma cases/controls) were genotyped by Sanger sequencing. Chi-square tests, logistic regression analysis, linkage disequilibrium, and haplotype analysis techniques were applied to study the association of the SNPs with asthma. RESULTS Genetic models, including recessive, dominant, co-dominant, over-dominant, and additive, were tested. The frequencies of alleles T/T at rs3816470 (OR = 1.91; 95%CI = 1.15-3.18; p = .011*) and rs7216389 (OR = 2.14; 95%CI = 1.21-3.79; p = .0076*), A/A at rs 8067378 (OR = 1.89; 95%CI = 1.17-3.06; p = .0081*), C/C at rs12603332 (OR = 1.97; 95%CI = 1.18-3.27; p = .008*), under recessive models, respectively, were significantly (p-values < .0125) associated with asthma susceptibility. The frequencies of T/T genotype in rs3816470 (OR = 6.01; 95%CI = 2.48-14.60; p = .000147*), and rs7216389 (OR = 5.05; 95%CI = 1.79-14.21; p = .003296*), and C/C at rs12603332 (OR = 2.64; 95%CI = 1.11-6.32; p = .019063*), were significantly (p-values < .0125) associated with asthma susceptibility in Pashtun women by stratified analysis based on age and gender. Similarly, three unique haplotypes were found associated with disease development and protective effect in female and male subjects. Linkage disequilibrium analysis presented a strong linkage (≥80%) between SNP variants and predicted their co-inheritance in the studied population. CONCLUSION The 17q21 variants (rs3816470, rs7216389, rs12603332) were found significantly (p-values < .0125) associated with asthma predisposition in the Pashtun population of KPK exclusively in the female asthmatic cases. Supplemental data for this article can be accessed.
Collapse
Affiliation(s)
- Sibtain Afzal
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sajjad Ullah
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Arshad Jamal
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,Biology Department, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah Al-Munawarah, Saudi Arabia
| | | | - Ahmed Bilal Waqar
- Department of Medical Laboratory Sciences, Faculty of Allied & Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.,University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Tang R, Lyu X, Li H, Sun J. The 4G/5G polymorphism of plasminogen activator inhibitor type 1 is a predictor of allergic cough. Front Genet 2023; 14:1139813. [PMID: 36911417 PMCID: PMC9998911 DOI: 10.3389/fgene.2023.1139813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Background: It has been suggested that genetic factors may be substantially linked to allergy disorders. This study aims to investigate the relationship between the genetic susceptibility of Chinese patients with allergy disorders and the polymorphisms of plasminogen activator inhibitor 1 gene (PAI-1) rs1799762, cysteinyl leukotriene receptor 1 gene (CYSLTR1) rs320995, gasdermin B gene (GSDMB) rs7216389, glycoprotein IIIa gene (GPIIIa) rs5918, glycoprotein Ib alpha gene (GP1BA) rs6065, platelet endothelial aggregation receptor 1 gene (PEAR1) rs12041331, and tumor necrosis factor alpha gene (TNF-α) rs1800629. Methods: From the Peking Union Medical College Hospital, this study enrolled 60 healthy participants and 286 participants with allergic diseases. TaqMan-minor groove binder (MGB) quantitative polymerase chain reaction (qPCR) was used to examine the gene polymorphisms in each group. Results: The TaqMan-MGB qPCR results were completely consistent with the DNA sequencing results, according to other studies in this medical center (Kappa = 1, p < .001). Only the distribution of PAI-1 rs1799762 was different between patients with allergic cough and healthy people (χ2 = 7.48, p = .0238). With regard to cough patients, the 4G4G and 5G5G genotypes were more frequent (allergic cough vs. healthy individuals: 4G4G 57.9% vs. 26.7%; 5G5G 20.0% vs. 13.3%), but the 4G5G genotype was more frequent in healthy people (allergic cough vs. healthy individuals: 45.7% vs. 60.0%). The CYSLTR1 rs320995, GSDMB rs7216389, GPIIIa rs5918, GP1BA rs6065, PEAR1 rs12041331, and TNF-α rs1800629 polymorphisms, however, did not show any of such relationships. Conclusion: The PAI-1 rs1799762 polymorphisms may be associated with the genetic susceptibility of Chinese allergic disease patients with cough performance.
Collapse
Affiliation(s)
- Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Lyu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Eight-Year Program of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Allergy Department, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Pan Y, Cai W, Huang J, Cheng A, Wang M, Yin Z, Jia R. Pyroptosis in development, inflammation and disease. Front Immunol 2022; 13:991044. [PMID: 36189207 PMCID: PMC9522910 DOI: 10.3389/fimmu.2022.991044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
In the early 2000s, caspase-1, an important molecule that has been shown to be involved in the regulation of inflammation, cell survival and diseases, was given a new function: regulating a new mode of cell death that was later defined as pyroptosis. Since then, the inflammasome, the inflammatory caspases (caspase-4/5/11) and their substrate gasdermins (gasdermin A, B, C, D, E and DFNB59) has also been reported to be involved in the pyroptotic pathway, and this pathway is closely related to the development of various diseases. In addition, important apoptotic effectors caspase-3/8 and granzymes have also been reported to b involved in the induction of pyroptosis. In our article, we summarize findings that help define the roles of inflammasomes, inflammatory caspases, gasdermins, and other mediators of pyroptosis, and how they determine cell fate and regulate disease progression.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| |
Collapse
|
12
|
Jin Z, Pan Z, Wang Z, Kong L, Zhong M, Yang Y, Dou Y, Sun JL. CYSLTR1 rs320995 (T927C) and GSDMB rs7216389 (G1199A) Gene Polymorphisms in Asthma and Allergic Rhinitis: A Proof-of-Concept Study. J Asthma Allergy 2022; 15:1105-1113. [PMID: 36034974 PMCID: PMC9400812 DOI: 10.2147/jaa.s371120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Asthma and allergic rhinitis have been reported to be strongly associated with genetic factors. The aim of this study was to evaluate the accuracy of the TaqMan-MGB (minor groove binder) qPCR method for detecting CYSLTR1 rs320995 (T927C) and GSDMB rs7216389 (G1199A) gene polymorphisms as well as to explore the association of CYSLTR1 rs320995 and GSDMB rs7216389 polymorphisms with genetic susceptibility of Chinese patients with asthma and allergic rhinitis. Methods In this study, 310 asthmatic patients and 60 healthy individuals were recruited in Peking Union Medical College Hospital. The CYSLTR1 rs320995 (T927C) and GSDMB rs7216389 (G1199A) gene polymorphisms in each group were analyzed by TaqMan-MGB qPCR and DNA sequencing which was regarded as the gold standard. After the validation of this method, additional 71 patients with allergic rhinitis and 72 patients with asthma combined with allergic rhinitis were selected and tested by using TaqMan-MGB qPCR. Results The TaqMan-MGB qPCR results were fully consistent with DNA sequencing results (Kappa = 1, P<0.001). In addition, the results of the TaqMan-MGB qPCR assay were not affected by bilirubin and lipids. We found differential distribution of CYSLTR1 rs320995 genotypes in female patients with asthma combined with allergic rhinitis (χ 2=6.172, P=0.046, statistical power = 0.591). Specifically, the TT genotype is more frequent in women suffering from asthma with allergic rhinitis, whereas the TC genotype is more prevalent in healthy women. However, no such associations were observed in the GSDMB rs7216389 polymorphism. Conclusion We have established a reliable TaqMan-MGB qPCR method for the detection of CYSLTR1 rs320995 and GSDMB rs7216389 polymorphisms. Moreover, the CYSLTR1 rs320995 polymorphism may be associated with genetic susceptibility of Chinese female patients with asthma and allergic rhinitis. Multicenter studies with larger sample sizes are required in the future.
Collapse
Affiliation(s)
- Zhengshuo Jin
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China.,Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhouxian Pan
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lingjun Kong
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Min Zhong
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yongshi Yang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yaling Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jin-Lyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
No longer married to inflammasome signaling: the diverse interacting pathways leading to pyroptotic cell death. Biochem J 2022; 479:1083-1102. [PMID: 35608339 PMCID: PMC9162454 DOI: 10.1042/bcj20210711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
For over 15 years the lytic cell death termed pyroptosis was defined by its dependency on the inflammatory caspase, caspase-1, which, upon pathogen sensing, is activated by innate immune cytoplasmic protein complexes known as inflammasomes. However, this definition of pyroptosis changed when the pore-forming protein gasdermin D (GSDMD) was identified as the caspase-1 (and caspase-11) substrate required to mediate pyroptotic cell death. Consequently, pyroptosis has been redefined as a gasdermin-dependent cell death. Studies now show that, upon liberation of the N-terminal domain, five gasdermin family members, GSDMA, GSDMB, GSDMC, GSDMD and GSDME can all form plasma membrane pores to induce pyroptosis. Here, we review recent research into the diverse stimuli and cell death signaling pathways involved in the activation of gasdermins; death and toll-like receptor triggered caspase-8 activation of GSDMD or GSMDC, apoptotic caspase-3 activation of GSDME, perforin-granzyme A activation of GSDMB, and bacterial protease activation of GSDMA. We highlight findings that have begun to unravel the physiological situations and disease states that result from gasdermin signaling downstream of inflammasome activation, death receptor and mitochondrial apoptosis, and necroptosis. This new era in cell death research therefore holds significant promise in identifying how distinct, yet often networked, pyroptotic cell death pathways might be manipulated for therapeutic benefit to treat a range of malignant conditions associated with inflammation, infection and cancer.
Collapse
|
15
|
Zhou Y, Liang ZS, Jin Y, Ding J, Huang T, Moore JH, Zheng ZJ, Huang J. Shared Genetic Architecture and Causal Relationship Between Asthma and Cardiovascular Diseases: A Large-Scale Cross-Trait Analysis. Front Genet 2022; 12:775591. [PMID: 35126453 PMCID: PMC8811262 DOI: 10.3389/fgene.2021.775591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence has suggested that there is a positive association between asthma and cardiovascular diseases (CVDs), implying a common architecture between them. However, the shared genetic architecture and causality of asthma and CVDs remain unclear. Methods: Based on the genome-wide association study (GWAS) summary statistics of recently published studies, our study examined the genetic correlation, shared genetic variants, and causal relationship between asthma (N = 127,669) and CVDs (N = 86,995–521,612). Statistical methods included high-definition likelihood (HDL), cross-trait meta-analyses of large-scale GWAS, transcriptome-wide association studies (TWAS), and Mendelian randomization (MR). Results: First, we observed a significant genetic correlation between asthma and heart failure (HF) (Rg = 0.278, P = 5 × 10−4). Through cross-trait analyses, we identified a total of 145 shared loci between asthma and HF. Fifteen novel loci were not previously reported for association with either asthma or HF. Second, we mapped these 145 loci to a total of 99 genes whose expressions are enriched in a broad spectrum of tissues, including the seminal vesicle, tonsil, appendix, spleen, skin, lymph nodes, breast, cervix and uterus, skeletal muscle, small intestine, lung, prostate, cardiac muscle, and liver. TWAS analysis identified five significant genes shared between asthma and HF in tissues from the hemic and immune system, digestive system, integumentary system, and nervous system. GSDMA, GSDMB, and ORMDL3 are statistically independent genetic effects from all shared TWAS genes between asthma and HF. Third, through MR analysis, genetic liability to asthma was significantly associated with heart failure at the Bonferroni-corrected significance level. The odds ratio (OR) is 1.07 [95% confidence interval (CI): 1.03–1.12; p = 1.31 × 10−3] per one-unit increase in loge odds of asthma. Conclusion: These findings provide strong evidence of genetic correlations and causal relationship between asthma and HF, suggesting a shared genetic architecture for these two diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Zhi-Sheng Liang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Yinzi Jin
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Jiayuan Ding
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Tao Huang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jason H. Moore
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jie Huang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
- *Correspondence: Jie Huang,
| |
Collapse
|
16
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R, Chen R. The Versatile Gasdermin Family: Their Function and Roles in Diseases. Front Immunol 2021; 12:751533. [PMID: 34858408 PMCID: PMC8632255 DOI: 10.3389/fimmu.2021.751533] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
The gasdermin (GSDM) family, a novel group of structure-related proteins, consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME/DNFA5, and PVJK/GSDMF. GSDMs possess a C-terminal repressor domain, cytotoxic N-terminal domain, and flexible linker domain (except for GSDMF). The GSDM-NT domain can be cleaved and released to form large oligomeric pores in the membrane that facilitate pyroptosis. The emerging roles of GSDMs include the regulation of various physiological and pathological processes, such as cell differentiation, coagulation, inflammation, and tumorigenesis. Here, we introduce the basic structure, activation, and expression patterns of GSDMs, summarize their biological and pathological functions, and explore their regulatory mechanisms in health and disease. This review provides a reference for the development of GSDM-targeted drugs to treat various inflammatory and tissue damage-related conditions.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Ziani M, Henry AP, Hall IP. Association study between asthma and single nucleotide polymorphisms of ORMDL3, GSDMB, and IL1RL1 genes in an Algerian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Genetic variation has a key role in the development of asthma, but genetic influences may vary between different populations. In this study, we looked for evidence of association of key asthma SNPs, namely, rs1420101 and rs10192157 within the IL1RL1 gene, rs2305480 in GSDMB gene, and the rs3744246 polymorphism in the ORMDL3 gene, in the Algerian population. We included 266 unrelated subjects of an Algerian population in a case-control study, with 125 adult asthmatic and 141 healthy controls. DNA was extracted and genotypes determined by the Taqman PCR technique for characterization of the different genetic variants.
Results
The results show that there were no significant differences in allele frequencies for 3 of the chosen SNPs in the ORMDL3, GSDMB, and IL1RL1 genes between the asthmatic and control groups with respective P values of 0.922, 0.331, and 0.937. However the T allele of rs10192157 of the IL1RL1gene was associated with protection from asthma (P value=0.010).
Conclusion
These results indicate that there is no marked effect of rs3744246, rs2305480, and rs1420101 polymorphisms of the ORMDL3, GSDMB, and IL1RL1 genes on asthma risk in the Algerian population. However, a protective effect of the rs10192157 polymorphism of the IL1RL1 gene was found.
Collapse
|
18
|
Savino F, Pellegrino F, Daprà V, Calvi C, Alliaudi C, Montanari P, Galliano I, Bergallo M. Macrophage Receptor With Collagenous Structure Polymorphism and Recurrent Respiratory Infections and Wheezing During Infancy: A 5-Years Follow-Up Study. Front Pediatr 2021; 9:666423. [PMID: 34386467 PMCID: PMC8353117 DOI: 10.3389/fped.2021.666423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recurrent wheezing is a common clinical manifestation in childhood, and respiratory syncytial virus infection is a well-known risk factor. However, the genetic background favoring the development of recurrent wheezing is not fully understood. A possible role of macrophage receptor with collagenous gene (MARCO) polymorphism has been recently proposed. Objective: To investigate a correlation between MARCO rs1318645 polymorphisms and susceptibility to recurrent wheezing during childhood. Methods: We prospectively recruited 116 infants, of which 58 with respiratory syncytial virus bronchiolitis and 58 controls hospitalized at Regina Margherita Children's Hospital, Turin, Italy, between November 2014 and April 2015. All subjects were investigated for MARCO rs1318645 polymorphisms in the first period of life. Genotyping of rs1318645 was carried out by TaqMan mismatch amplification mutation assay real-time polymerase chain reaction procedure. Subjects were then enrolled in a 5-year follow-up study to monitor the occurrence of wheezing and respiratory infections. Results: The analysis of MARCO rs1318645 of allelic frequencies shows an increasingly significant risk to develop recurrent infection (p = 0.00065) and recurrent wheezing (p = 0.000084) with a wild-type C allele compared with a G allele. No correlation was found between wheezing and past respiratory syncytial virus infection (p = 0.057) and for a history of atopy in the family (p = 0.859). Conclusion: Our finding showed that subjects with C allelic MARCO rs1318645 polymorphism are at higher risk for recurrent infection and wheezing episodes during the first 5 years of life. Future studies of genetic associations should also consider other types of polymorphisms.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Valentina Daprà
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Carla Alliaudi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, Medical School, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Liu Y, Bochkov YA, Eickhoff JC, Hu T, Zumwalde NA, Tan JW, Lopez C, Fichtinger PS, Reddy TR, Overmyer KA, Gumperz JE, Coon J, Mathur SK, Gern JE, Smith JA. Orosomucoid-like 3 Supports Rhinovirus Replication in Human Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:783-792. [PMID: 32078788 DOI: 10.1165/rcmb.2019-0237oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-β mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-β inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul S Fichtinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Katherine A Overmyer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.,Morgridge Institute for Research, Madison, Wisconsin
| | | | - Joshua Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.,Morgridge Institute for Research, Madison, Wisconsin
| | - Sameer K Mathur
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Judith A Smith
- Department of Pediatrics.,Department of Medical Microbiology and Immunology, and
| |
Collapse
|
20
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
21
|
Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, Hu Q, Zou Y, Huang Z, Ren J, Lin Z, Gao X. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol 2020; 11:496-508. [PMID: 30321352 DOI: 10.1093/jmcb/mjy056] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022] Open
Abstract
Gasdermin B (GSDMB) has been reported to be associated with immune diseases in humans, but the detailed molecular mechanisms remain unsolved. The N-terminus of GSDMB by itself, unlike other gasdermin family proteins, does not induce cell death. Here, we show that GSDMB is highly expressed in the leukocytes of septic shock patients, which is associated with increased release of the gasdermin D (GSDMD) N-terminus. GSDMB expression and the accumulation of the N-terminal fragment of GSDMD are induced by the activation of the non-canonical pyroptosis pathway in a human monocyte cell line. The downregulation of GSDMB alleviates the cleavage of GSDMD and cell death. Consistently, the overexpression of GSDMB promotes GSDMD cleavage, accompanied by increased LDH release. We further found that GSDMB promotes caspase-4 activity, which is required for the cleavage of GSDMD in non-canonical pyroptosis, by directly binding to the CARD domain of caspase-4. Our study reveals a GSDMB-mediated novel regulatory mechanism for non-canonical pyroptosis and suggests a potential new strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yufang Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dayuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dingyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujie Zou
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zan Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China.,Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agriculture University, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Zheng Z, Deng W, Lou X, Bai Y, Wang J, Zeng H, Gong S, Liu X. Gasdermins: pore-forming activities and beyond. Acta Biochim Biophys Sin (Shanghai) 2020; 52:467-474. [PMID: 32294153 DOI: 10.1093/abbs/gmaa016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Gasdermins (GSDMs) belong to a protein superfamily that is found only in vertebrates and consists of GSDMA, GSDMB, GSDMC, GSDMD, DFNA5 (a.k.a. GSDME) and DFNB59 (a.k.a. Pejvakin (PJVK)) in humans. Except for DFNB59, all members of the GSDM superfamily contain a conserved two-domain structure (N-terminal and C-terminal domains) and share an autoinhibitory mechanism. When the N-terminal domain of these GSDMs is released, it possesses pore-forming activity that causes inflammatory death associated with the loss of cell membrane integrity and release of inflammatory mediators. It has also been found that spontaneous mutations occurring in the genes of GSDMs have been associated with the development of certain autoimmune disorders, as well as cancers. Here, we review the current knowledge of the expression profile and regulation of GSDMs and the important roles of this protein family in inflammatory cell death, tumorigenesis and other related diseases.
Collapse
Affiliation(s)
- Zengzhang Zheng
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanyan Deng
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiwen Lou
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Bai
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junhong Wang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huasong Zeng
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sitang Gong
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Liu
- The Joint Center for Infection and Immunity between Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Asthma exacerbations have been suggested to result from complex interactions between genetic and nongenetic components. In this review, we provide an overview of the genetic association studies of asthma exacerbations, their main results and limitations, as well as future directions of this field. RECENT FINDINGS Most studies on asthma exacerbations have been performed using a candidate-gene approach. Although few genome-wide association studies of asthma exacerbations have been conducted up to date, they have revealed promising associations but with small effect sizes. Additionally, the analysis of interactions between genetic and environmental factors has contributed to better understand of genotype-specific responses in asthma exacerbations. SUMMARY Genetic association studies have allowed identifying the 17q21 locus and the ADRB2 gene as the loci most consistently associated with asthma exacerbations. Future studies should explore the full spectrum of genetic variation and will require larger sample sizes, a better representation of racial/ethnic diversity and a more precise definition of asthma exacerbations. Additionally, the analysis of important environmental gene-environment analysis and the integration of multiple omics will allow understanding the genetic factors and biological processes underlying the risk for asthma exacerbations.
Collapse
|
24
|
Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology 2019; 225:151884. [PMID: 31822435 DOI: 10.1016/j.imbio.2019.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/04/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Pyroptosis is a newly discovered untypical form of programmed cell death by inflammatory response, which is dependent on the classic pathway of Caspase-1 and the non-canonical pathway of Caspase-11 in mice or orthologue Caspase-4/-5 in Humans. It has been found that the Gasdermin family of protein is a key molecule in the formation of membrane pores of pyroptosis. After being cleaved by inflammatory caspases, it releases a N-terminal fragment with perforating activity to trigger pyroptosis. That pyroptosis is closely related to the occurrence and development of certain diseases. Now, the molecular mechanism of pyroptosis and pyroptosis-related diseases are reviewed.
Collapse
Affiliation(s)
- Weihua Gong
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Shi
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Clinical Immunology, Zhengzhou University, Zhengzhou 450052, China.
| | - Jingjing Ren
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 2019; 20:143-157. [PMID: 31690840 DOI: 10.1038/s41577-019-0228-2] [Citation(s) in RCA: 883] [Impact Index Per Article: 176.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. Gasdermins contain a cytotoxic N-terminal domain and a C-terminal repressor domain connected by a flexible linker. Proteolytic cleavage between these two domains releases the intramolecular inhibition on the cytotoxic domain, allowing it to insert into cell membranes and form large oligomeric pores, which disrupts ion homeostasis and induces cell death. Gasdermin-induced pyroptosis plays a prominent role in many hereditary diseases and (auto)inflammatory disorders as well as in cancer. In this Review, we discuss recent developments in gasdermin research with a focus on mechanisms that control gasdermin activation, pore formation and functional consequences of gasdermin-induced membrane permeabilization.
Collapse
Affiliation(s)
- Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital 'Virgen de la Arrixaca', Murcia, Spain.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
26
|
Orning P, Lien E, Fitzgerald KA. Gasdermins and their role in immunity and inflammation. J Exp Med 2019; 216:2453-2465. [PMID: 31548300 PMCID: PMC6829603 DOI: 10.1084/jem.20190545] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is an important component of the innate immune system. Gasdermin D, the mediator of pyroptosis, has been shown to be crucial for optimal defense against microbial infection. In this review, the authors discuss gasdermin D and its role in disease. The gasdermins are a family of pore-forming proteins recently implicated in the immune response. One of these proteins, gasdermin D (GSDMD), has been identified as the executioner of pyroptosis, an inflammatory form of lytic cell death that is induced upon formation of caspase-1–activating inflammasomes. The related proteins GSDME and GSDMA have also been implicated in autoimmune diseases and certain cancers. Most gasdermin proteins are believed to have pore-forming capabilities. The best-studied member, GSDMD, controls the release of the proinflammatory cytokines IL-1ß and IL-18 and pyroptotic cell death. Because of its potential as a driver of inflammation in septic shock and autoimmune diseases, GSDMD represents an attractive drug target. In this review, we discuss the gasdermin proteins with particular emphasis on GSDMD and its mechanism of action and biological significance.
Collapse
Affiliation(s)
- Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Li Y, Cao L, Yu Q, Xue H, Lu Y. Association between peripheral blood mononuclear cell ORMDL3 expression and the asthma predictive index in preschool children. J Int Med Res 2019; 47:3727-3736. [PMID: 31342811 PMCID: PMC6726768 DOI: 10.1177/0300060519862674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yaqin Li
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lanfang Cao
- 2 Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yu
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Xue
- 2 Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanming Lu
- 1 Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Ierodiakonou D, Coull BA, Zanobetti A, Postma DS, Boezen HM, Vonk JM, McKone EF, Schildcrout JS, Koppelman GH, Croteau-Chonka DC, Lumley T, Koutrakis P, Schwartz J, Gold DR, Weiss ST. Pathway analysis of a genome-wide gene by air pollution interaction study in asthmatic children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:539-547. [PMID: 31028280 PMCID: PMC10730425 DOI: 10.1038/s41370-019-0136-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We aimed to investigate the role of genetics in the respiratory response of asthmatic children to air pollution, with a genome-wide level analysis of gene by nitrogen dioxide (NO2) and carbon monoxide (CO) interaction on lung function and to identify biological pathways involved. METHODS We used a two-step method for fast linear mixed model computations for genome-wide association studies, exploring whether variants modify the longitudinal relationship between 4-month average pollution and post-bronchodilator FEV1 in 522 Caucasian and 88 African-American asthmatic children. Top hits were confirmed with classic linear mixed-effect models. We used the improved gene set enrichment analysis for GWAS (i-GSEA4GWAS) to identify plausible pathways. RESULTS Two SNPs near the EPHA3 (rs13090972 and rs958144) and one in TXNDC8 (rs7041938) showed significant interactions with NO2 in Caucasians but we did not replicate this locus in African-Americans. SNP-CO interactions did not reach genome-wide significance. The i-GSEA4GWAS showed a pathway linked to the HO-1/CO system to be associated with CO-related FEV1 changes. For NO2-related FEV1 responses, we identified pathways involved in cellular adhesion, oxidative stress, inflammation, and metabolic responses. CONCLUSION The host lung function response to long-term exposure to pollution is linked to genes involved in cellular adhesion, oxidative stress, inflammatory, and metabolic pathways.
Collapse
Affiliation(s)
- Despo Ierodiakonou
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Antonella Zanobetti
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward F McKone
- Department of Respiratory Medicine, St. Vincent University Hospital, Dublin, Ireland
| | - Jonathan S Schildcrout
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology-Beatrix Children Hospital, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Thomas Lumley
- Department of Biostatistics, University of Auckland, Auckland, New Zealand
| | - Petros Koutrakis
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane R Gold
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Forno E, Celedón JC. Epigenomics and Transcriptomics in the Prediction and Diagnosis of Childhood Asthma: Are We There Yet? Front Pediatr 2019; 7:115. [PMID: 31001502 PMCID: PMC6454089 DOI: 10.3389/fped.2019.00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/15/2023] Open
Abstract
Asthma is the most common non-communicable chronic disease of childhood. Despite its high prevalence, to date we lack methods that are both efficient and accurate in diagnosing asthma. Most traditional approaches have been based on garnering clinical evidence, such as risk factors and exposures. Given the high heritability of asthma, more recent approaches have looked at genetic polymorphisms as potential "risk factors." However, genetic variants explain only a small proportion of asthma risk, and have been less than optimal at predicting risk for individual subjects. Epigenomic studies offer significant advantages over previous approaches. Epigenetic regulation is highly tissue-specific, and can induce both short- and long-term changes in gene expression. Such changes can start in utero, can vary throughout the life span, and in some instances can be passed on from one generation to another. Most importantly, the epigenome can be modified by environmental factors and exposures, and thus epigenetic and transcriptomic profiling may yield the most accurate risk estimates for a given patient by incorporating environmental (and treatment) effects throughout the lifespan. Here we will review the most recent advances in the use of epigenetic and transcriptomic analysis for the early diagnosis of asthma and atopy, as well as challenges and future directions in the field as it moves forward. We will particularly focus on DNA methylation, the most studied mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Genetic variants within 17q12 are associated with the risk of cervical cancer in the Han Chinese population. Gene 2018; 678:124-128. [DOI: 10.1016/j.gene.2018.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022]
|
31
|
Jakubowski TL, Perron T. Asthma Assessment in the School Health Office: Can They Stay or Should They Go? NASN Sch Nurse 2018; 34:37-43. [PMID: 30270790 DOI: 10.1177/1942602x18803336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Assessment Refresher for School Nurses series will review the health assessment and interventions of common complaints of children in the school health setting, making it easier for school nurses to determine whether children should stay in school or be sent home. Initial topics to be covered include asthma and allergies, immunizations, bullying/depression, and diabetes.
Collapse
Affiliation(s)
| | - Tracy Perron
- Assistant Professor, The College of New Jersey, Ewing, NJ
| |
Collapse
|
32
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
33
|
Feng S, Fox D, Man SM. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Mol Biol 2018; 430:3068-3080. [PMID: 29990470 DOI: 10.1016/j.jmb.2018.07.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022]
Abstract
The Gasdermin (GSDM) family consists of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME) and Pejvakin (PJVK). GSDMD is activated by inflammasome-associated inflammatory caspases. Cleavage of GSDMD by human or mouse caspase-1, human caspase-4, human caspase-5, and mouse caspase-11 liberates the N-terminal effector domain from the C-terminal inhibitory domain. The N-terminal domain oligomerizes in the cell membrane and forms a pore of 10-16 nm in diameter, through which substrates of a smaller diameter, such as interleukin-1β and interleukin-18, are secreted. The increasing abundance of membrane pores ultimately leads to membrane rupture and pyroptosis, releasing the entire cellular content. Other than GSDMD, the N-terminal domain of all GSDMs, with the exception of PJVK, have the ability to form pores. There is evidence to suggest that GSDMB and GSDME are cleaved by apoptotic caspases. Here, we review the mechanistic functions of GSDM proteins with respect to their expression and signaling profile in the cell, with more focused discussions on inflammasome activation and cell death.
Collapse
Affiliation(s)
- Shouya Feng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Fox
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
34
|
Huo Y, Zhang HY. Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes (Basel) 2018; 9:genes9050237. [PMID: 29751569 PMCID: PMC5977177 DOI: 10.3390/genes9050237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic disease that is caused by airway inflammation. The main features of asthma are airway hyperresponsiveness (AHR) and reversible airway obstruction. The disease is mainly managed using drug therapy. The current asthma drug treatments are divided into two categories, namely, anti-inflammatory drugs and bronchodilators. However, disease control in asthma patients is not very efficient because the pathogenesis of asthma is complicated, inducing factors that are varied, such as the differences between individual patients. In this paper, we delineate the genetic mechanisms of asthma, and present asthma-susceptible genes and genetic pharmacology in an attempt to find a diagnosis, early prevention, and treatment methods for asthma. Finally, we reposition some clinical drugs for asthma therapy, based on asthma genetics.
Collapse
Affiliation(s)
- Yue Huo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
DeBoever C, Tanigawa Y, Lindholm ME, McInnes G, Lavertu A, Ingelsson E, Chang C, Ashley EA, Bustamante CD, Daly MJ, Rivas MA. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat Commun 2018; 9:1612. [PMID: 29691392 PMCID: PMC5915386 DOI: 10.1038/s41467-018-03910-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein-truncating variants can have profound effects on gene function and are critical for clinical genome interpretation and generating therapeutic hypotheses, but their relevance to medical phenotypes has not been systematically assessed. Here, we characterize the effect of 18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27 associations between medical phenotypes and protein-truncating variants in genes outside the major histocompatibility complex. We perform phenome-wide analyses and directly measure the effect in homozygous carriers, commonly referred to as “human knockouts,” across medical phenotypes for genes implicated as being protective against disease or associated with at least one phenotype in our study. We find several genes with strong pleiotropic or non-additive effects. Our results illustrate the importance of protein-truncating variants in a variety of diseases. Protein-truncating variants (PTVs) are predicted to significantly affect a gene’s function and, thus, human traits. Here, DeBoever et al. systematically analyze PTVs in more than 300,000 individuals across 135 phenotypes and identify 27 associations between PTVs and medical conditions.
Collapse
Affiliation(s)
- Christopher DeBoever
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | | | - Greg McInnes
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Adam Lavertu
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chris Chang
- Grail, Inc., 1525 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Euan A Ashley
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Mark J Daly
- Analytical and Translational Genetics Unit, Boston, MA, 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
36
|
Twardziok M, Schröder PC, Krusche J, Casaca VI, Illi S, Böck A, Loss GJ, Kabesch M, Toncheva AA, Roduit C, Depner M, Genuneit J, Renz H, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Schaub B, Hyvärinen A, Karvonen AM, Kirjavainen PV, Remes S, Kaulek V, Dalphin ML, Ege M, Pfefferle PI, Doekes G. Asthmatic farm children show increased CD3 +CD8 low T-cells compared to non-asthmatic farm children. Clin Immunol 2017; 183:285-292. [PMID: 28917722 DOI: 10.1016/j.clim.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 11/15/2022]
Affiliation(s)
- Monika Twardziok
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Paul C Schröder
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Johanna Krusche
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany
| | - Vera I Casaca
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabina Illi
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Andreas Böck
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Georg J Loss
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany; University of California, San Diego, School of Medicine, Department of Pediatrics, CA, USA
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Antoaneta A Toncheva
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Caroline Roduit
- Zurich University Children's Hospital, Zurich, Switzerland; Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland and Christine Kühne-Center for Allergy Research and Education, St. Gallen, Switzerland
| | - Martin Depner
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliane Weber
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | | | | | - Roger Lauener
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland and Christine Kühne-Center for Allergy Research and Education, St. Gallen, Switzerland
| | | | | | - Juha Pekkanen
- Department of Public health, University of Helsinki, Helsinki, Finland; Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Erika von Mutius
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany
| | - Bianca Schaub
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany.
| | | | - Anne Hyvärinen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Anne M Karvonen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Sami Remes
- Kuopio University Hospital, Department of Paediatrics, Kuopio, Finland
| | - Vincent Kaulek
- University Hospital of Besançon, University of Franche-Comté, Besançon, France
| | - Marie-Laure Dalphin
- University Hospital of Besançon, University of Franche-Comté, Besançon, France
| | - Markus Ege
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany
| | - Petra I Pfefferle
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany; Member of German Center for Lung Research, DZL, LMU Munich, Germany
| | - Gert Doekes
- Utrecht University, Institut for Risk Assessment Sciences (IRAS), Devision of Environmental Epidemiology, Utrecht, Netherlands
| |
Collapse
|
37
|
Delgado-Eckert E, Fuchs O, Kumar N, Pekkanen J, Dalphin JC, Riedler J, Lauener R, Kabesch M, Kupczyk M, Dahlen SE, Mutius EV, Frey U. Functional phenotypes determined by fluctuation-based clustering of lung function measurements in healthy and asthmatic cohort participants. Thorax 2017; 73:107-115. [PMID: 28866644 DOI: 10.1136/thoraxjnl-2016-209919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 11/03/2022]
Abstract
RATIONALE Asthma is characterised by inflammation and reversible airway obstruction. However, these features are not always closely related. Fluctuations of daily lung function contain information on asthma phenotypes, exacerbation risk and response to long-acting β-agonists. OBJECTIVES In search of subgroups of asthmatic participants with specific lung functional features, we developed and validated a novel clustering approach to asthma phenotyping, which exploits the information contained within the fluctuating behaviour of twice-daily lung function measurements. METHODS Forced expiratory volume during the first second (FEV1) and peak expiratory flow (PEF) were prospectively measured over 4 weeks in 696 healthy and asthmatic school children (Protection Against Allergy - Study in Rural Environments (PASTURE)/EFRAIM cohort), and over 1 year in 138 asthmatic adults with mild-to-moderate or severe asthma (Pan-European Longitudinal Assessment of Clinical Course and BIOmarkers in Severe Chronic AIRway Disease (BIOAIR) cohort). Using enrichment analysis, we explored whether the method identifies clinically meaningful, distinct clusters of participants with different lung functional fluctuation patterns. MEASUREMENTS AND MAIN RESULTS In the PASTURE/EFRAIM dataset, we found four distinct clusters. Two clusters were enriched in children with well-known clinical characteristics of asthma. In cluster 3, children from a farming environment predominated, whereas cluster 4 mainly consisted of healthy controls. About 79% of cluster 3 carried the asthma-risk allele rs7216389 of the 17q21 locus. In the BIOAIR dataset, we found two distinct clusters clearly discriminating between individuals with mild-to-moderate and severe asthma. CONCLUSIONS Our method identified dynamic functional asthma and healthy phenotypes, partly independent of atopy and inflammation but related to genetic markers on the 17q21 locus. The method can be used for disease phenotyping and possibly endotyping. It may identify participants with specific functional abnormalities, potentially needing a different therapeutic approach.
Collapse
Affiliation(s)
- Edgar Delgado-Eckert
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
- Endothelial Cell Biology Unit and Department of Applied Mathematics, School of Molecular & Cellular Biology, School of Mathematics, University of Leeds, Leeds, UK
| | - Oliver Fuchs
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Munchen, Germany
- Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Nitin Kumar
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Juha Pekkanen
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jean-Charles Dalphin
- Department of Respiratory Disease, University Hospital of Besançon, Besançon, France
| | | | - Roger Lauener
- Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy Campus St. Hedwig, KUNO Children's University Hospital, Regensburg, Germany
- Clinic for Pediatric Pneumology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maciej Kupczyk
- Experimental Asthma and Allergy Research Unit, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Sven-Erik Dahlen
- Experimental Asthma and Allergy Research Unit, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Munchen, Germany
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Yu F, Sun Y, Yu J, Ding Z, Wang J, Zhang L, Zhang T, Bai Y, Wang Y. ORMDL3 is associated with airway remodeling in asthma via the ERK/MMP-9 pathway. Mol Med Rep 2017; 15:2969-2976. [PMID: 28358425 PMCID: PMC5428751 DOI: 10.3892/mmr.2017.6413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) has been previously implicated in asthma pathogenesis, its effect on airway remodeling remains to be elucidated. The present study examined the expression levels of ORMDL3 in a mouse model of asthma. Mice were divided into three groups: Asthmatic model (n=10), budesonide‑treated (n=10) and a control group (n=8). Asthma was induced by sensitization with ovalbumin (OVA) and aluminum hydroxide on day 1, 7 and 14. Subsequently mice were exposed to OVA three times per week from day 28. In order to investigate the mechanism of airway remodeling 100 µg/kg aerosol budesonide was administered to 6 animals prior to exposure to OVA. The condition of lung tissues was assessed through histology, and the expression levels of ORMDL3, phosphorylated‑extracellular‑signal regulated kinase (p‑ERK) and matrix metallopeptidase‑9 (MMP‑9) were quantified using immunohistochemistry, reverse transcription‑quantitative polymerase chain reaction and western blotting. A severe inflammatory response and airway remodeling were pretreatment with budesonide. Expression levels of ORMDL3, phosphorylated (p)‑ERK and MMP‑9 were significantly greater in the asthma‑model group; however, in the group pretreated with budesonide their expression was reduced. Expression levels of ORMDL3, p‑ERK and MMP‑9 were significantly positively correlated with bronchial wall thickness. ORMDL3 expression was significantly positively correlated with p‑ERK and MMP‑9. Therefore, increased ORMDL3 expression may induce the p‑ERK/MMP‑9 pathway to promote pathological airway remodeling in patients with asthma.
Collapse
Affiliation(s)
- Fei Yu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yan Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiachen Yu
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhen Ding
- Department of Pediatrics, Traditional Chinese Hospital of Zibo, Zibo, Shandong 255300, P.R. China
| | - Jinrong Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lanyun Zhang
- Department of Pediatrics, Traditional Chinese Hospital of Zibo, Zibo, Shandong 255300, P.R. China
| | - Tiejing Zhang
- Department of Pediatrics, Traditional Chinese Hospital of Zibo, Zibo, Shandong 255300, P.R. China
| | - Yun Bai
- Department of Pediatrics, Jilin Academy of Traditional Chinese Medicine, Changchun, Jilin 132000, P.R. China
| | - Yulin Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
39
|
Hüls A, Krämer U, Herder C, Fehsel K, Luckhaus C, Stolz S, Vierkötter A, Schikowski T. Genetic susceptibility for air pollution-induced airway inflammation in the SALIA study. ENVIRONMENTAL RESEARCH 2017; 152:43-50. [PMID: 27741447 DOI: 10.1016/j.envres.2016.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Long-term air pollution exposure has been associated with chronic inflammation providing a link to the development of chronic health effects. Furthermore, there is evidence that pathways activated by endoplasmatic reticulum (ER) stress induce airway inflammation and thereby play an important role in the pathogenesis of inflammatory diseases. OBJECTIVE We investigated the role of genetic variation of the ER stress pathway on air pollution-induced inflammation. METHODS We used the follow-up examination of the German SALIA study (N=402, age 68-79 years). Biomarkers of inflammation were determined in induced sputum. We calculated biomarker-specific weighted genetic risk scores (GRS) out of eight ER stress related single nucleotide polymorphisms and tested their interaction with PM2.5, PM2.5 absorbance, PM10 and NO2 exposure on inflammation by adjusted linear regression. RESULTS Genetic variation of the ER stress pathway was associated with higher concentration of inflammation-related biomarkers (levels of leukotriene (LT)B4, tumor necrosis factor-α (TNF-α), the total number of cells and nitric oxide (NO) derivatives). Furthermore, we observed a significant interaction between air pollution exposure and the ER stress risk score on the concentration of inflammation-related biomarkers. The strongest gene-environment interaction was found for LTB4 (PM2.5: p-value=0.002, PM2.5 absorbance: p-value=0.002, PM10: p-value=0.001 and NO2: p-value=0.004). Women with a high GRS had a 38% (95%-CI: 16-64%) higher LTB4 level for an increase of 2.06μg/m³(IQR) in PM2.5 (no associations in women with a low GRS). CONCLUSION These results indicate that genetic variation in the ER stress pathway might play a role in air pollution induced inflammation in the lung.
Collapse
Affiliation(s)
- Anke Hüls
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ursula Krämer
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Luckhaus
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Stolz
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Vierkötter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
40
|
Fodor LE, Gézsi A, Ungvári L, Semsei AF, Gál Z, Nagy A, Gálffy G, Tamási L, Kiss A, Antal P, Szalai C. Investigation of the Possible Role of the Hippo/YAP1 Pathway in Asthma and Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:247-256. [PMID: 28293931 PMCID: PMC5352576 DOI: 10.4168/aair.2017.9.3.247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023]
Abstract
Purpose Several lines of evidence indicate that the Hippo/Yes-associated protein 1 (YAP1) pathways might play a role in the pathogenesis of asthma. To investigate the possible role of the Hippo/YAP1 pathway in the pathogenesis of asthma or its phenotypes. Methods The levels of gene expressions of the members of the Hippo/YAP1 were compared. The presence of the proteins of the YAP1 and FRMD6 were analyzed with Western blot in induced sputum of 18 asthmatic subjects and 10 control subjects. Fourteen single nucleotide polymorphisms (SNPs) in the YAP1 gene were genotyped in 522 asthmatic subjects and 711 healthy controls. The results were evaluated with traditional frequentist methods and with Bayesian network-based Bayesian multilevel analysis of relevance (BN-BMLA). Results The mRNA of all the members of the Hippo/YAP1 pathway could be detected in the induced sputum of both controls and cases. A correlation was found between YAP1 mRNA levels and sputum bronchial epithelial cells (r=0.575, P=0.003). The signal for the FRMD6 protein could be detected in all sputum samples while the YAP1 protein could not be detected in the sputum samples, of the healthy controls and severe asthmatics, but it was detectable in mild asthmatics. The rs2846836 SNP of the YAP1 gene was significantly associated with exercise-induced asthma (odds ratio [OR]=2.1 [1.3-3.4]; P=0.004). The distribution of genotypes of rs11225138 and certain haplotypes of the YAP1 gene showed significant differences between different asthma severity statuses. With BN-BMLA, 2 SNPs, genetic variations in the FRMD6 gene proved to be the most relevant to exercise-induced asthma and allergic rhinitis. These 2 SNPs through allergic rhinitis and exercise-induced asthma were in epistatic interaction with each other. Conclusions Our results provided additional evidence that the FRMD6/Hippo/YAP1 pathway plays a role in the pathogenesis of asthma. If additional studies can confirm these findings, this pathway can be a potential novel therapeutic target in asthma and other inflammatory airway diseases.
Collapse
Affiliation(s)
- Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ldikó Ungvári
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Agnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zsófia Gál
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Lilla Tamási
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - András Kiss
- Heim, Pal Children Hospital, Budapest, Hungary
| | - Péter Antal
- Department of Measurement and Information Systems, University of Technology and Economics, Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heim, Pal Children Hospital, Budapest, Hungary.
| |
Collapse
|
41
|
Yoon J, Choi YJ, Lee E, Cho HJ, Yang SI, Kim YH, Jung YH, Seo JH, Kwon JW, Kim HB, Lee SY, Kim BS, Shim JY, Kim EJ, Lee JS, Hong SJ. Allergic Rhinitis in Preschool Children and the Clinical Utility of FeNO. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:314-321. [PMID: 28497918 PMCID: PMC5446946 DOI: 10.4168/aair.2017.9.4.314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 10/31/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE The nature of allergic rhinitis (AR) in preschool aged children remains incompletely characterized. This study aimed to investigate the prevalence of AR and its associated risk factors in preschool-aged children and to assess the clinical utility of fractional exhaled nitric oxide (FeNO). METHODS This general population-based, cross-sectional survey included 933 preschool-aged (3- to 7-year-old) children from Korea. Current AR was defined as having nasal symptoms within the last 12 months and physician-diagnosed AR. RESULTS The prevalence of current AR in preschool children was 17.0% (156/919). Mold exposure (adjusted odds ratio [aOR], 1.67; 95% confidence interval [CI], 1.15-2.43) and the use of antibiotics (aOR, 1.97; 95% CI, 1.33-2.90) during infancy were associated with an increased risk of current AR, whereas having an older sibling (aOR, 0.52; 95% CI, 0.35-0.75) reduced the risk. Children with current atopic AR had significantly higher geometric mean levels of FeNO compared to those with non-atopic rhinitis (12.43; range of 1standard deviation [SD], 7.31-21.14 vs 8.25; range of 1SD, 5.62-12.10, P=0.001) or non-atopic healthy children (8.58; range of 1SD, 5.51-13.38, P<0.001). The FeNO levels were higher in children with current atopic AR compared with atopic healthy children (9.78; range of 1SD, 5.97-16.02, P=0.083). CONCLUSIONS Mold exposure and use of antibiotics during infancy increases the risk of current AR, whereas having an older sibling reduces it. Children with current atopic AR exhibit higher levels of FeNO compared with non-atopic rhinitis cases, suggesting that FeNO levels may be a useful discriminatory marker for subtypes of AR in preschool children.
Collapse
Affiliation(s)
- Jisun Yoon
- Department of Pediatrics, Childhood Asthma Atopy Center, Research Center for the Standardization of Allergic Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yean Jung Choi
- Department of Pediatrics, Childhood Asthma Atopy Center, Research Center for the Standardization of Allergic Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Gwangju, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, Childhood Asthma Atopy Center, Research Center for the Standardization of Allergic Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Song I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Ho Kim
- Department of Pediatrics, Gyeongsang National University Changwon Hospital, Gyeongsang, Korea
| | - Young Ho Jung
- Department of Pediatrics, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, Korea
| | - Ju Hee Seo
- Department of Pediatrics, Dankook University Hospital, Cheonan, Korea
| | - Ji Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyo Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bong Seong Kim
- Department of Pediatrics, Gangneung Asan Hospital, Gangneung, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jin Kim
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| | - Joo Shil Lee
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Research Center for the Standardization of Allergic Diseases, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
42
|
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 2016; 42:245-254. [PMID: 27932073 DOI: 10.1016/j.tibs.2016.10.004] [Citation(s) in RCA: 1941] [Impact Index Per Article: 242.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.
Collapse
Affiliation(s)
- Jianjin Shi
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Wenqing Gao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Number 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
43
|
Moheimani F, Hsu ACY, Reid AT, Williams T, Kicic A, Stick SM, Hansbro PM, Wark PAB, Knight DA. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res 2016; 17:119. [PMID: 27658857 PMCID: PMC5034566 DOI: 10.1186/s12931-016-0434-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Alan C-Y Hsu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Sigari N, Jalili A, Mahdawi L, Ghaderi E, Shilan M. Soluble CD93 as a Novel Biomarker in Asthma Exacerbation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:461-5. [PMID: 27334785 PMCID: PMC4921701 DOI: 10.4168/aair.2016.8.5.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
Abstract
Asthma research is shifting from studying symptoms and lung functions to the narrow-focus cellular profiles protein analysis, biomarkers, and genetic markers. The transmembrane glycoprotein CD93 is involved in endothelial cell migration, angiogenesis, leukocytes extravasation, apoptosis, innate immunity and inflammation. Relationships between the serum level of soluble CD93 (sCD93) and acute myocardial infarction/premature MI/inflammatory arthritis/skin sclerosis have recently been reported. We hypothesized that sCD93 would be elevated during the acute phase of asthma. We measured the serum level of sCD93 in 57 patients with asthma exacerbation and 57 age-and gender-matched healthy controls. Additionally, sCD93 was reassessed at the time of discharge from the hospital. Clinical characteristics and peak expiratory flow (PEF) of the patients were assessed. The primary outcome was the comparison of serum level of sCD93 between asthmatics and healthy subjects. The sCD93 values ranged from 128 to 789 ng/mL in asthmatics (345.83±115.81) and from 31 to 289 ng/mL in control subjects (169.46±62.43). The difference between the 2 groups was statistically significant (P<0.001). The association between sCD93 and asthma remained significant after adjusting for age, sex, and BMI. The differences between asthmatics and controls remained significant on the last day of hospital stay. The association between sCD93 and PEF was not significant. In conclusion, the serum level of soluble CD93 is increased in patients with asthma exacerbation. It also showed that serum levels of sCD93 decreased with treatment of asthma attack. The clinical usefulness of determination of sCD93 as a biomarker of asthma requires further studies.
Collapse
Affiliation(s)
- Naseh Sigari
- Internal Medicine Department, Medical Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ali Jalili
- Kurdistan Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Laili Mahdawi
- Internal Medicine Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ebrahim Ghaderi
- Department of Epidemiology and Biostatistics, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadi Shilan
- Pediatrics Department, Medical Faculty,Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
45
|
Ma X, Qiu R, Dang J, Li J, Hu Q, Shan S, Xin Q, Pan W, Bian X, Yuan Q, Long F, Liu N, Li Y, Gao F, Zou C, Gong Y, Liu Q. ORMDL3 contributes to the risk of atherosclerosis in Chinese Han population and mediates oxidized low-density lipoprotein-induced autophagy in endothelial cells. Sci Rep 2015; 5:17194. [PMID: 26603569 PMCID: PMC4658630 DOI: 10.1038/srep17194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) is a universally confirmed susceptibility gene for asthma and has recently emerged as a crucial modulator in lipid metabolism, inflammation and endoplasmic reticulum (ER) stress-the mechanisms also closely involved in atherosclerosis (AS). Here we first presented the evidence of two single nucleotide polymorphisms regulating ORMDL3 expression (rs7216389 and rs9303277) significantly associated with AS risk and the evidence of increased ORMDL3 expression in AS cases compared to controls, in Chinese Han population. Following the detection of its statistical correlation with AS, we further explored the functional relevance of ORMDL3 and hypothesized a potential role mediating autophagy as autophagy is activated upon modified lipid, inflammation and ER stress. Our results demonstrated that in endothelial cells oxidized low-density lipoprotein (ox-LDL) up-regulated ORMDL3 expression and knockdown of ORMDL3 alleviated not only ox-LDL-induced but also basal autophagy. BECN1 is essential for autophagy initiation and silencing of ORMDL3 suppressed ox-LDL-induced as well as basal BECN1 expression. In addition, deletion of ORMDL3 resulted in greater sensitivity to ox-LDL-induced cell death. Taken together, ORMDL3 might represent a causal gene mediating autophagy in endothelial cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochun Ma
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rongfang Qiu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Jie Dang
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangxia Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qin Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shan Shan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qian Xin
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Wenying Pan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xianli Bian
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qianqian Yuan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Feng Long
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Na Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yan Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fei Gao
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yaoqin Gong
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qiji Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
46
|
Chen Y, Wong GWK, Li J. Environmental Exposure and Genetic Predisposition as Risk Factors for Asthma in China. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:92-100. [PMID: 26739401 PMCID: PMC4713885 DOI: 10.4168/aair.2016.8.2.92] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Asthma is the most common chronic pulmonary disease worldwide and places a considerable economic burden on society. China is the world's largest developing country and has the largest population. China has undergone dramatic changes in the past few decades. The traditional lifestyle and living environment have changed in ways that directly affect the prevalence of asthma. The prevalence of asthma is lower in Chinese children and adults than in developed countries, but the prevalence has been on the rise during the past 30 years. The prevalence significantly varies among different parts of China. Polymorphisms of multiple genes, outdoor air pollution caused by PM2.5, PM10, SO2, NO2, environmental tobacco smoke, and coal, indoor pollution, and inhaled allergens, such as house dust mites, pollen, and cockroach particles, are risk factors for asthma.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangdong Pharmaceutical University, Guangzhou, China
| | - Gary W K Wong
- Department of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Guibas GV, Megremis S, West P, Papadopoulos NG. Contributing factors to the development of childhood asthma: working toward risk minimization. Expert Rev Clin Immunol 2015; 11:721-35. [PMID: 25873298 DOI: 10.1586/1744666x.2015.1035649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asthma is the most common chronic disease in childhood, and considerable research has been undertaken to find ways to prevent its development and reduce its prevalence. For such interventions to be successful, risk factors for asthma emergence should be identified and clearly defined. Data are robust for some of them, including atopy, viral infections and exposure to airborne irritants, whereas it is less conclusive for others, such as aeroallergen exposure and bacterial infections. Several interventions for asthma prevention, including avoidance and pharmacotherapy, have been attempted. However, most of them have furnished equivocal results. Various issues hinder the establishment of risk factors for asthma development and reduce the effectiveness of interventions, including the complexity of the disease and the fluidity of the developing systems in childhood. In this review, we revisit the evidence on pediatric asthma risk factors and prevention and discuss issues that perplex this field.
Collapse
Affiliation(s)
- George V Guibas
- Centre for Pediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|