1
|
Salcedo-Villanueva G, Becerra-Revollo C, Rhoads-Avila LA, García-Sánchez J, Jácome-Gutierrez FA, Cernichiaro-Espinosa L, Henaine-Berra A, Orozco-Hernandez A, Ruiz-García H, Torres-Porras E. Perception of #TheDress in childhood is influenced by age and green-leaf preference. J Vis 2024; 24:11. [PMID: 39172467 PMCID: PMC11353488 DOI: 10.1167/jov.24.8.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The perception of the ambiguous image of #TheDress may be influenced by optical factors, such as macular pigments. Their accumulation during childhood could increase with age and the ingestion of carotenoid-containing foods. The purpose of this study was to investigate whether the visual perception of the dress in children would differ based on age and carotenoid preference. This was a cross-sectional, observational, and comparative study. A poll was administered to children aged 2 to 10 years. Parents were instructed to inquire about the color of #TheDress from their children. A carotenoid preference survey was also completed. A total of 413 poll responses were analyzed. Responses were categorized based on the perceived color of the dress: blue/black (BB) (n = 204) and white/gold (WG) (n = 209). The mean and median age of the WG group was higher than the BB group (mean 6.1, median 6.0 years, standard deviation [SD] 2.2; mean 5.5, median 5.0 years, SD 2.3; p = 0.007). Spearman correlation between age and group was 0.133 (p = 0.007). Green-leaf preference (GLP) showed a statistically significant difference between groups (Mann-Whitney U: p = 0.038). Spearman correlation between GLP and group was 0.102 (p = 0.037). Logistic regression for the perception of the dress as WG indicated that age and GLP were significant predictors (age: B weight 0.109, p = 0.012, odds ratio: 1.115; GLP: B weight 0.317, p = 0.033, odds ratio: 1.373). Older children and those with a higher GLP were more likely to perceive #TheDress as WG. These results suggest a potential relationship with the gradual accumulation of macular pigments throughout a child's lifetime.
Collapse
Affiliation(s)
| | - Catalina Becerra-Revollo
- Ocular Ultrasound Department, Asociación Para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | | | - Julian García-Sánchez
- Retina Department, Asociación Para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
2
|
Peivasteh-Roudsari L, Karami M, Barzegar-Bafrouei R, Samiee S, Karami H, Tajdar-Oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Oliveri Conti G, Mousavi Khaneghah A. Toxicity, metabolism, and mitigation strategies of acrylamide: a comprehensive review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1-29. [PMID: 36161963 DOI: 10.1080/09603123.2022.2123907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acrylamide, a food-borne chemical toxicant, has raised global concern in recent decades. It mainly originated from reducing sugar and free amino acid interactions in the carbohydrate-rich foodstuffs heated at high temperatures. Due to the neurotoxicity and carcinogenicity of AA, the mechanism of formation, toxic effects on health, and mitigation strategies, including conventional approaches and innovative technologies, have been of great interest since its discovery in food. Potato products (especially French fries and crisps), coffee, and cereals(bread and biscuit) are renowned contributors to AA's daily intake. The best preventive methods discussed in the literature include time/temperature optimization, blanching, enzymatic treatment, yeast treatment, additives, pulsed electric fields, ultrasound, vacuum roasting, air frying, and irradiation, exhibiting a high efficacy in AA elimination in food products.
Collapse
Affiliation(s)
| | - Marziyeh Karami
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Barzegar-Bafrouei
- Department of Food Safety and Hygiene, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samane Samiee
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Hadis Karami
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia," Hygiene and Public Health, University of Catania, Catania, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Elnemr I, Mushtaha M, Sundararaju S, Hasan MR, Tsui KM, Goktepe I. Monitoring the effect of environmental conditions on safety of fresh produce sold in Qatar's wholesale market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1986-2004. [PMID: 34085573 DOI: 10.1080/09603123.2021.1931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Fresh produce imported by Qatar are mostly sold at the wholesale produce market (WPM) located in open-air and near major animal markets and slaughterhouses. This study was the first in Qatar to monitor the effect of environmental conditions on the microbial quality and safety of fresh produce sold at the WPM over 1 year. The monitoring involved the collection of 540 produce samples along with samples of air, soil, and surface swabs. Samples were analyzed for total aerobic bacteria (TAB); generic Listeria spp., Staphylococcus spp., Salmonella spp.; total coliforms and total fungi. Bacterial and fungal isolates were identified using 16S rRNA/ITS rRNA markers. Environmental/sanitary factors significantly impacted the prevalence of microorganisms in all samples tested. Produce quality was rated 'poor' during the months of November-February or May-August, with TAB and coliform counts exceeding 6 and 4 log10 CFU/g, respectively. Bacillus subtilus, Enterobacter cloacae, E. faecium, P. expansium, P. aurantiocandidum, and A. niger were the most abundant species with prevalence rate of 11-30%. The high microbial load of environmental samples indicates that the location of the WPM near livestock markets is likely impacting the microbial quality of fresh produce. Therefore, effective control measures need to be implemented at WPM to improve produce safety yearlong.
Collapse
Affiliation(s)
- I Elnemr
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - M Mushtaha
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Mohammad Rubayet Hasan
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Department of Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Kin-Ming Tsui
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Department of Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - I Goktepe
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Widomska J, Gruszecki WI, Subczynski WK. Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants (Basel) 2021; 10:601. [PMID: 33919673 PMCID: PMC8070478 DOI: 10.3390/antiox10040601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
5
|
Davey PG, Henderson T, Lem DW, Weis R, Amonoo-Monney S, Evans DW. Visual Function and Macular Carotenoid Changes in Eyes with Retinal Drusen-An Open Label Randomized Controlled Trial to Compare a Micronized Lipid-Based Carotenoid Liquid Supplementation and AREDS-2 Formula. Nutrients 2020; 12:nu12113271. [PMID: 33114566 PMCID: PMC7693149 DOI: 10.3390/nu12113271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: To compare the changes in visual and ocular parameters in individuals with retinal drusen who were treated with two commercially available nutritional supplements. Methods: An open-label, single-center, randomized, parallel-treatment with an observational control group design was utilized. The treatment groups included individuals with fine retinal drusen sub-clinical age-related macular degeneration (AMD), while the control group consisted of ocular normal individuals. The treatment groups were randomly assigned to the micronized lipid-based carotenoid supplement, Lumega-Z (LM), or the PreserVision Age-Related Eye Disease Study 2 (AREDS-2) soft gel (PV). Visual performance was evaluated using the techniques of visual acuity, dark adaptation recovery and contrast sensitivity, at baseline, three months, and six months. Additionally, the macular pigment optical density (MPOD) was measured. The control group was not assigned any carotenoid supplement. The right eye and left eye results were analyzed separately. Results: Seventy-nine participants were recruited for this study, of which 68 qualified and 56 participants had useable reliable data. Of the individuals who completed this study, 25 participants belonged to the LM group, 16 belonged to the PV group, and 15 to the control group. The LM group demonstrated statistically significant improvements in contrast sensitivity function (CSF) in both eyes at six months (p < 0.001). The LM group displayed a positive linear trend with treatment time in CSF (p < 0.001), with benefits visible after just three months of supplementation. Although there was a trend showing improvement in CSF in the PV group, the change was not significant after a Bonferroni-corrected p-value of p < 0.00625. Visual acuity, dark adaptation recovery and MPOD did not significantly improve in either treatment groups. Conclusion: The LM group demonstrated greater and faster benefits in visual performance as measured by CSF when compared to the PV group. This trial has been registered at clinicaltrials.gov (NCT03946085).
Collapse
Affiliation(s)
- Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
- Correspondence: ; Tel.: +1-909-469-8473
| | | | - Drake W. Lem
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
| | - Rebecca Weis
- Eye Clinic of Austin, Austin, TX 78731, USA; (T.H.); (R.W.)
| | - Stephanie Amonoo-Monney
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA; (D.W.L.); (S.A.-M.)
| | - David W. Evans
- VectorVision/Guardion Health Sciences, San Diego, CA 92128, USA;
| |
Collapse
|
6
|
Stringham NT, Holmes PV, Stringham JM. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol Behav 2019; 211:112650. [PMID: 31425700 DOI: 10.1016/j.physbeh.2019.112650] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Oxidative and inflammatory processes play a major role in stress-induced neural atrophy. There is a wide body of literature linking oxidative and inflammatory stress with reductions in neurotrophic factors, stress resilience, and cognitive function. Based on their antioxidant and anti-inflammatory capacity, we investigated the effect of the dietary carotenoids lutein and zeaxanthin, along with the zeaxanthin isomer meso-zeaxanthin (collectively the "macular xanthophylls" [MXans]) on systemic brain-derived neurotrophic factor (BDNF) and anti-oxidant capacity (AOC), and the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. To investigate higher-order effects, we assessed cognitive performance. METHODS 59 young (18-25 yrs.), healthy subjects participated in a 6-month, double-blind, placebo-controlled trial to evaluate the effects of MXan supplementation on the aforementioned serum parameters and cognitive performance. Subjects were randomly assigned to one of three groups: placebo, 13 mg, or 27 mg/day total MXans; all measures were taken at baseline and 6 months. Blood was obtained via fasting blood draw, and MXan concentration in the retina (termed macular pigment optical density [MPOD]) was measured via customized heterochromatic flicker photometry. Serum BDNF and cytokines were assessed via ELISA. Serum antioxidant capacity (AOC) and serum MXan concentrations were quantified via colorimetric microplate assay, and high-performance liquid chromatography, respectively. Cognitive performance was measured via a computer-based assessment tool (CNS Vital Signs). RESULTS BDNF, MPOD, serum MXans, and AOC all increased significantly versus placebo in both treatment groups over the 6-month study period (p < .05 for all). IL-1β decreased significantly versus placebo in both treatment groups (p = .0036 and p = .006, respectively). For cognitive measures, scores for composite memory, verbal memory, sustained attention, psychomotor speed, and processing speed all improved significantly in treatment groups (p < .05 for all) and remained unchanged in the placebo group. Several measures were found to be significantly associated in terms of relational changes over the course of the study. Notably, change in BDNF was related to change in IL-1β (r = -0.47; p < .001) and MPOD (r = 0.44; p = .0086). Additionally, changes in serum MXans were strongly related to AOC (r = 0.79 & 0.61 for lutein and zeaxanthin isomers respectively; p < .001). For cognitive scores, change in BDNF was correlated to change in composite memory (r = 0.32; p = .014) and verbal memory (r = 0.35; p = .007), whereas change in MPOD was correlated with change in both psychomotor speed (r = 0.38; p = .003), and processing speed (r = 0.35; p = .007). Change in serum lutein was found to be significantly correlated to change in verbal memory (r = 0.41; p < .001), composite memory (r = 0.31; p = .009), and sustained attention (r = 0.28; p = .036). Change in serum zeaxanthin isomers was significantly correlated with change in verbal memory (r = 0.33; p = .017). Lastly, change in AOC was significantly associated with verbal memory (r = 0.34; p = .021), composite memory (r = 0.29; p = .03), and sustained attention (r = 0.35; p = .016). No significant relational changes in any cognitive parameter were found for the placebo group. CONCLUSIONS Six months of daily supplementation with at least 13 mg of MXans significantly reduces serum IL-1β, significantly increases serum MXans, BDNF, MPOD, and AOC, and improves several parameters of cognitive performance. Findings suggest that increased systemic antioxidant/anti-inflammatory capacity (and not necessarily deposition of the carotenoids in neural tissues), may explain many of the effects determined in this study. The significant relationship between change in BDNF and IL-1β over the course of the study suggests that regular consumption of MXans interrupts the inflammatory cascade that can lead to reduction of BDNF. Changes in MPOD and BDNF appear to account for enhancement in cognitive parameters that involve speed of processing and complex processing, respectively. ISRCTN Clinical Trial Registration: ISRCTN16156382.
Collapse
Affiliation(s)
- Nicole T Stringham
- Interdisciplinary Neuroscience Program-Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, United States of America; Department of Psychology, University of Georgia, Athens, GA 30602, United States of America.
| | - Philip V Holmes
- Interdisciplinary Neuroscience Program-Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, United States of America; Department of Psychology, University of Georgia, Athens, GA 30602, United States of America.
| | - James M Stringham
- Visual Performance Laboratory, Duke Eye Center, Durham, NC 27705, United States of America.
| |
Collapse
|
7
|
Giordano E, Quadro L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch Biochem Biophys 2018; 647:33-40. [PMID: 29654731 PMCID: PMC5949277 DOI: 10.1016/j.abb.2018.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023]
Abstract
It is now widely accepted that nutrition during critical periods in early development, both pre- and postnatal, may have lifetime consequences in determining health or onset of major diseases in the adult life. Dietary carotenoids have shown beneficial health effects throughout the life cycle due to their potential antioxidant properties, their ability to serves as precursors of vitamin A and to the emerging signaling functions of their metabolites. The non-provitamin A carotenoids lutein and zeaxanthin are emerging as important modulators of infant and child visual and cognitive development, as well as critical effectors in the prevention and treatment of morbidity associated with premature births. This review provides a general overview of lutein and zeaxanthin metabolism in mammalian tissues and highlights the major advancements and remaining gaps in knowledge in regards to their metabolism and health effects during pre- and early post-natal development. Furthering our knowledge in this area of research will impact dietary recommendation and supplementation strategies aimed at sustaining proper fetal and infant growth.
Collapse
Affiliation(s)
- Elena Giordano
- Department of Food Science; Rutgers Center for Lipid Research; New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
8
|
Phelan D, Prado-Cabrero A, Nolan JM. Analysis of Lutein, Zeaxanthin, and Meso-Zeaxanthin in the Organs of Carotenoid-Supplemented Chickens. Foods 2018; 7:E20. [PMID: 29401639 PMCID: PMC5848124 DOI: 10.3390/foods7020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/18/2022] Open
Abstract
The macular carotenoids (i.e., lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ)) exhibit anti-inflammatory, antioxidant and optical properties that are believed to support human health and function. Studying the accumulation and distribution of these nutrients in tissues and organs, in addition to the eye, is an important step in understanding how these nutrients might support global human function and health (e.g., heart and brain). Chicken is an appropriate animal model with which to study the accumulation of these carotenoids in organs, as the relevant transport molecules and carotenoid binding proteins for L, Z and MZ are present in both humans and chickens. In this experiment, a sample of 3 chickens that were supplemented with L and MZ diacetate (active group) and a sample of 3 chickens that received a standard diet (control group) were analysed. Both groups were analysed for L, Z and MZ concentrations in the brain, eyes, heart, lung, duodenum/pancreas, jejunum/ileum, kidney and breast tissue. L, Z and MZ were identified in all the organs/tissues analysed from the active group. L and Z were identified in all of the organs/tissues analysed from the control group; while, MZ was identified in the eyes of these animals only. The discovery that MZ is accumulated in the tissues and organs of chickens supplemented with this carotenoid is important, given that it is known that a combination of L, Z and MZ exhibits superior antioxidant capacity when compared to any of these carotenoids in isolation.
Collapse
Affiliation(s)
- David Phelan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford X91 K236, Ireland.
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford X91 K236, Ireland
| | - John M Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford X91 K236, Ireland.
| |
Collapse
|
9
|
Stability of Commercially Available Macular Carotenoid Supplements in Oil and Powder Formulations. Nutrients 2017; 9:nu9101133. [PMID: 29039801 PMCID: PMC5691749 DOI: 10.3390/nu9101133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
We previously identified that the concentration of zeaxanthin in some commercially available carotenoid supplements did not agree with the product’s label claim. The conclusion of this previous work was that more quality assurance was needed to guarantee concordance between actual and declared concentrations of these nutrients i.e., lutein (L) zeaxanthin (Z) and meso-zeaxanthin (MZ) in commercially available supplements. Since this publication, we performed further analyses using different commercially available macular carotenoid supplements. Three capsules from one batch of eight products were analysed at two different time points. The results have been alarming. All of the powder filled products (n = 3) analysed failed to comply with their label claim (L: 19–74%; Z: 57–73%; MZ: 83–97%); however, the oil filled soft gel products (n = 5) met or were above their label claim (L: 98–122%; Z: 117–162%; MZ: 97–319%). We also identified that the carotenoid content of the oil filled capsules were stable over time (e.g., L average percentage change: −1.7%), but the powder filled supplements degraded over time (e.g., L average percentage change: −17.2%). These data are consistent with our previous work, and emphasize the importance of using carotenoid interventions in oil based formulas rather than powder filled formulas.
Collapse
|
10
|
RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc Natl Acad Sci U S A 2017; 114:10882-10887. [PMID: 28874556 DOI: 10.1073/pnas.1706332114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Carotenoids are plant-derived pigment molecules that vertebrates cannot synthesize de novo that protect the fovea of the primate retina from oxidative stress and light damage. meso-Zeaxanthin is an ocular-specific carotenoid for which there are no common dietary sources. It is one of the three major carotenoids present at the foveal center, but the mechanism by which it is produced in the eye is unknown. An isomerase enzyme is thought to be responsible for the transformation of lutein to meso-zeaxanthin by a double-bond shift mechanism, but its identity has been elusive. We previously found that meso-zeaxanthin is produced in a developmentally regulated manner in chicken embryonic retinal pigment epithelium (RPE)/choroid in the absence of light. In the present study, we show that RPE65, the isomerohydrolase enzyme of the vertebrate visual cycle that catalyzes the isomerization of all-trans-retinyl esters to 11-cis-retinol, is also the isomerase enzyme responsible for the production of meso-zeaxanthin in vertebrates. Its RNA is up-regulated 23-fold at the time of meso-zeaxanthin production during chicken eye development, and we present evidence that overexpression of either chicken or human RPE65 in cell culture leads to the production of meso-zeaxanthin from lutein. Pharmacologic inhibition of RPE65 function resulted in significant inhibition of meso-zeaxanthin biosynthesis during chicken eye development. Structural docking experiments revealed that the epsilon ring of lutein fits into the active site of RPE65 close to the nonheme iron center. This report describes a previously unrecognized additional activity of RPE65 in ocular carotenoid metabolism.
Collapse
|
11
|
Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N, Yilmaz I, Ali S, Deshpande J, Juturu V. Mesozeaxanthin protects the liver and reduces cardio-metabolic risk factors in an insulin resistant rodent model. Food Nutr Res 2017; 61:1353360. [PMID: 28804442 PMCID: PMC5533124 DOI: 10.1080/16546628.2017.1353360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Mesozeaxanthin (MZ) is a macular carotenoid which has been reported to have a number of pharmacological properties, including the antioxidant, and anticarcinogenic property, and has been stated to decrease the hepatocyte lipid content. Objective: In this study, we investigated the effect of MZ on cardio-metabolic health risk (CMHR) and its probable mechanisms of action in rats fed a high-fat diet (HFD). Design: Rats were randomly divided into four groups consisting of (i) Control, (ii) MZ, (iii) HFD, and (iv) HFD+MZ. Results: MZ treatment increased the antioxidant enzyme activities and helped improve the liver function. The treatment alleviated CMHR and decreased the level of nuclear factor kappa B (NF-κB p65) and tumor necrosis factor-alpha (TNF-α). The levels of hepatic peroxisome proliferator-activated receptor gamma (PPAR-γ), phosphorylated insulin receptor substrate 1 (p-IRS-1), β,β-carotene 9’,10’-oxygenase 2 (BCO2) and nuclear factor erythroid 2-related factor 2 (Nrf2), which decrease in HFD rats, were found to be significantly higher in MZ supplemented animals. Conclusion: MZ has antioxidant and anti-inflammatory properties and can is reported in this study toprotect against fatty liver and cardio-metabolic syndrome, possibly through regulation of PPAR-γ, IRS-1, Nrf2 and NF-κB proteins, in an insulin-resistant rodent model.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Fatih Akdemir
- Department of Nutrition, Faculty of Fisheries, Inonu University, Malatya, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Ismet Yilmaz
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Jayant Deshpande
- Research and Development, OmniActive Health Technologies Inc., Morristown, NJ, USA
| | - Vijaya Juturu
- Research and Development, OmniActive Health Technologies Inc., Morristown, NJ, USA
| |
Collapse
|
12
|
Tan ACS, Balaratnasingam C, Yannuzzi LA. Treatment of Macular Telangiectasia Type 2 With Carotenoid Supplements Containing Meso-Zeaxanthin: A Pilot Study. Ophthalmic Surg Lasers Imaging Retina 2017; 47:528-35. [PMID: 27327282 DOI: 10.3928/23258160-20160601-04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To assess the outcomes of patients with macular telangiectasia type 2 (MacTel 2) in response to lutein (L), meso-zeaxanthin (M), and zeaxanthin (Z) supplements (LMZ3). PATIENTS AND METHODS Thirteen patients diagnosed with MacTel 2 were started on lutein 10 mg, meso-zeaxanthin 10 mg, and zeaxanthin 2 mg and were followed-up for a mean period of 15.7 months ± 4.85 months. RESULTS Visual acuity improved in three patients (13%), and there was a reduction in the percentage of patients who had worsening vision (25% to 4%; P < .05). Optical coherence tomography changes showed a reduction in the number of cavitations and the largest diameter of the cavitation after the LMZ3 supplements were started. The largest diameter of photoreceptor disruption showed mild improvement in the first 6 months after LMZ3 supplements were started. CONCLUSION LMZ3 supplements may stabilize vision and improve the cavitations in patients with MacTel 2. Larger randomized, controlled studies are required to verify these pilot results. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:528-535.].
Collapse
|
13
|
Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT). Br J Nutr 2017; 117:108-123. [PMID: 28122649 PMCID: PMC5297582 DOI: 10.1017/s0007114516003895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The macular carotenoids lutein (L), zeaxanthin (Z) and meso-zeaxanthin
(MZ) accumulate at the macula, where they are collectively referred to as macular pigment
(MP). Augmentation of this pigment, typically achieved through diet and supplementation,
enhances visual function and protects against progression of age-related macular
degeneration. However, it is known that eggs are a rich dietary source of L and Z, in a
highly bioavailable matrix. In this single-blind placebo-controlled study, L- and
MZ-enriched eggs and control non-enriched eggs were fed to human subjects (mean age 41 and
35 years, respectively) over an 8-week period, and outcome measures included MP, visual
function and serum concentrations of carotenoids and cholesterol. Serum carotenoid
concentrations increased significantly in control and enriched egg groups, but to a
significantly greater extent in the enriched egg group (P<0·001
for L, Z and MZ). There was no significant increase in MP in either study group post
intervention, and we saw no significant improvement in visual performance in either group.
Total cholesterol increased significantly in each group, but it did not exceed the upper
limit of the normative range (6·5 mmol/l). Therefore, carotenoid-enriched eggs may
represent an effective dietary source of L, Z and MZ, reflected in significantly raised
serum concentrations of these carotenoids, and consequentially improved bioavailability
for capture by target tissues. However, benefits in terms of MP augmentation and /or
improved visual performance were not realised over the 8-week study period, and a study of
greater duration will be required to address these questions.
Collapse
|
14
|
Gorusupudi A, Shyam R, Li B, Vachali P, Subhani YK, Nelson K, Bernstein PS. Developmentally Regulated Production of meso-Zeaxanthin in Chicken Retinal Pigment Epithelium/Choroid and Retina. Invest Ophthalmol Vis Sci 2016; 57:1853-61. [PMID: 27082300 PMCID: PMC4849864 DOI: 10.1167/iovs.16-19111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose meso-Zeaxanthin is a carotenoid that is rarely encountered in nature outside of the vertebrate eye. It is not a constituent of a normal human diet, yet this carotenoid comprises one-third of the primate macular pigment. In the current study, we undertook a systematic approach to biochemically characterize the production of meso-zeaxanthin in the vertebrate eye. Methods Fertilized White Leghorn chicken eggs were analyzed for the presence of carotenoids during development. Yolk, liver, brain, serum, retina, and RPE/choroid were isolated, and carotenoids were extracted. The samples were analyzed on C-30 or chiral HPLC columns to determine the carotenoid composition. Results Lutein and zeaxanthin were found in all studied nonocular tissues, but no meso-zeaxanthin was ever detected. Among the ocular tissues, the presence of meso-zeaxanthin was consistently observed starting at embryonic day 17 (E17) in the RPE/choroid, several days before its consistent detection in the retina. If RPE/choroid of an embryo was devoid of meso-zeaxanthin, the corresponding retina was always negative as well. Conclusions This is the first report of developmentally regulated synthesis of meso-zeaxanthin in a vertebrate system. Our observations suggest that the RPE/choroid is the primary site of meso-zeaxanthin synthesis. Identification of meso-zeaxanthin isomerase enzyme in the developing chicken embryo will facilitate our ability to determine the biochemical mechanisms responsible for production of this unique carotenoid in other higher vertebrates, such as humans.
Collapse
|
15
|
Orhan C, Akdemir F, Tuzcu M, Sahin N, Yilmaz I, Deshpande J, Juturu V, Sahin K. Mesozeaxanthin Protects Retina from Oxidative Stress in a Rat Model. J Ocul Pharmacol Ther 2016; 32:631-637. [PMID: 27463036 DOI: 10.1089/jop.2015.0154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Mesozeaxanthin (MZ) is able to protect against chronic and cumulative eye damage and neutralize free radicals produced by oxidative stress. The objective of the present study was to evaluate the protective potential of MZ against retinal oxidative damage and growth and transcription factors of the retina in rats fed with high-fat diet (HFD). METHODS Twenty-eight Sprague Dawley rats were randomly divided into the following 4 groups: (1) Control, (2) MZ (100 mg/kg bw/d), (3) HFD (42% of calories as fat), and (4) HFD+MZ (100 mg/kg bw/d) group rats were administered daily as supplement for 12 weeks. RESULTS Consumption of HFD was associated with hyperglycemia and oxidative stress as reflected by increased serum MDA concentration (P < 0.001). No measurable zeaxanthin (Z)+MZ and lutein (L) could be detected in the serum of control and HFD rats, whereas they were observed in the serum of MZ-administered rats. Retinal antioxidant enzyme [superoxide dismutase (SOD) and catalase (CAT)] activities were significantly decreased in the HFD group compared to the normal group (P < 0.01). However, retinal antioxidant enzymes were restored close to normal levels in HFD+MZ-treated rats (P < 0.05). The retina of rats fed with HFD had increased levels of vascular endothelial growth factor (VEGF), inducible nitric oxide (iNOS), intercellular adhesion molecule-1 (ICAM-1), and nuclear factor-kappa B (NF-κB) levels and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1(HO-1) levels compared to the healthy rat retina (P < 0.001). Rats treated with MZ partially alleviated the inflammation as reflected by suppressed VEGF, iNOS, ICAM, and NF-κB levels and increased Nrf2 and HO-1 levels in the retina of rats fed (P < 0.05). CONCLUSIONS Results from the present study suggest that MZ has protective effects on the retina and the ability to modulate oxidative stress of retina in rats fed an HFD by suppressing retinal lipid peroxidation and regulating growth and transcription factors.
Collapse
Affiliation(s)
- Cemal Orhan
- 1 Department of Animal Nutrition, Faculty of Veterinary Science, Firat University , Elazig, Turkey
| | - Fatih Akdemir
- 2 Department of Nutrition, Faculty of Fisheries, Inonu University , Malatya, Turkey
| | - Mehmet Tuzcu
- 3 Division of Biology, Faculty of Science, Firat University , Elazig, Turkey
| | - Nurhan Sahin
- 1 Department of Animal Nutrition, Faculty of Veterinary Science, Firat University , Elazig, Turkey
| | - Ismet Yilmaz
- 4 Department of Pharmacology, Faculty of Pharmacy, Inonu University , Malatya, Turkey
| | - Jayant Deshpande
- 5 Research and Development, OmniActive Health Technologies, Inc. , Morristown, New Jersey
| | - Vijaya Juturu
- 5 Research and Development, OmniActive Health Technologies, Inc. , Morristown, New Jersey
| | - Kazim Sahin
- 1 Department of Animal Nutrition, Faculty of Veterinary Science, Firat University , Elazig, Turkey .,2 Department of Nutrition, Faculty of Fisheries, Inonu University , Malatya, Turkey
| |
Collapse
|
16
|
Ma L, Liu R, Du JH, Liu T, Wu SS, Liu XH. Lutein, Zeaxanthin and Meso-zeaxanthin Supplementation Associated with Macular Pigment Optical Density. Nutrients 2016; 8:nu8070426. [PMID: 27420092 PMCID: PMC4963902 DOI: 10.3390/nu8070426] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 01/16/2023] Open
Abstract
The purpose of this study was to evaluate the effects of lutein, zeaxanthin and meso-zeaxanthin on macular pigment optical density (MPOD) in randomized controlled trials (RCTs) among patients with age-related macular degeneration (AMD) and healthy subjects. Medline, Embase, Web of Science and Cochrane Library databases was searched through May 2016. Meta-analysis was conducted to obtain adjusted weighted mean differences (WMD) for intervention-versus-placebo group about the change of MPOD between baseline and terminal point. Pearson correlation analysis was used to determine the relationship between the changes in MPOD and blood xanthophyll carotenoids or baseline MPOD levels. Twenty RCTs involving 938 AMD patients and 826 healthy subjects were identified. Xanthophyll carotenoids supplementation was associated with significant increase in MPOD in AMD patients (WMD, 0.07; 95% CI, 0.03 to 0.11) and healthy subjects (WMD, 0.09; 95% CI, 0.05 to 0.14). Stratified analysis showed a greater increase in MPOD among trials supplemented and combined with meso-zeaxanthin. Additionally, the changes in MPOD were related with baseline MPOD levels (rAMD = −0.43, p = 0.06; rhealthy subjects = −0.71, p < 0.001) and blood xanthophyll carotenoids concentration (rAMD = 0.40, p = 0.07; rhealthy subjects = 0.33, p = 0.05). This meta-analysis revealed that lutein, zeaxanthin and meso-zeaxanthin supplementation improved MPOD both in AMD patients and healthy subjects with a dose-response relationship.
Collapse
Affiliation(s)
- Le Ma
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
| | - Rong Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
- The 3201 Hospital, Xi'an Jiao tong University College of Medicine, 783 Tianhan Road, Hanzhong 723000, Shaanxi, China.
| | - Jun Hui Du
- The Ninth Hospital of Xi'an, Xi'an Jiaotong University College of Medicine, 151 East of South Second Ring Road, Xi'an 710054, Shaanxi, China.
| | - Tao Liu
- The 3201 Hospital, Xi'an Jiao tong University College of Medicine, 783 Tianhan Road, Hanzhong 723000, Shaanxi, China.
| | - Shan Shan Wu
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Beijing 100050, China.
| | - Xiao Hong Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
17
|
Prado-Cabrero A, Beatty S, Stack J, Howard A, Nolan JM. Quantification of zeaxanthin stereoisomers and lutein in trout flesh using chiral high-performance liquid chromatography-diode array detection. J Food Compost Anal 2016; 50:19-22. [PMID: 27721557 DOI: 10.1016/j.jfca.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In our previous work we identified the presence of meso-zeaxanthin [(3R,3'S)-zeaxanthin] in trout flesh and skin (Nolan et al., 2014), but were not able to quantify this carotenoid with the method used at that time. In the present study, we developed a protocol that allows for the quantification of lutein and the three stereoisomers of zeaxanthin [(3R,3'R)-zeaxanthin, meso-zeaxanthin and (3S,3'S)-zeaxanthin] in fish flesh. We tested this protocol in two species of farmed trout (Oncorhynchus mykiss and Salmo Trutta), and we detected and quantified these carotenoids. The concentrations of each carotenoid detected (ranging from 1.18 ± 0.68 ng g-1 flesh for meso-zeaxanthin to 38.72 ± 15.87 ng g-1 flesh for lutein) were highly comparable for the two fish species tested. In conclusion, we report, for the first time, the concentrations of zeaxanthin stereoisomers (including meso-zeaxanthin) and lutein in trout flesh. This work adds further to the knowledge on the presence of these carotenoids in the human food chain.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Macular Pigment Research Group, Nutrition Research Centre Ireland, School of Health Science, Waterford Institute of Technology, Waterford, Ireland
| | - Stephen Beatty
- Macular Pigment Research Group, Nutrition Research Centre Ireland, School of Health Science, Waterford Institute of Technology, Waterford, Ireland
| | - Jim Stack
- Macular Pigment Research Group, Nutrition Research Centre Ireland, School of Health Science, Waterford Institute of Technology, Waterford, Ireland
| | - Alan Howard
- Downing College, University of Cambridge and The Howard Foundation, Cambridge, United Kingdom
| | - John M Nolan
- Macular Pigment Research Group, Nutrition Research Centre Ireland, School of Health Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
18
|
Crosby-Nwaobi R, Hykin P, Peto T, Sivaprasad S. An exploratory study evaluating the effects of macular carotenoid supplementation in various retinal diseases. Clin Ophthalmol 2016; 10:835-44. [PMID: 27274188 PMCID: PMC4869621 DOI: 10.2147/opth.s102798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose The aim of this study was to assess the impact of daily oral supplementation with Macushield (10 mg/d meso-zeaxanthin, 10 mg/d lutein, and 2 mg/d zeaxanthin) on eye health in patients with retinal diseases by assessing the macular pigment (MP) profile, the visual function, and the quality of life. Methods Fifty-one patients with various retinal diseases were supplemented daily and followed up for 6 months. The MP optical density was measured using the customized heterochromatic flicker photometry and dual-wavelength autofluorescence. Visual function was evaluated by assessing the change in best corrected visual acuity, contrast sensitivity, and glare sensitivity in mesopic and photopic conditions. Vision-related and general quality of life changes were determined using the National Eye Insititute- Visual Function Questionnaire-25 (NEI-VFQ-25) and EuroQoL-5 dimension questionnaires. Results A statistically significant increase in the MP optical density was observed using the dual-wavelength autofluorescence (P=0.04) but not with the customized heterochromatic flicker photometry. Statistically significant (P<0.05) improvements in glare sensitivity in low and medium spatial frequencies were observed at 3 months and 6 months. Ceiling effects confounded other visual function tests and quality of life changes. Conclusion Supplementation with the three carotenoids enhances certain aspects of visual performance in retinal diseases.
Collapse
Affiliation(s)
- Roxanne Crosby-Nwaobi
- NIHR Clinical Research Facility, NIHR Moorfields Biomedical Research Centre, London, UK
| | - Philip Hykin
- NIHR Clinical Research Facility, NIHR Moorfields Biomedical Research Centre, London, UK
| | - Tunde Peto
- NIHR Clinical Research Facility, NIHR Moorfields Biomedical Research Centre, London, UK
| | - Sobha Sivaprasad
- NIHR Clinical Research Facility, NIHR Moorfields Biomedical Research Centre, London, UK
| |
Collapse
|
19
|
Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Estévez-Santiago R, Olmedilla-Alonso B, Beltrán-de-Miguel B. Assessment of lutein and zeaxanthin status and dietary markers as predictors of the contrast threshold in 2 age groups of men and women. Nutr Res 2016; 36:719-30. [PMID: 27262538 DOI: 10.1016/j.nutres.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Lutein and zeaxanthin (L + Z) status is associated with the macular pigment (MP). The relationship between MP and visual function is controversial. We hypothesized that, within the framework of nutrition, visual function was related to MP and nutritional and/or/dietary factors influencing it. A cross-sectional study was performed in 108 volunteers divided into 2 age groups (20-35 years; 45-65 years), each 27 women and 27 men, to assess the relationship between MP optical density (MPOD) and contrast threshold (CT), considering the influence of L + Z and, fruit and vegetable (F + V) intake. MPOD, L + Z in serum and dietary intake were determined using heterochromatic flicker photometry, high-performance liquid chromatography and 3-day food records, respectively. CT was measured with the CGT-1000 Contrast Glaretester at 6 stimulus sizes, with and without glare. Spearman correlation coefficient and a generalized linear model were used for the statistical study. MPOD and CT were higher and lower, respectively in younger than in elder individuals (P < .000) and were correlated only in the older group. CT were higher under glare conditions, at the intermediate and smaller visual angles, with greater differences in the older (P < .003) than the younger group (P < .014). In the total sample, CT correlated inversely with MPOD (correlation coefficients and P values ranging from -.245 to -.152 and from .000 to .026, respectively) and directly with F + V intake (correlation coefficients and P values ranging from -.265 to -.176 and from .000 to .010, respectively). As predictors of CT in the total sample, MPOD, F + V (every 100 g/d) and sex were identified (β coefficients ranged from -0.01 to -1.86; from 0.01 to 0.08 and from 0.01 to 0.40, respectively). CT revealed age-specific nutritional predictors: MPOD and serum lutein in the 45- to 65-year group, and F + V intake in the 20- to 35-year group.
Collapse
|
21
|
Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. J Nutr Sci 2016; 5:e1. [PMID: 26793307 PMCID: PMC4709836 DOI: 10.1017/jns.2015.35] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/27/2015] [Indexed: 12/04/2022] Open
Abstract
The xanthophyll carotenoids lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ) are found at the macula, the central part of the retina, where they are referred to as macular pigment (MP). MP is studied in human subjects because of its proven role in enhancing visual function and its putative role in protecting against age-related macular degeneration. These benefits are probably due to the antioxidant and short-wavelength filtering properties of MP. It is known that eggs are a dietary source of L and Z. This experiment was designed to measure the egg yolk carotenoid response to hen supplementation with L, Z and MZ. A total of forty hens were used in the trial and were divided into eight groups of five hens. Each group was supplemented (with about 140 mg active xanthophylls/kg feed) with one of the following oil-based carotenoid formulations for 6 weeks: unesterified L (group 1); L diacetate (group 2); unesterified Z (group 3); Z diacetate (group 4); unesterified MZ (group 5); MZ diacetate (group 6); L–MZ (1:1) diacetate mixture (group 7); L–MZ diacetate (1:3) mixture (group 8). Yolk carotenoid content was analysed weekly (in four randomly selected eggs) by HPLC. We found that hens supplemented with Z diacetate and MZ diacetate produced eggs with significantly greater carotenoid concentrations than their free form counterparts. This finding potentially represents the development of a novel food, suitable to increase MP and its constituent carotenoids in serum.
Collapse
|
22
|
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 2016; 50:34-66. [PMID: 26541886 PMCID: PMC4698241 DOI: 10.1016/j.preteyeres.2015.10.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/04/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age.
Collapse
Affiliation(s)
- Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Preejith P Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Bradley S Henriksen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - John M Nolan
- Macular Pigment Research Group, Vision Research Centre, School of Health Science, Carriganore House, Waterford Institute of Technology West Campus, Carriganore, Waterford, Ireland.
| |
Collapse
|
23
|
Assessment of lutein, zeaxanthin and meso-zeaxanthin concentrations in dietary supplements by chiral high-performance liquid chromatography. Eur Food Res Technol 2015; 242:599-608. [PMID: 27069419 PMCID: PMC4788689 DOI: 10.1007/s00217-015-2569-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 01/08/2023]
Abstract
We investigated the concordance between actual and declared content of the three macular carotenoids in commercially available supplements aimed at eye health. Three batches of nine products were tested for content of lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ) by chiral HPLC–DAD. In every product tested, actual L concentration was close to target, but Z concentration varied greatly (47–248 % of declared concentration), and the L:Z ratio within some supplements was adversely affected in consequence. In six of seven products not declaring MZ, we found this carotenoid, and four of them, using the same L source, contained a concentration of MZ that correlated positively and significantly with measured concentrations of L (r2 = 0.86; P < 0.001). More transparency is needed in terms of concordance between actual and declared concentrations of Z in commercially available formulations, and MZ should be declared in those formulations where it is present.
Collapse
|