1
|
Ince J, Panerai RB, Salinet ASM, Lam MY, Llwyd O, Haunton VJ, Robinson TG, Minhas JS. Dynamics of Critical Closing Pressure Explain Cerebral Autoregulation Impairment in Acute Cerebrovascular Disease. Cerebrovasc Dis 2024:1-9. [PMID: 38964310 DOI: 10.1159/000540206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Cerebral autoregulation (CA) is impaired in acute ischemic stroke (AIS) and is associated with worse patient outcomes, but the underlying physiological cause is unclear. This study tests whether depressed CA in AIS can be linked to the dynamic responses of critical closing pressure (CrCP) and resistance area product (RAP). METHODS Continuous recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), arterial blood pressure (BP), end-tidal CO2 and electrocardiography allowed dynamic analysis of the instantaneous MCAv-BP relationship to obtain estimates of CrCP and RAP. The dynamic response of CrCP and RAP to a sudden change in mean BP was obtained by transfer function analysis. Comparisons were made between younger controls (≤50 years), older controls (>50 years), and AIS patients. RESULTS Data from 24 younger controls (36.4 ± 10.9 years, 9 male), 38 older controls (64.7 ± 8.2 years, 20 male), and 20 AIS patients (63.4 ± 13.8 years, 9 male) were included. Dynamic CA was impaired in AIS, with lower autoregulation index (affected hemisphere: 4.0 ± 2.3, unaffected: 4.5 ± 1.8) compared to younger (right: 5.8 ± 1.4, left: 5.8 ± 1.4) and older (right: 4.9 ± 1.6, left: 5.1 ± 1.5) controls. AIS patients also demonstrated an early (0-3 s) peak in CrCP dynamic response that was not influenced by age. CONCLUSION These early transient differences in the CrCP dynamic response are a novel finding in stroke and occur too early to reflect underlying regulatory mechanisms. Instead, these may be caused by structural changes to cerebral vasculature.
Collapse
Affiliation(s)
- Jonathan Ince
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Angela S M Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Osian Llwyd
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
2
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
3
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Cardenas HL, Evanoff NG, Fandl HK, Berry AR, Wegerson KN, Ostrander EI, Greiner JJ, Dufresne SR, Kotlyar M, Dengel DR, DeSouza CA, Garcia VP. Endothelial-derived extracellular vesicles associated with electronic cigarette use impair cerebral microvascular cell function. J Appl Physiol (1985) 2023; 135:271-278. [PMID: 37348012 PMCID: PMC10393369 DOI: 10.1152/japplphysiol.00243.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The aim of this study was to determine the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. Circulating EMVs (CD144-PE) were isolated (flow cytometry) from 27 young adults (19-25 yr): 10 nonsmokers (6 M/4 F), 10 e-cigarette users (6 M/4 F), and 7 tobacco cigarette smokers (4 M/3 F). hCMECs were cultured and treated with isolated EMVs for 24 h. EMVs from e-cigarette users and cigarette smokers induced significantly higher expression of p-eNOS (Thr495; 28.4 ± 4.6 vs. 29.1 ± 2.8 vs. 22.9 ± 3.8 AU), Big ET-1 (138.8 ± 19.0 vs. 141.7 ± 19.1 vs. 90.3 ± 18.8 AU) and endothelin converting enzyme (107.6 ± 10.1 and 113.5 ± 11.8 vs. 86.5 ± 13.2 AU), and significantly lower expression of p-eNOS (Ser1177; 7.4 ± 1.7 vs. 6.5 ± 0.5 vs. 9.7 ± 1.6 AU) in hCMECs than EMVs from nonsmokers. NO production was significantly lower and ET-1 production was significantly higher in hCMECs treated with EMVs from e-cigarette (5.7 ± 0.8 µmol/L; 33.1 ± 2.9 pg/mL) and cigarette smokers (6.3 ± 0.7 µmol/L; 32.1 ± 3.9 pg/mL) than EMVs from nonsmokers (7.6 ± 1.2 µmol/L; 27.9 ± 3.1 pg/mL). t-PA release in response to thrombin was significantly lower in hCMECs treated with EMVs from e-cigarette users (from 38.8 ± 6.3 to 37.4 ± 8.3 pg/mL) and cigarette smokers (31.5 ± 5.5 to 34.6 ± 8.4 pg/mL) than EMVs from nonsmokers (38.9 ± 4.3 to 48.4 ± 7.9 pg/mL). There were no significant differences in NO, ET-1, or t-PA protein expression or production in hCMECs treated with EMVs from e-cigarette users and smokers. Circulating EMVs associated with e-cigarette use adversely affects brain microvascular endothelial cells and may contribute to reported cerebrovascular dysfunction with e-cigarette use.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from e-cigarette users on human cerebral microvascular endothelial cells (hCMECs) nitric oxide (NO) and endothelin (ET)-1 production and tissue-type plasminogen activator (t-PA) release. EMVs from e-cigarette users reduced brain microvascular endothelial cell NO production, enhanced ET-1 production, and impaired endothelial t-PA release. EMVs are a potential mediating factor in the increased risk of stroke associated with e-cigarette use.
Collapse
Affiliation(s)
- Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas G Evanoff
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kendra N Wegerson
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Emily I Ostrander
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sheena R Dufresne
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Michael Kotlyar
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
5
|
Kecskés S, Menyhárt Á, Bari F, Farkas E. Nimodipine augments cerebrovascular reactivity in aging but runs the risk of local perfusion reduction in acute cerebral ischemia. Front Aging Neurosci 2023; 15:1175281. [PMID: 37181624 PMCID: PMC10174256 DOI: 10.3389/fnagi.2023.1175281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The efficacy of cerebrovascular reactivity (CVR) is taken as an indicator of cerebrovascular health. Methods and Results We found that CVR tested with the inhalation of 10 % CO2 declined in the parietal cortex of 18-20-month-old rats. The CVR deficit in old rats was coincident with cerebrovascular smooth muscle cell and astrocyte senescence, revealed by the immuno-labeling of the cellular senescence marker p16 in these cells. In a next series of experiments, CVR was severely impaired in the acute phase of incomplete global forebrain ischemia produced by the bilateral occlusion of the common carotid arteries in young adult rats. In acute ischemia, CVR impairment often manifested as a perfusion drop rather than blood flow elevation in response to hypercapnia. Next, nimodipine, an L-type voltage-gated calcium channel antagonist was administered topically to rescue CVR in both aging, and cerebra ischemia. Nimodipine augmented CVR in the aged brain, but worsened CVR impairment in acute cerebral ischemia. Discussion A careful evaluation of benefits and side effects of nimodipine is recommended, especially in acute ischemic stroke.
Collapse
Affiliation(s)
- Szilvia Kecskés
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Cerebral Blood Flow and Metabolism Research Group, Hungarian Centre of Excellence for Molecular Medicine – University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- *Correspondence: Eszter Farkas,
| |
Collapse
|
6
|
Luijten SPR, Bos D, van Doormaal PJ, Goyal M, Dijkhuizen RM, Dippel DWJ, Roozenbeek B, van der Lugt A, Warnert EAH. Cerebral blood flow quantification with multi-delay arterial spin labeling in ischemic stroke and the association with early neurological outcome. Neuroimage Clin 2023; 37:103340. [PMID: 36739791 PMCID: PMC9932490 DOI: 10.1016/j.nicl.2023.103340] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Restoring blood flow to brain tissue at risk of infarction is essential for tissue survival and clinical outcome. We used cerebral blood flow (CBF) quantified with multiple post-labeling delay (PLD) pseudocontinuous arterial spin labeling (ASL) MRI after ischemic stroke and assessed the association between CBF and early neurological outcome. We acquired ASL with 7 PLDs at 3.0 T in large vessel occlusion stroke patients at 24 h. We quantified CBF relative to the contralateral hemisphere (rCBF) and defined hyperperfusion as a ≥30% increase and hypoperfusion as a ≥40% decrease in rCBF. We included 44 patients (median age: 70 years, median NIHSS: 13, 40 treated with endovascular thrombectomy) of whom 37 were recanalized. Hyperperfusion in ischemic core occurred in recanalized but not in non-recanalized patients (65.8% vs 0%, p = 0.006). Hypoperfusion occurred only in the latter group (0% vs 85.7%, p < 0.001). In recanalized patients, hyperperfusion was also seen in salvaged penumbra (38.9%). Higher rCBF in ischemic core (aβ, -2.75 [95% CI: -4.11 to -1.40]) and salvaged penumbra (aβ, -5.62 [95% CI: -9.57 to -1.68]) was associated with lower NIHSS scores at 24 h. In conclusion, hyperperfusion frequently occurs in infarcted and salvaged brain tissue following successful recanalization and early neurological outcome is positively associated with the level of reperfusion.
Collapse
Affiliation(s)
- Sven P R Luijten
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands.
| | - Daniel Bos
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| | - Pieter-Jan van Doormaal
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| | - Mayank Goyal
- Department of Radiology, Foothills Medical Center, University of Calgary, Canada
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, the Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Erasmus MC University Medical Center, the Netherlands
| | - Bob Roozenbeek
- Department of Neurology, Erasmus MC University Medical Center, the Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, the Netherlands
| |
Collapse
|
7
|
Shuvaeva VN, Gorshkova OP. Contribution of IKCa Channels to Dilation of Pial Arteries in young Rats after Ischemia/Reperfusion. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Gorshkova OP, Sokolova IB. Changes in the Сontribution of IKCa Сhannels to Tone Maintenanсe and Dilation of Pial Arteries in Aging Rats after Ischemia-Reperfusion. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hughes WE, Hockenberry J, Miller B, Sorokin A, Beyer AM. Modulation of p66Shc impairs cerebrovascular myogenic tone in low renin but not low nitric oxide models of systemic hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H1096-H1102. [PMID: 34714691 PMCID: PMC8834231 DOI: 10.1152/ajpheart.00542.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Cerebral blood flow and perfusion are tightly maintained through autoregulation despite changes in transmural pressure. Oxidative stress impairs cerebral blood flow, precipitating cerebrovascular events. Phosphorylation of the adaptor protein p66Shc increases mitochondrial-derived oxidative stress. The effect of p66Shc gain or loss of function in nonhypertensive rats is unclear. We hypothesized that p66Shc gain of function would impair autoregulation of cerebral microcirculation under physiological and pathological conditions. Three previously established transgenic [salt-sensitive (SS) background] p66Shc rats were used, p66-Del/SS (express p66Shc with a nine-amino acid deletion), p66Shc-knockout (KO)/SS (frameshift premature termination codon), and p66Shc signaling and knock-in substitution of Ser36Ala (p66Shc-S36A)/SS (substitution of Ser36Ala). The p66Shc-Del were also bred on Sprague-Dawley (SD) backgrounds (p66-Del/SD), and a subset was exposed to a hypertensive stimulus [NG-nitro-l-arginine methyl ester (l-NAME)] for 4 wk. Active and passive diameters to increasing transmural pressure were measured and myogenic tone was calculated in all groups (SS and SD). Myogenic responses to increasing pressure were impaired in p66Shc-Del/SS rats relative to wild-type (WT)/SS and knock-in substitution of Ser36Ala (S36A; P < 0.05). p66-Del/SD rats did not demonstrate changes in active/passive diameters or myogenic tone relative to WT/SD but did demonstrate attenuated passive diameter responses to higher transmural pressure relative to p66-Del/SS. Four weeks of a hypertensive stimulus (l-NAME) did not alter active or passive diameter responses to increasing transmural pressure (P = 0.86-0.99), but increased myogenic responses relative to p66-Del/SD (P < 0.05). Collectively, we demonstrate the functional impact of p66Shc within the cerebral circulation and demonstrate that the genetic background of p66Shc rats largely drives changes in cerebrovascular function.NEW & NOTEWORTHY We demonstrate that the modulation of p66Shc signaling impairs cerebral artery myogenic tone in a low renin model of hypertension. This impairment is dependent upon the genetic background, as modulated p66Shc signaling in Sprague-Dawley rats does not impair cerebral artery myogenic tone.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joe Hockenberry
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bradley Miller
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Hansen FB, Esteves GV, Mogensen S, Prat-Duran J, Secher N, Løfgren B, Granfeldt A, Simonsen U. Increased cerebral endothelium-dependent vasodilation in rats in the postcardiac arrest period. J Appl Physiol (1985) 2021; 131:1311-1327. [PMID: 34435510 DOI: 10.1152/japplphysiol.00373.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular lability is common after cardiac arrest. We investigated whether altered endothelial function is present in cerebral and mesenteric arteries 2 and 4 h after resuscitation. Male Sprague-Dawley rats were anesthetized, intubated, ventilated, and intravascularly catheterized whereupon rats were randomized into four groups. Following 7 min of asphyxial cardiac arrest and subsequent resuscitation, cardiac arrest and sham rats were observed for either 2 or 4 h. Neuron-specific enolase levels were measured in blood samples. Middle cerebral artery segments and small mesenteric arteries were isolated and examined in microvascular myographs. qPCR and immunofluorescence analysis were performed on cerebral arteries. In cerebral arteries, bradykinin-induced vasodilation was inhibited in the presence of either calcium-activated K+ channel blockers (UCL1684 and senicapoc) or the nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride (l-NAME), whereas the combination abolished bradykinin-induced vasodilation across groups. Neuron-specific enolase levels were significantly increased in cardiac arrest rats. Cerebral vasodilation was comparable between the 2-h groups, but markedly enhanced in response to bradykinin, NS309 (an opener of small and intermediate calcium-activated K+ channels), and sodium nitroprusside 4 h after cardiac arrest. Endothelial NO synthase and guanylyl cyclase subunit α-1 mRNA expression was unaltered after 2 h, but significantly decreased 4 h after resuscitation. In mesenteric arteries, the endothelium-dependent vasodilation was comparable between corresponding groups at both 2 and 4 h. Our findings show enhanced cerebral endothelium-dependent vasodilation 4 h after cardiac arrest mediated by potentiated endothelial-derived hyperpolarization and NO pathways. Altered cerebral endothelium-dependent vasodilation may contribute to disturbed cerebral perfusion after cardiac arrest.NEW & NOTEWORTHY This is the first study, to our knowledge, to demonstrate enhanced endothelium-dependent vasodilation in middle cerebral arteries in a cardiac arrest rat model. The increased endothelium-dependent vasodilation was a result of potentiated endothelium-derived hyperpolarization and endothelial nitric oxide pathways. Immunofluorescence microscopy confirmed the presence of relevant receptors and eNOS in cerebral arteries, whereas qPCR showed altered expression of genes related to guanylyl cyclase and eNOS. Altered endothelium-dependent vasoregulation may contribute to disturbed cerebral blood flow in the postcardiac arrest period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Przykaza Ł, Kozniewska E. Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench. Transl Stroke Res 2021; 13:12-24. [PMID: 34292517 PMCID: PMC8766383 DOI: 10.1007/s12975-021-00930-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
14
|
Wendt TS, Li YJ, Gonzales RJ. Ozanimod, an S1PR 1 ligand, attenuates hypoxia plus glucose deprivation-induced autophagic flux and phenotypic switching in human brain VSM cells. Am J Physiol Cell Physiol 2021; 320:C1055-C1073. [PMID: 33788630 DOI: 10.1152/ajpcell.00044.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yu Jing Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
15
|
Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM. Rapamycin Induces an eNOS (Endothelial Nitric Oxide Synthase) Dependent Increase in Brain Collateral Perfusion in Wistar and Spontaneously Hypertensive Rats. Stroke 2020; 51:2834-2843. [PMID: 32772681 DOI: 10.1161/strokeaha.120.029781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. METHODS Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. RESULTS In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm3, P<0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. CONCLUSIONS Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
- School of Biomedical Science and Pharmacy, The University of Newcastle, Australia (D.J.B.)
| | - Zhaojin Li
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Marilyn J Cipolla
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| |
Collapse
|
16
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
17
|
Li Y, Sun J, Gu L, Gao X. Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells. Mol Med Rep 2020; 22:344-352. [PMID: 32377750 PMCID: PMC7248524 DOI: 10.3892/mmr.2020.11108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
The newly identified C1q/tumor necrosis factor (TNF)-related protein-6 (CTRP6) is a highly conserved paralog of adiponectin with modulatory effects on metabolism and inflammation. However, the role of CTRP6 in cerebral ischemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to explore the protective effects of CTRP6 against cerebral I/R injury and elucidate the possible underlying mechanisms. Oxygen-glucose deprivation and reperfusion (OGD/R) was used to induce an I/R injury model in vitro. Western blotting, reverse transcription-quantitative PCR, ELISA and flow cytometry analysis were used to measure the levels of CTRP6 along with those of inflammation-, oxidative stress- and apoptosis-related cytokines. The results indicated that CTRP6 expression was markedly downregulated following OGD/R. OGD/R also increased i) the activities of pro-inflammatory factors TNF-α, interleukin (IL)-1β, IL-6 and the levels of the oxidative products reactive oxygen species and malondialdehyde; ii) the ratio of apoptotic PC12 cells and iii) the expression of the pro-apoptotic proteins Bax, cleaved caspase-3 and cleaved caspase-9. In addition, the activities of the anti-inflammatory factors IL-10 and superoxide dismutase and the expression of the anti-apoptotic protein Bcl-2 were decreased. However, overexpression of CTRP6 rescued OGD/R-stimulated exacerbation of inflammation, oxidative stress and apoptosis. Mechanistically, OGD/R activated Ras homolog family member A (RhoA)/Rho-associated coiled-coil-containing protein kinase (Rock)/phosphatase and tensin homologue deleted on chromosome 10 (PTEN) signaling, whereas CTRP6 overexpression restored the expression of RhoA, Rock, PTEN, phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). Furthermore, when CTRP6 and RhoA were overexpressed at the same time, RhoA abolished the protective effects of CTRP6 overexpression on OGD/R-induced inflammation, oxidative stress and apoptosis, while the presence of a PTEN inhibitor recovered the protective effects of CTRP6. Taken together, the findings of the present study indicate that CTRP6 attenuates cerebral ischemia/reperfusion-induced inflammation, oxidative stress and apoptosis via inhibiting the RhoA/Rock/PTEN pathway, thereby activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Ying Li
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Jie Sun
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Lei Gu
- Rehabilitation Centre, Beijing Xiaotangshan Hospital, Beijing 102211, P.R. China
| | - Xufang Gao
- Department of Neurology, General Hospital of The Yangtze River Shipping and Wuhan Brain Hospital, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
18
|
Shooshtari MK, Sarkaki A, Mansouri SMT, Badavi M, Khorsandi L, Ghasemi Dehcheshmeh M, Farbood Y. Protective effects of Chrysin against memory impairment, cerebral hyperemia and oxidative stress after cerebral hypoperfusion and reperfusion in rats. Metab Brain Dis 2020; 35:401-412. [PMID: 31853830 DOI: 10.1007/s11011-019-00527-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/01/2019] [Indexed: 11/26/2022]
Abstract
Stroke is devastating and a leading cause of morbidity and mortality worldwide. Cerebral ischemia-reperfusion and its subsequent reactive hyperemia lead to neuronal damage in the hippocampus and cognitive decline. Chrysin (5, 7-dihydroxyflavone) is a well-known member of the flavonoid family with antioxidant and neuroprotective effects. Therefore, in the present study, the aim was to investigate whether chrysin will be able to recover the brain function caused by ischemia-reperfusion (I/R) in rats. Adult male Wistar rats (250-300 g) were randomly divided into five groups: and submitted to cerebral I/R or a sham surgery after three-weeks of pretreatment with chrysin (CH; 10, 30 and 100 mg/kg; P.O.) and/or normal saline containing %5 DMSO. Subsequently, sensorimotor scores, cognition, local cerebral blood flow, extracellular single unit, and histological parameters were evaluated following I/R. Hippocampus was used to evaluate biomarkers including: oxidative stress parameters and prostaglandin E2 (PGE2) using ELISA kits. Data showed that pretreatment with chrysin significantly improved sensorimotor signs, passive avoidance memory, and attenuated reactive hyperemia, and increased the average number of spikes/bin (p < 0.001). Furthermore, chrysin pre-treatment significantly decreased the levels of MDA, NO, and PGE2 (p < 0. 001), while increased the levels of GPX and the number of surviving cells in the hippocampal CA1 region (p < 0.01, p < 0.001; respectively). This study demonstrates that chrysin may have beneficial effects in the treatment of cognitive impairment and help recover the brain dysfunction induced by I/R.
Collapse
Affiliation(s)
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Taghi Mansouri
- Department of Pharmacology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Science, Cell & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Wen JY, Gao SS, Chen FL, Chen S, Wang M, Chen ZW. Role of CSE-Produced H 2S on Cerebrovascular Relaxation via RhoA-ROCK Inhibition and Cerebral Ischemia-Reperfusion Injury in Mice. ACS Chem Neurosci 2019; 10:1565-1574. [PMID: 30406996 DOI: 10.1021/acschemneuro.8b00533] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of CSE-produced H2S on cerebrovascular relaxation and cerebral ischemia-reperfusion (I/R) injury was investigated using CSE knockout (CSE-/-) and wild-type (CSE+/+) mice. The relaxation of the cerebral basilar artery (BA) to CSE-produced H2S and its mechanism were detected. The results revealed that both NaHS, a donor of exogenous H2S, and ROCK inhibitor Y27632 could induce significant relaxation of the BA, but the relaxation of the BA to NaHS was significantly attenuated by Y27632. In addition, removal of endothelium could reduce the relaxation of the BA to Y27632; CSE knockout also significantly attenuated Y27632-induced BA relaxation with endothelium rather than without endothelium. By contrast, the contraction of the BA from CSE-/- mice to RhoA agonist LPA or U46619 was stronger than that from CSE+/+ mice. Furthermore, RhoA activity and ROCK protein expression remarkably increased in the BA vascular smooth muscle cells (VSMCs) from CSE-/- mouse, which were inhibited by NaHS pretreatment. These findings revealed that the CSE-produced H2S induced cerebrovascular relaxation is generated from endothelial cells and the mechanism of vascular relaxation may relate to inhibition of RhoA-ROCK pathway. We next sought to confirm the protective effect of CSE-produced H2S on cerebral I/R injury produced by middle cerebral artery occlusion and bilateral common carotid artery occlusion in mice. We investigated the changes of neurological deficit, cerebral infarct, brain water content, LDH decrease, MDA increase as well as impairment of learning and memory function. The results showed that the cerebral injury became more grievous in CSE-/-mice than that in CSE+/+mice, which could be remarkably alleviated by NaHS pretreatment.
Collapse
Affiliation(s)
- Ji-Yue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shan-Shan Gao
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Lin Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shuo Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mei Wang
- Department of pharmacy, Children’s Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
20
|
Wen JY, Wang M, Li YN, Jiang HH, Sun XJ, Chen ZW. Vascular Protection of Hydrogen Sulfide on Cerebral Ischemia/Reperfusion Injury in Rats. Front Neurol 2018; 9:779. [PMID: 30405510 PMCID: PMC6203172 DOI: 10.3389/fneur.2018.00779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
This study was undertaken to demonstrate the vascular protection of exogenous and endogenous hydrogen sulfide (H2S) on cerebral ischemia/reperfusion (I/R) injury. The effect of H2S on cerebrovascular dysfunction in middle cerebral artery (MCA) and neuronal damage were measured after cerebral I/R induced by transient middle cerebral artery occlusion (MCAO) in cystathionine c-lyase (CSE) knockdown and wild-type rats. The effect of sodium hydrosulfide (NaHS, donor of exogenous H2S), L-cysteine (L-Cys, substrate of endogenous H2S), and endothelium cells on the responses of isolated MCA derived from non-ischemic rats was also evaluated to assess the underlying mechanism of H2S-mediate cerebral vasodilation. The results revealed that the contraction and dilation of MCA profoundly decreased after cerebral I/R. The vascular dysfunction became more grievous in CSE knockdown rats than in wild-type rats. Interestingly, this vascular dysfunction was significantly alleviated by NaHS supplementation. Moreover, both NaHS and L-cysteine could induce remarkable relaxation in the isolated MCA, which was eliminated by co-application of potassium channel blockers ChTx and Apamin, or endothelial removal. By contrast, adding endothelium cells cultured in vitro together with ACh into the luminal perfusate could mimic non-NO and non-PGI2 relaxation in endothelium-denuded MCA, once CSE was knocked down from endothelium cells, and its effect on vasorelaxation was abolished. Furthermore, the indexes of neuronal injury were measured after cerebral I/R to confirm the neuroprotection of H2S, and we found that the neurological scores, cerebral infarction volume, brain water content, malondialdehyde content, and serum lactate dehydrogenase activity (a marker of cellular membrane integrity) were significantly higher in CSE knockdown rats than in normal control rats. It is not surprising that NaHS could alleviate the cerebral injury. These findings revealed that H2S has a protective effect on cerebral I/R injury via its upregulation of the endothelium-dependent contraction and dilation function of cerebral vessels, which may be related to activating potassium channel.
Collapse
Affiliation(s)
- Ji-Yue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Ya-Nan Li
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Hui-Hui Jiang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Xuan-Jun Sun
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Cipolla MJ, Linfante I, Abuchowski A, Jubin R, Chan SL. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats. J Cereb Blood Flow Metab 2018; 38:755-766. [PMID: 28436705 PMCID: PMC5987934 DOI: 10.1177/0271678x17705567] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1 Department of Neurological Sciences and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Italo Linfante
- 2 Miami Cardiac and Vascular Institute and Neuroscience Center, Baptist Hospital, Miami, FL, USA
| | - Abe Abuchowski
- 3 Prolong Pharmaceuticals, LLC, South Plainfield, NJ, USA
| | - Ronald Jubin
- 3 Prolong Pharmaceuticals, LLC, South Plainfield, NJ, USA
| | - Siu-Lung Chan
- 1 Department of Neurological Sciences and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
22
|
El Amki M, Lerouet D, Garraud M, Teng F, Beray-Berthat V, Coqueran B, Barsacq B, Abbou C, Palmier B, Marchand-Leroux C, Margaill I. Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice. Mol Neurobiol 2018; 55:9156-9168. [PMID: 29651748 DOI: 10.1007/s12035-018-1063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Benefits from thrombolysis with recombinant tissue plasminogen activator (rt-PA) after ischemic stroke remain limited due to a narrow therapeutic window, low reperfusion rates, and increased risk of hemorrhagic transformations (HT). Experimental data showed that rt-PA enhances the post-ischemic activation of poly(ADP-ribose)polymerase (PARP) which in turn contributes to blood-brain barrier injury. The aim of the present study was to evaluate whether PJ34, a potent PARP inhibitor, improves poor reperfusion induced by delayed rt-PA administration, exerts vasculoprotective effects, and finally increases the therapeutic window of rt-PA. Stroke was induced by thrombin injection (0.75 UI in 1 μl) in the left middle cerebral artery (MCA) of male Swiss mice. Administration of rt-PA (0.9 mg kg-1) or saline was delayed for 4 h after ischemia onset. Saline or PJ34 (3 mg kg-1) was given intraperitoneally twice, just after thrombin injection and 3 h later, or once, 3 h after ischemia onset. Reperfusion was evaluated by laser Doppler, vascular inflammation by immunohistochemistry of vascular cell adhesion molecule-1 (VCAM-1) expression, and vasospasm by morphometric measurement of the MCA. Edema, cortical lesion, and sensorimotor deficit were evaluated. Treatment with PJ34 improved rt-PA-induced reperfusion and promoted vascular protection including reduction in vascular inflammation (decrease in VCAM-1 expression), HT, and MCA vasospasm. Additionally, the combined treatment significantly reduced brain edema, cortical lesion, and sensorimotor deficit. In conclusion, the combination of the PARP inhibitor PJ34 with rt-PA after cerebral ischemia may be of particular interest in order to improve thrombolysis with an extended therapeutic window.
Collapse
Affiliation(s)
- Mohamad El Amki
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Dominique Lerouet
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Marie Garraud
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fei Teng
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Beray-Berthat
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bérard Coqueran
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Benoît Barsacq
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Charlotte Abbou
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Palmier
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Catherine Marchand-Leroux
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Isabelle Margaill
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
23
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
24
|
El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 2017; 18:ijms18122669. [PMID: 29232823 PMCID: PMC5751271 DOI: 10.3390/ijms18122669] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is caused by a disruption in blood supply to a region of the brain. It induces dysfunction of brain cells and networks, resulting in sudden neurological deficits. The cause of stroke is vascular, but the consequences are neurological. Decades of research have focused on finding new strategies to reduce the neural damage after cerebral ischemia. However, despite the incredibly huge investment, all strategies targeting neuroprotection have failed to demonstrate clinical efficacy. Today, treatment for stroke consists of dealing with the cause, attempting to remove the occluding blood clot and recanalize the vessel. However, clinical evidence suggests that the beneficial effect of post-stroke recanalization may be hampered by the occurrence of microvascular reperfusion failure. In short: recanalization is not synonymous with reperfusion. Today, clinicians are confronted with several challenges in acute stroke therapy, even after successful recanalization: (1) induce reperfusion, (2) avoid hemorrhagic transformation (HT), and (3) avoid early or late vascular reocclusion. All these parameters impact the restoration of cerebral blood flow after stroke. Recent advances in understanding the molecular consequences of recanalization and reperfusion may lead to innovative therapeutic strategies for improving reperfusion after stroke. In this review, we will highlight the importance of restoring normal cerebral blood flow after stroke and outline molecular mechanisms involved in blood flow regulation.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
25
|
Tong LS, Guo ZN, Ou YB, Yu YN, Zhang XC, Tang J, Zhang JH, Lou M. Cerebral venous collaterals: A new fort for fighting ischemic stroke? Prog Neurobiol 2017; 163-164:172-193. [PMID: 29199136 DOI: 10.1016/j.pneurobio.2017.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/03/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Stroke therapy has entered a new era highlighted by the use of endovascular therapy in addition to intravenous thrombolysis. However, the efficacy of current therapeutic regimens might be reduced by their associated adverse events. For example, over-reperfusion and futile recanalization may lead to large infarct, brain swelling, hemorrhagic complication and neurological deterioration. The traditional pathophysiological understanding on ischemic stroke can hardly address these occurrences. Accumulating evidence suggests that a functional cerebral venous drainage, the major blood reservoir and drainage system in brain, may be as critical as arterial infusion for stroke evolution and clinical sequelae. Further exploration of the multi-faceted function of cerebral venous system may add new implications for stroke outcome prediction and future therapeutic decision-making. In this review, we emphasize the anatomical and functional characteristics of the cerebral venous system and illustrate its necessity in facilitating the arterial infusion and maintaining the cerebral perfusion in the pathological stroke content. We then summarize the recent critical clinical studies that underscore the associations between cerebral venous collateral and outcome of ischemic stroke with advanced imaging techniques. A novel three-level venous system classification is proposed to demonstrate the distinct characteristics of venous collaterals in the setting of ischemic stroke. Finally, we discuss the current directions for assessment of cerebral venous collaterals and provide future challenges and opportunities for therapeutic strategies in the light of these new concepts.
Collapse
Affiliation(s)
- Lu-Sha Tong
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Zhen-Ni Guo
- Department of Neurology, The First Affiliated Hospital of Jilin University, Changchun, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Yi-Bo Ou
- Department of Neurosurgery, Tong-ji Hospital, Wuhan, China; Departments of Physiology, Loma Linda University, School of Medicine, CA, USA
| | - Yan-Nan Yu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao-Cheng Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jiping Tang
- Department of Anesthesiology, Loma Linda University, School of Medicine, CA, USA
| | - John H Zhang
- Departments of Physiology, Loma Linda University, School of Medicine, CA, USA.
| | - Min Lou
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Qu Y, Liu Y, Zhu Y, Chen L, Sun W, Zhu Y. Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways. Mol Cells 2017; 40:837-846. [PMID: 29081082 PMCID: PMC5712513 DOI: 10.14348/molcells.2017.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/25/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yu Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yanmei Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Li Chen
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Wei Sun
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yulan Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| |
Collapse
|
27
|
Renú A, Laredo C, Tudela R, Urra X, Lopez-Rueda A, Llull L, Oleaga L, Amaro S, Chamorro Á. Brain hemorrhage after endovascular reperfusion therapy of ischemic stroke: a threshold-finding whole-brain perfusion CT study. J Cereb Blood Flow Metab 2017; 37:153-165. [PMID: 26661254 PMCID: PMC5363740 DOI: 10.1177/0271678x15621704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022]
Abstract
Endovascular reperfusion therapy is increasingly used for acute ischemic stroke treatment. The occurrence of parenchymal hemorrhage is clinically relevant and increases with reperfusion therapies. Herein we aimed to examine the optimal perfusion CT-derived parameters and the impact of the duration of brain ischemia for the prediction of parenchymal hemorrhage after endovascular therapy. A cohort of 146 consecutive patients with anterior circulation occlusions and treated with endovascular reperfusion therapy was analyzed. Recanalization was assessed at the end of reperfusion treatment, and the rate of parenchymal hemorrhage at follow-up neuroimaging. In regression analyses, cerebral blood volume and cerebral blood flow performed better than Delay Time maps for the prediction of parenchymal hemorrhage. The most informative thresholds (receiver operating curves) for relative cerebral blood volume and relative cerebral blood flow were values lower than 2.5% of normal brain. In binary regression analyses, the volume of regions with reduced relative cerebral blood volume and/or relative cerebral blood flow was significantly associated with an increased risk of parenchymal hemorrhage, as well as delayed vessel recanalization. These results highlight the relevance of the severity and duration of ischemia as drivers of blood-brain barrier disruption in acute ischemic stroke and support the role of perfusion CT for the prediction of parenchymal hemorrhage.
Collapse
Affiliation(s)
- Arturo Renú
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Raúl Tudela
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging of the University of Barcelona, Barcelona, Spain
| | - Xabier Urra
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Laura Llull
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Laura Oleaga
- Radiology Department, Hospital Clinic, Barcelona, Spain
| | - Sergio Amaro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
28
|
Linfante I, Cipolla MJ. Improving Reperfusion Therapies in the Era of Mechanical Thrombectomy. Transl Stroke Res 2016; 7:294-302. [PMID: 27221511 PMCID: PMC4929023 DOI: 10.1007/s12975-016-0469-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Recent positive clinical trials using mechanical thrombectomy proved that endovascular recanalization is an effective treatment for patients with acute stroke secondary to large vessel occlusions. The trials offer definite evidence that in acute ischemia recanalization is a powerful predictor of good outcome. However, even in the era of rapid and effective recanalization using endovascular approaches, the percentage of patients with good outcomes varies between 33 and 71 %. In addition, the number of patients who are eligible for endovascular thrombectomy is small and usually based on having salvageable tissue on imaging. There is therefore room for improvement to both enhance the effectiveness of current practice and expand treatment to a larger subset of stroke patients. In this review, we highlight some of the most promising approaches to improve endovascular therapy by combining with strategies to enhance collateral perfusion and vascular protection.
Collapse
Affiliation(s)
- Italo Linfante
- Miami Cardiac and Vascular Institute and Neuroscience Center, Baptist Hospital, Miami, FL, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences and Pharmacology, University of Vermont College of Medicine, 149 Beaumont Ave.; HSRF 416A, Burlington, VT, 05405, USA.
| |
Collapse
|
29
|
Hardigan T, Yasir A, Abdelsaid M, Coucha M, El-Shaffey S, Li W, Johnson MH, Ergul A. Linagliptin treatment improves cerebrovascular function and remodeling and restores reduced cerebral perfusion in Type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2016; 311:R466-77. [PMID: 27357799 DOI: 10.1152/ajpregu.00057.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022]
Abstract
The antihyperglycemic agent linagliptin, a dipeptidyl peptidase-4 (DPP-IV) inhibitor, has been shown to reduce inflammation and improve endothelial cell function. In this study, we hypothesized that DPP-IV inhibition with linagliptin would improve impaired cerebral perfusion in diabetic rats, as well as improve insulin-induced cerebrovascular relaxation and reverse pathological cerebrovascular remodeling. We further postulated that these changes would lead to a subsequent improvement of cognitive function. Male Type-2 diabetic and nondiabetic Goto-Kakizaki rats were treated with linagliptin for 4 wk, and blood glucose and DPP-IV plasma levels were assessed. Cerebral perfusion was assessed after treatment using laser-Doppler imaging, and dose response to insulin (10(-13) M-10(-6) M) in middle cerebral arteries was tested on a pressurized arteriograph. The impact of DPP-IV inhibition on diabetic cerebrovascular remodeling was assessed over a physiologically relevant pressure range, and changes in short-term hippocampus-dependent learning were observed using a novel object recognition test. Linagliptin lowered DPP-IV activity but did not change blood glucose or insulin levels in diabetes. Insulin-mediated vascular relaxation and cerebral perfusion were improved in the diabetic rats with linagliptin treatment. Indices of diabetic vascular remodeling, such as increased cross-sectional area, media thickness, and wall-to-lumen ratio, were also ameliorated; however, improvements in short-term hippocampal-dependent learning were not observed. The present study provides evidence that linagliptin treatment improves cerebrovascular dysfunction and remodeling in a Type 2 model of diabetes independent of glycemic control. This has important implications in diabetic patients who are predisposed to the development of cerebrovascular complications, such as stroke and cognitive impairment.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Abdul Yasir
- Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Maha Coucha
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Sally El-Shaffey
- Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Weiguo Li
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| | - Maribeth H Johnson
- Department of Biostatistics, The Graduate School at Augusta University, Augusta, Georgia
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia, Augusta, Georgia; and
| |
Collapse
|
30
|
Li X, Zhao Y, Liu P, Zhu X, Chen M, Wang H, Lu D, Qi R. Senegenin Inhibits Hypoxia/Reoxygenation-Induced Neuronal Apoptosis by Upregulating RhoGDIα. Mol Neurobiol 2015; 52:1561-1571. [PMID: 25367882 DOI: 10.1007/s12035-014-8948-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
Neuronal apoptosis is an important event in hypoxia/reoxygenation (H/R)-induced neuronal injury. Senegenin (Sen), the predominant and most active component in Radix Polygalae root extracts, displays anti-apoptotic and anti-oxidative properties. Sen protects against H/R-induced neuronal apoptosis of highly differentiated PC12 cells and primary cortical neurons. Sen has also been investigated as a source of potential therapeutic targets. In this study, a proteomic approach was used to identify Sen-regulated proteins in PC12 cells. We found that Sen protected against H/R-induced neuronal apoptosis by upregulating RhoGDIα protein expression. The regulatory functions of RhoGDIα were investigated by knocking down RhoGDIα expression in PC12 cells using small interfering RNA (siRNA), followed by quantification of apoptosis and then altering the expression levels of apoptosis-related proteins. Our data show that after silencing RhoGDIα, the neuroprotective effects of Sen on H/R-induced PC12 cell apoptosis were absent. Furthermore, RhoGDIα silencing alleviated the Sen-mediated inhibition of the JNK pathway. Therefore, these findings indicated that Sen attenuates H/R-induced neuronal apoptosis by upregulating RhoGDIα expression and inhibiting the JNK pathway. In addition to the mechanism underlying neuroprotective effects of Sen, RhoGDIα was identified as a putative target of Sen based on a primary rat cortical neuron model of H/R-induced injury.
Collapse
Affiliation(s)
- Xuemin Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
- Department of Pathology, Municipal People's Hospital, 243000, Maanshan, Anhui, China
| | - Yandong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Panhong Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Xiaoqing Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
- Department of Gynecology, Clifford Hospital, 511495, Guangzhou, Guangdong, China
| | - Minyi Chen
- Texas A & M University, College Station, TX 77843, USA
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, No. 601 Huangpu Avenue West, 510632, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun 2015; 6:7893. [PMID: 26243335 PMCID: PMC4587559 DOI: 10.1038/ncomms8893] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
The use and effectiveness of current stroke reperfusion therapies are limited by the complications of reperfusion injury, which include increased cerebrovascular permeability and haemorrhagic transformation. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of vascular integrity via its receptors (S1PR). By using genetic approaches and a S1PR2 antagonist (JTE013), here we show that S1PR2 plays a critical role in the induction of cerebrovascular permeability, development of intracerebral haemorrhage and neurovascular injury in experimental stroke. In addition, inhibition of S1PR2 results in decreased matrix metalloproteinase (MMP)-9 activity in vivo and lower gelatinase activity in cerebral microvessels. S1PR2 immunopositivity is detected only in the ischemic microvessels of wild-type mice and in the cerebrovascular endothelium of human brain autopsy samples. In vitro, S1PR2 potently regulates the responses of the brain endothelium to ischaemic and inflammatory injury. Therapeutic targeting of this novel pathway could have important translational relevance to stroke patients.
Collapse
|
32
|
Lee SJ, Hong JM, Lee M, Huh K, Choi JW, Lee JS. Cerebral arterial calcification is an imaging prognostic marker for revascularization treatment of acute middle cerebral arterial occlusion. J Stroke 2015; 17:67-75. [PMID: 25692109 PMCID: PMC4325637 DOI: 10.5853/jos.2015.17.1.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND PURPOSE To study the significance of intracranial artery calcification as a prognostic marker for acute ischemic stroke patients undergoing revascularization treatment after middle cerebral artery (MCA) trunk occlusion. METHODS Patients with acute MCA trunk occlusion, who underwent intravenous and/or intra-arterial revascularization treatment, were enrolled. Intracranial artery calcification scores were calculated by counting calcified intracranial arteries among major seven arteries on computed tomographic angiography. Patients were divided into high (HCB; score ≥3) or low calcification burden (LCB; score <3) groups. Demographic, imaging, and outcome data were compared, and whether HCB is a prognostic factor was evaluated. Grave prognosis was defined as modified Rankin Scale 5-6 for this study. RESULTS Of 80 enrolled patients, the HCB group comprised 15 patients, who were older, and more commonly had diabetes than patients in the LCB group. Initial National Institutes of Health Stroke Scale (NIHSS) scores did not differ (HCB 13.3±2.7 vs. LCB 14.6±3.8) between groups. The final good reperfusion after revascularization treatment (thrombolysis in cerebral infarction score 2b-3, HCB 66.7% vs. LCB 69.2%) was similarly achieved in both groups. However, the HCB group had significantly higher NIHSS scores at discharge (16.0±12.3 vs. 7.9±8.3), and more frequent grave outcome at 3 months (57.1% vs. 22.0%) than the LCB group. HCB was proven as an independent predictor for grave outcome at 3 months when several confounding factors were adjusted (odds ratio 4.135, 95% confidence interval, 1.045-16.359, P=0.043). CONCLUSIONS Intracranial HCB was associated with grave prognosis in patients who have undergone revascularization for acute MCA trunk occlusion.
Collapse
Affiliation(s)
- Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Manyong Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Kyoon Huh
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Korea
| |
Collapse
|
33
|
The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/Akt pathway and ATP-sensitive potassium channels. Neurochem Res 2014; 40:1-14. [PMID: 25366463 DOI: 10.1007/s11064-014-1456-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/11/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolite of arachidonic acid, have been demonstrated to have neuroprotective effect. Phosphatidylinositol 3-kinase (PI3K)/Akt and ATP-sensitive potassium (KATP) channels are thought to be important factors that mediate neuroprotection. However, little is known about the role of PI3K/Akt and KATP channels in brain after EETs administration. In vitro experiment, oxygen-glucose deprivation (OGD) was performed in cultured rat cerebral microvascular smooth muscle cells (SMCs) for 4 h. The effect of 14,15-EET on OGD induced cell apoptosis was examined after reoxygenation. Western blot and real-time PCR were used to analyze the expression of Kir6.1, SUR2B (two subunits of KATP channels) and p-Akt on cerebral microvascular SMCs. In vivo experiments, we use 12-(3-adamantan-1-yl-ureido)-dodecanoic acid [AUDA, a specific soluble epoxide hydrolase (sEH) inhibitor] to confirm the effect of EETs indirectly. Rats were injected intraperitoneally with AUDA before being subjected to middle cerebral artery occlusion (MCAO). We detected the apoptosis and the expression of p-Akt, Kir6.1 and SUR2B in ischemic penumbra. The results showed that EETs protect against cerebral ischemia/reperfusion (I/R) injury and upregulated the expression of p-Akt and Kir6.1 in both of ischemic penumbra and OGD induced cerebral microvascular SMCs. The protective effect was inhibited by Wortmannin (a specific PI3K inhibitor) and Glib (a specific KATP inhibitor) respectively in vitro experiment. In conclusion, these results suggested that the protective effect of EETs on cerebral I/R injury is associated with PI3K/Akt pathway and KATP channels. Furthermore, the PI3K pathway may contribute to mediating KATP channels on cerebral microvascular SMCs.
Collapse
|
34
|
Suh HI, Lee SW, Eom YI, Lee JS. A case of delayed neurological recovery with luxury perfusion and a high intracranial arterial calcification burden. J Stroke 2014; 16:51-3. [PMID: 24741565 PMCID: PMC3961815 DOI: 10.5853/jos.2014.16.1.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/11/2014] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hong-Il Suh
- Department of Neurology, Ajou University Medical Center, Suwon, Korea
| | - Seon-Wook Lee
- Department of Neurology, Ajou University Medical Center, Suwon, Korea
| | - Young-In Eom
- Department of Neurology, Ajou University Medical Center, Suwon, Korea
| | - Jin Soo Lee
- Department of Neurology, Ajou University Medical Center, Suwon, Korea
| |
Collapse
|
35
|
Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 2014; 5:442-453. [PMID: 24619488 DOI: 10.1007/s12975-014-0336-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is a leading cause of disability and is considered now the fourth leading cause of death. Many clinical trials have shown that stroke patients with acute elevation in blood glucose at onset of stroke suffer worse functional outcomes, longer in-hospital stay, and higher mortality rates. The only therapeutic hope for these patients is the rapid restoration of blood flow to the ischemic tissue through intravenous administration of the only currently proven effective therapy, tissue plasminogen activator (tPA). However, even this option is associated with the increased risk of intracerebral hemorrhage. Nonetheless, the underlying mechanisms through which hyperglycemia (HG) and tPA worsen the neurovascular injury after stroke are not fully understood. Accordingly, this review summarizes the latest updates and recommendations about the management of HG and coadministration of tPA in a clinical setting while focusing more on the various experimental models studying (1) the effect of HG on stroke outcomes, (2) the potential mechanisms involved in worsening the neurovascular injury, (3) the different therapeutic strategies employed to ameliorate the injury, and finally, (4) the interaction between HG and tPA. Developing therapeutic strategies to reduce the hemorrhage risk with tPA in hyperglycemic setting is of great clinical importance. This can best be achieved by conducting robust preclinical studies evaluating the interaction between tPA and other therapeutics in order to develop potential therapeutic strategies with high translational impact.
Collapse
|
36
|
Abdelsaid M, Kaczmarek J, Coucha M, Ergul A. Dual endothelin receptor antagonism with bosentan reverses established vascular remodeling and dysfunctional angiogenesis in diabetic rats: relevance to glycemic control. Life Sci 2014; 118:268-73. [PMID: 24447630 DOI: 10.1016/j.lfs.2014.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/19/2013] [Accepted: 01/08/2014] [Indexed: 11/15/2022]
Abstract
AIMS We have shown that diabetes causes cerebrovascular remodeling in part by the activation of the endothelin (ET-1) system in a glucose-dependent manner. We also reported increased yet dysfunctional cerebral angiogenesis in diabetes. Here, we tested the hypothesis that dual ET-1 receptor antagonism or glycemic control can reverse already established diabetes-induced vascular remodeling and neovascularization. MAIN METHODS 18-week non-obese type-2 diabetic Goto-Kakizaki (GK) were treated with vehicle, metformin (300 mg/kg/day) or bosentan (100 mg/kg/day) for 4 weeks by oral gavage and compared to 10 and 18-weeks GK rats. Isolated middle cerebral artery (MCA) lumen diameter (LD), media thickness (MT), media:lumen (M:L) ratio, and cross-sectional area (CSA) were measured using pressurized arteriograph. Assessment of remodeling and angiogenesis in the brain parenchyma was achieved by three-dimensional reconstruction of fluorescently labeled images of the vasculature acquired by confocal microscopy, and measurement of neovascularization indices including vascular volume and surface area, branch density and tortuosity. KEY FINDINGS MCA remodeling (increased M:L ratio and CSA, but decreased LD) occurred by 18 weeks and did not progress by 22 weeks in diabetic GK rats. Metformin and bosentan partially corrected large artery remodeling. Both treatments significantly reduced all indices of neovascularization compared to untreated diabetic rats. SIGNIFICANCE Glycemic control or ET-1 antagonism can partially reverse diabetes-induced cerebrovascular remodeling and neovascularization. These results strongly suggest that either approach offers a therapeutic benefit and combination treatments need to be tested.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Jessica Kaczmarek
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
37
|
Abdelsaid M, Ma H, Coucha M, Ergul A. Late dual endothelin receptor blockade with bosentan restores impaired cerebrovascular function in diabetes. Life Sci 2014; 118:263-7. [PMID: 24434796 DOI: 10.1016/j.lfs.2013.12.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 01/21/2023]
Abstract
AIMS Up-regulation of the endothelin (ET) system in type-2 diabetes increases contraction and decreases relaxation in basilar artery. We showed that 1) ET-receptor antagonism prevents diabetes-mediated cerebrovascular dysfunction; and 2) glycemic control prevents activation of the ET-system in diabetes. Here, our goal is to determine whether and to what extent glycemic control or ET-receptor antagonism reverses established cerebrovascular dysfunction in diabetes. MAIN METHODS Non-obese type-2 diabetic Goto-Kakizaki rats were administered either vehicle, metformin (300 mg/kg/day) or dual ET-receptor antagonist bosentan (100mg/kg) for 4-weeks starting at 18-weeks after established cerebrovascular dysfunction (n=5-6/group). Control group included vehicle-treated aged-matched Wistar rats. Blood glucose and pressure were monitored weekly. At termination, basilar arteries were collected and cumulative dose-response curves to ET-1 (0.1-500 nM), 5-HT (1-1000 nM) and acetylcholine (Ach, 0.1 nM-5 μM) were studied by wire myograph. Middle cerebral artery (MCA) myogenic reactivity and tone were measured using pressurized arteriograph. KEY FINDINGS There was no difference in ET-1 and 5-HT-mediated constrictions. Endothelium-dependent relaxation was impaired in diabetes. Bosentan improved sensitivity to Ach as well as the maximum relaxation. Myogenic-tone is decreased over the course of the disease. Both treatments improved the ability of MCAs to develop tone at 80 mm Hg and only bosentan improved the tone at higher pressures. SIGNIFICANCE These results suggest that contractile response is not affected by glycemic control or ET-receptor antagonism. Meanwhile, dual ET-receptor blockade is effective in partially improving endothelium-dependent relaxation and myogenic response in a blood pressure-independent manner even after established cerebrovascular dysfunction and offers therapeutic potential.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Handong Ma
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, University of Georgia College of Pharmacy, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, USA; Department of Physiology, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
38
|
Coucha M, Li W, Johnson MH, Fagan SC, Ergul A. Protein nitration impairs the myogenic tone of rat middle cerebral arteries in both ischemic and nonischemic hemispheres after ischemic stroke. Am J Physiol Heart Circ Physiol 2013; 305:H1726-35. [PMID: 24097431 DOI: 10.1152/ajpheart.00535.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myogenic response is crucial for maintaining vascular resistance to achieve constant perfusion during pressure fluctuations. Reduced cerebral blood flow has been reported in ischemic and nonischemic hemispheres after stroke. Ischemia-reperfusion injury and the resulting oxidative stress impair myogenic responses in the ischemic hemisphere. Yet, the mechanism by which ischemia-reperfusion affects the nonischemic side is still undetermined. The goal of the present study was to determine the effect of ischemia-reperfusion injury on the myogenic reactivity of cerebral vessels from both hemispheres and whether protein nitration due to excess peroxynitrite production is the underlying mechanism of loss of tone. Male Wistar rats were subjected to sham operation or 30-min middle cerebral artery occlusion/45-min reperfusion. Rats were administered saline, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), or the nitration inhibitor epicatechin at reperfusion. Middle cerebral arteries isolated from another set of control rats were exposed to ex vivo oxygen-glucose deprivation with and without glycoprotein 91 tat (NADPH oxidase inhibitor) or N(ω)-nitro-l-arginine methyl ester. Myogenic tone and nitrotyrosine levels were determined. Ischemia-reperfusion injury impaired the myogenic tone of vessels in both hemispheres compared with the sham group (P < 0.001). Vessels exposed to ex vivo oxygen-glucose deprivation experienced a similar loss of myogenic tone. Inhibition of peroxynitrite parent radicals significantly improved the myogenic tone. Peroxynitrite scavenging or inhibition of nitration improved the myogenic tone of vessels from ischemic (P < 0.001 and P < 0.05, respectively) and nonischemic (P < 0.01 and P < 0.05, respectively) hemispheres. Nitration was significantly increased in both hemispheres versus the sham group and was normalized with epicatechin treatment. In conclusion, ischemia-reperfusion injury impairs vessel reactivity in both hemispheres via nitration. We suggest that sham operation rather than the nonischemic side should be used as a control in preclinical stroke studies.
Collapse
Affiliation(s)
- Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, Georgia
| | | | | | | | | |
Collapse
|
39
|
Cipolla MJ, Sweet JG, Gokina NI, White SL, Nelson MT. Mechanisms of enhanced basal tone of brain parenchymal arterioles during early postischemic reperfusion: role of ET-1-induced peroxynitrite generation. J Cereb Blood Flow Metab 2013; 33:1486-92. [PMID: 23778163 PMCID: PMC3790940 DOI: 10.1038/jcbfm.2013.99] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 12/14/2022]
Abstract
The contributions of vasoconstrictors (endothelin-1 (ET-1), peroxynitrite) and endothelium-dependent vasodilatory mechanisms to basal tone were investigated in parenchymal arterioles (PAs) after early postischemic reperfusion. Transient middle cerebral artery occlusion (tMCAO) was induced for 2 hours with 30 minutes reperfusion in male Wistar rats and compared with ischemia alone (permanent MCAO (pMCAO); 2.5 hours) or sham controls. Changes in lumen diameter of isolated and pressurized PAs were compared. Quantitative PCR was used to measure endothelin type B (ETB) receptors. Constriction to intravascular pressure ('basal tone') was not affected by tMCAO or pMCAO. However, constriction to inhibitors of endothelial cell, small- (SK) and intermediate- (IK) conductance, Ca(2+)-sensitive K(+) channels (apamin and TRAM-34, respectively) were significantly enhanced in PAs from tMCAO compared with pMCAO or sham. Addition of the ETB agonist sarafotoxin caused constriction in PAs from tMCAO but not from sham animals (21 ± 4% versus 3 ± 3% at 1 nmol/L; P<0.01) that was inhibited by the peroxynitrite scavenger FeTMPyP (5,10,15,20-tetrakis (N-methyl-4'-pyridyl) porphinato iron (III) chloride) (100 μmol/L). Expression of ETB receptors was not found on PA smooth muscle, suggesting that constriction to sarafotoxin after tMCAO was due to peroxynitrite and not ETB receptor expression. The maintenance of basal tone in PAs after tMCAO may restrict flow to the ischemic region and contribute to infarct expansion.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- 1] Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA [2] Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, USA [3] Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The sad reality is that in the year 2012, people are still dying or suffering from the extreme morbidity of ischemic stroke. This tragedy is only compounded by the graveyard full of once promising new therapies. While it is indeed true that the overall mortality from stroke has declined in the United States, perhaps due to increased awareness of stroke symptoms by both the lay public and physicians, it is clear that better therapies are needed. In this regard, progress has been tremendously slowed by the simple fact that experimental models of stroke and the animals that they typically employ, rats and mice, do not adequately represent human stroke. Furthermore, the neuroprotective therapeutic approach, in which potential treatments are administered with the hope of preventing the spread of dying neurons that accompanies a stroke, typically fail for a number of reasons such as there is simply more brain matter to protect in a human than there is in a rodent! For this reason, there has been somewhat of a shift in stroke research away from neuroprotection and toward a neurorepair approach. This too may be problematic in that agents that might foster brain repair could be acutely deleterious or neurotoxic and vice versa, making the timing of treatment administration after stroke critical. Therefore, in our efforts to discover a new stroke therapy, we decided to focus on identifying brain repair elements that were (1) endogenously and actively generated in response to stroke in both human and experimental animal brains, (2) present acutely and chronically after ischemic stroke, suggesting that they could have a role in acute neuroprotection and chronic neurorepair, and (3) able to be administered peripherally and reach the site of stroke brain injury. In this review, I will discuss the evidence that suggests that perlecan domain V may be just that substance, a potential beacon of hope for stroke patients.
Collapse
Affiliation(s)
- Gregory J Bix
- Sanders-Brown Center on
Aging, Department of Anatomy and Neurobiology, University of Kentucky, 430 Sanders-Brown Building, 800 South Limestone
Street, Lexington, Kentucky 40536-0230, United States
| |
Collapse
|
41
|
Vahidy FS, Alderman S, Savitz SI. Challenges enrolling patients with acute ischemic stroke into cell therapy trials. Stem Cells Dev 2013; 22:27-30. [PMID: 22970907 PMCID: PMC3528085 DOI: 10.1089/scd.2012.0404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022] Open
Abstract
Infusion of autologous bone marrow-derived mononuclear cells (MNCs) is a promising investigational therapeutic approach for patients with acute ischemic stroke. Preclinical models indicate that MNCs can reduce neurological deficits and enhance recovery. We recently concluded a phase I clinical trial to determine the safety and feasibility of these cells in patients with acute ischemic stroke. In this article, we discuss practical barriers and challenges encountered during the trial and provide lessons learned for the design and planning of future clinical trials testing novel cell therapies for acute ischemic stroke.
Collapse
Affiliation(s)
- Farhaan S Vahidy
- Vascular Neurology Program, Department of Neurology, University of Texas Medical School, Houston 77030, Texas, USA
| | | | | |
Collapse
|
42
|
Dave KR, Christian SL, Perez-Pinzon MA, Drew KL. Neuroprotection: lessons from hibernators. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:1-9. [PMID: 22326449 PMCID: PMC3334476 DOI: 10.1016/j.cbpb.2012.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
Mammals that hibernate experience extreme metabolic states and body temperatures as they transition between euthermia, a state resembling typical warm blooded mammals, and prolonged torpor, a state of suspended animation where the brain receives as low as 10% of normal cerebral blood flow. Transitions into and out of torpor are more physiologically challenging than the extreme metabolic suppression and cold body temperatures of torpor per se. Mammals that hibernate show unprecedented capacities to tolerate cerebral ischemia, a decrease in blood flow to the brain caused by stroke, cardiac arrest or brain trauma. While cerebral ischemia often leads to death or disability in humans and most other mammals, hibernating mammals suffer no ill effects when blood flow to the brain is dramatically decreased during torpor or experimentally induced during euthermia. These animals, as adults, also display rapid and pronounced synaptic flexibility where synapses retract during torpor and rapidly re-emerge upon arousal. A variety of coordinated adaptations contribute to tolerance of cerebral ischemia in these animals. In this review we discuss adaptations in heterothermic mammals that may suggest novel therapeutic targets and strategies to protect the human brain against cerebral ischemic damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|