1
|
Wei S, Zhang Z, Kamiya Y, Ohura T, Kameda T. Source analysis of the particle-associated oxidative potential and polycyclic aromatic compounds in Shenyang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6574-6588. [PMID: 39994122 DOI: 10.1007/s11356-025-36129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
In this study, a dithiothreitol (DTT) assay was performed to assess the oxidative potential (OP) induced by atmospheric particulate matter in Shenyang, China, in the winter and summer of 2015. OP sources were identified by using the positive matrix factorization (PMF) model, and the relationships between components of the total suspended particulate (TSP), including different types of polycyclic aromatic compounds, and the OP were investigated. The volume-based DTT consumption rate (DTTv) was used as an OP indicator. During sampling, the average daily TSP concentration and DTTv in Shenyang City were 142 µg/m3 and 1304 pmol/min/m3, respectively, and they markedly increased in the winter compared with the summer. The PMF model identified the following sources for the OP induced by TSP: automobile exhaust and road dust (5.0%), biomass burning (31.0%), coal combustion (10.6%), soil (21.1%), diesel combustion (13.4%), and secondary pollution (19.0%). Furthermore, the source analysis revealed that biomass burning was the largest source of oxygenated and nitrated polycyclic aromatic hydrocarbons and that coal combustion was the largest source of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Siwei Wei
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Zidan Zhang
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Yuta Kamiya
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Takeshi Ohura
- Graduate School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Nagoya, 468-8502, Japan
| | - Takayuki Kameda
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Anjum S, Kumari A. Bioaccumulation of Lead and Mercury in Water, Sediment, and Fish Samples of Baraila Lake, Vaishali, Bihar. Biol Trace Elem Res 2025; 203:1097-1112. [PMID: 38763981 DOI: 10.1007/s12011-024-04224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
In the current study, a protected subtropical wetland in Bihar (India), Baraila Lake, was investigated for heavy metal (Pb and Hg) status. These metals tend to bioaccumulate in fish, posing a concern to human health. This study reported the concentration of lead and mercury in water, sediment, and fish muscles of Baraila Lake in the year 2022. The samples were collected from pre-monsoon and post-monsoon seasons at four sampling locations, i.e., Loma, Dhulwar, Chakaiya, and Kawai Baraila, and were analyzed in triplicates. Lead concentration in water samples of all four sites of Baraila Lake observed during pre-monsoon and post-monsoon season exceeded the permissible limit for drinking water, while the mercury concentration of all sites was under the permissible limit in both seasons as prescribed by WHO. The extent of elemental pollution was evaluated using the Geo-accumulation index (Igeo), contamination factor (CF), contamination degree (Cd), ecological risk factor (Er), and the potential ecological risk index (Ri). Lead concentration in fish muscles of both seasons exceeded the permissible limit, while the concentration of mercury exceeded in Xenentodon cancila (0.55 ± 0.07 µg/g) during the pre-monsoon season. Also, estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were calculated in different fish muscles to assess potential human health risks. A higher THQ value of 1.303 was observed in carnivore fish during the pre-monsoon season.
Collapse
Affiliation(s)
- Saima Anjum
- Department of Zoology, Patna University, Patna, Bihar, India
| | - Anupma Kumari
- Department of Zoology, Patna University, Patna, Bihar, India.
| |
Collapse
|
3
|
Seibert R, Kotlík B, Kazmarová H, Dombek V, Volná V, Hladký D, Krejčí B. Regional and seasonal drivers of metals and PAHs concentrations in road dust and their health implications in the Czech Republic. Heliyon 2024; 10:e40725. [PMID: 39691203 PMCID: PMC11650297 DOI: 10.1016/j.heliyon.2024.e40725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
While car exhaust emissions in the EU are clearly decreasing, the future of non-exhaust emissions looks more pessimistic. The relative importance of the latter is thus expected to increase in terms of air quality and human health. The aim of the study was to assess regional and seasonal differences in the chemical composition of road dust across the Czech Republic and the health impact of its resuspension, with special respect to polycyclic aromatic hydrocarbons and metals. The road dust samples across all regions and seasons were collected. Based on subsequent laboratory and statistical processing, the spatiotemporal distribution of elements and PAHs was evaluated. Next, the contribution of road dust resuspension to air concentrations was estimated and related health impacts were assessed. A significant regional and seasonal variations in PAHs and metals were discovered. Air quality, leading to atmospheric deposition, was the most important factor contributing to these variations. In contrast, road traffic intensity played only a minor role in influencing the concentrations of metals and PAHs in road dust. Exposure to the PM10 fraction of road dust led to an increase in premature mortality, postneonatal infant mortality, and the prevalence, occurrence, and incidence of bronchitis by several percent. It also significantly raises the annual rate of emergency respiratory hospitalizations and the number of days per year using bronchodilators. Exposure to PAHs and heavy metals in road dust causes cancer incidence on the order of a few cases per 10 million people. Air quality protection measures that lead to a decrease in atmospheric deposition rates are required for the effective reduction of health risks associated with particle resuspension by traffic.
Collapse
Affiliation(s)
- Radim Seibert
- Czech Hydrometeorological Institute, K Myslivně 3/2182, 708 00, Ostrava-Poruba, Czech Republic
| | - Bohumil Kotlík
- The National Institute of Public Health, Šrobárova 49/48, 100 00 Prague 10, Czech Republic
| | - Helena Kazmarová
- The National Institute of Public Health, Šrobárova 49/48, 100 00 Prague 10, Czech Republic
| | - Václav Dombek
- VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Vladimíra Volná
- Czech Hydrometeorological Institute, K Myslivně 3/2182, 708 00, Ostrava-Poruba, Czech Republic
| | - Daniel Hladký
- Czech Hydrometeorological Institute, K Myslivně 3/2182, 708 00, Ostrava-Poruba, Czech Republic
| | - Blanka Krejčí
- Czech Hydrometeorological Institute, K Myslivně 3/2182, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Kacer J, Altmaier R, Cwiertny DM, O'Shaughnessy PT. Unpaved road particulate matter emission rates and vehicle-induced transient plume characteristics. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1042-1050. [PMID: 39184235 PMCID: PMC11342916 DOI: 10.1039/d4ea00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Particulate matter (PM) emitted from unpaved rural roads presents a potential inhalation hazard to people living and working near them. In the absence of site-specific exposure data, plume dispersion modeling can be used to predict ambient particulate concentrations in the vicinity of the unpaved roads. Hourly averaged PM10 concentrations were measured near a gravel road using an EPA reference method resulting in a geometric mean of 50 μg m-3. With these ambient concentrations, the AERMOD plume dispersion model was used to derive a PM emission factor of 444 g/VKT (grams per vehicle kilometer travelled). This result was lower than the emission factor calculated using the EPA's AP-42 guidance for unpaved roads (795 g/VKT). The transient nature of the plume of PM concentrations due to road traffic was also evaluated using a direct-reading instrument. Vehicle speed and wind speed were found to be significant determinants of PM concentration, average PM concentration, and total PM mass for each plume. Each vehicle produced an average concentration of 4096 μg m-3 over the duration of the plume. Therefore, residents near the road are potentially exposed to substantially higher short-term concentrations from individual plumes than would be indicated by hourly averages.
Collapse
Affiliation(s)
- James Kacer
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa USA
| | - Ralph Altmaier
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa USA
| | - David M Cwiertny
- Department of Civil and Environmental Engineering, College of Engineering, University of Iowa USA
- Director, Center for Health Effects of Environmental Contamination, University of Iowa W195 Chemistry Building Iowa City Iowa 52242 USA
| | - Patrick T O'Shaughnessy
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa USA
| |
Collapse
|
5
|
Ko J, Park H, Park S, Kim DH, Cho J. Increased risk of developing cerebro-cardiovascular diseases in police officers: a nationwide retrospective cohort study. Clin Hypertens 2024; 30:18. [PMID: 38946000 PMCID: PMC11215820 DOI: 10.1186/s40885-024-00277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Police officers face an increased risk of developing cerebro-cardiovascular diseases (CVD). However, current literature lacks population-based cohort studies specifically focusing on this association. This study aimed to investigate the association between police officers and the risk of developing CVD compared with education officers, while accounting for socioeconomic and demographic factors. METHODS We used the Korean National Health Insurance Service data spanning from 2009 to 2020. In this population-based retrospective matched cohort study, we identified age, sex, and calendar years of job-enrollment-matched education officers for each police officer. This study evaluated the CVD occurrence, including acute myocardial infarction, ischemic stroke, and hemorrhagic stroke. Using multivariable Cox regression analysis, we determined the risk of developing CVD, expressed as a hazard ratio (HR) and 95% confidence interval (CI). RESULTS Among 104,134 police officers and 104,134 education officers, 4,391(42.2%) cases and 3,631(34.9%) cases of CVD occurred, respectively. The mean ± standard deviation age was 38.4 ± 9.4 years in police officers and 38.6 ± 9.5 years in education officers. The proportion of men was 84.8 % in both groups. Police officers were significantly associated with a higher risk of developing CVD compared with education officers, with an adjusted HR of 1.15 (95% CI, 1.09-1.22). In addition, police officers had significantly higher risks for acute myocardial infarction (adjusted HR, 1.16; 95% CI, 1.06-1.26) and ischemic stroke (adjusted HR, 1.17; 95% CI, 1.09-1.25). CONCLUSIONS The findings of our study highlight a significant increase in the risk of developing CVD among police officers, particularly among those aged 45 years and older and those with uncontrolled blood pressure compared to their education officer counterparts. Future cohort studies are required to confirm this association.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunji Park
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae-Hee Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
6
|
Li J, Cui D, Yang Z, Ma J, Liu J, Yu Y, Huang X, Xiang P. Health risk assessment of heavy metal(loid)s in road dust via dermal exposure pathway from a low latitude plateau provincial capital city: The importance of toxicological verification. ENVIRONMENTAL RESEARCH 2024; 252:118890. [PMID: 38615791 DOI: 10.1016/j.envres.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The human health risk assessment through the dermal exposure of metal (loid)s in dust from low latitude and high geological background plateau cities was largely unknown. In this study, the road dust samples were harvested from a typical low-latitude plateau provincial capital city Kunming, Southwest China. The total concentration and dermal bioaccessibility of heavy metal (loid)s in road dust were determined, and their health risks as well as cytotoxicity on human skin keratinocytes were also assessed. The average concentrations of As (28.5 mg/kg), Cd (2.65 mg/kg), Mn (671 mg/kg), and Zn (511 mg/kg) exceeded the soil background values. Arsenic had the highest bioaccessibility after 2 h (3.79%), 8 h (4.24%), and 24 h (16.6%) extraction. The dermal pathway when bioaccessibility is considered has a higher hazard quotient than the conventional method using total metal(loid)s in the dust. In addition, toxicological verification suggested that the dust extracts suppressed the cell viability, increased the reactive oxygen species (ROS) level and DNA damage, and eventually activated the mitochondria-mediated apoptosis pathway, evidenced by the upregulation of Caspase-3/9, Bax, and Bak-1. Cadmium was positively correlated with the mRNA expression of Bax. Taken together, our data indicated that both dermal bioaccessibility and cytotoxicity should be considered for accurate human skin health risk assessment of heavy metal(loid)s in road dust, which may provide new insight for accurate human health risk assessment and environmental management.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Ziyue Yang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jiaoyang Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianfeng Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
8
|
Razavi-Termeh SV, Sadeghi-Niaraki A, Sorooshian A, Abuhmed T, Choi SM. Spatial mapping of land susceptibility to dust emissions using optimization of attentive Interpretable Tabular Learning (TabNet) model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120682. [PMID: 38670008 DOI: 10.1016/j.jenvman.2024.120682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Dust pollution poses significant risks to human health, air quality, and food safety, necessitating the identification of dust occurrence and the development of dust susceptibility maps (DSMs) to mitigate its effects. This research aims to detect dust occurrence using satellite images and prepare a DSM for Bushehr province, Iran, by enhancing the attentive interpretable tabular learning (TabNet) model through three swarm-based metaheuristic algorithms: particle swarm optimization (PSO), grey wolf optimizer (GWO), and hunger games search (HGS). A spatial database incorporating dust occurrence areas was created using Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2002 to 2022, including 15 influential criteria related to climate, soil, topography, and land cover. Four models were employed for modeling and DSM generation: TabNet, TabNet-PSO, TabNet-GWO, and TabNet-HGS. Evaluation of the modeling results using performance metrics indicated that the TabNet-HGS model outperformed the other models in both training (mean absolute error (MAE) = 0.055, root-mean-square error (RMSE) = 0.1, coefficient of determination (R2) = 0.959), and testing (MAE = 0.063, RMSE = 0.114, R2 = 0.947) data. Following TabNet-HGS, the TabNet-PSO, TabNet-GWO, and TabNet models demonstrated progressively lower accuracy. The validation of the DSM was performed by assessing receiver operating characteristic (ROC) curves, revealing that the TabNet-HGS, TabNet-PSO, TabNet-GWO, and TabNet models exhibited the highest modeling accuracy, with corresponding area under the curve (AUC) values of 0.994, 0.986, 0.98, and 0.832, respectively. These results highlight the enhanced accuracy of dust susceptibility modeling achieved by integrating swarm-based metaheuristic algorithms with the TabNet model. The dust susceptibility map provides valuable insights into the sources, pathways, and impacts of dust particles on the environment and human health in the study area.
Collapse
Affiliation(s)
- Seyed Vahid Razavi-Termeh
- Dept. of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea.
| | - Abolghasem Sadeghi-Niaraki
- Dept. of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea.
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA.
| | - Tamer Abuhmed
- College of Computing and Informatics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Soo-Mi Choi
- Dept. of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Semerjian L, Adeniji AO, Shanableh A, Semreen MH, Mousa M, Abass K, Okoh A. Assessment of elemental chemistry, spatial distribution, and potential risks of road-deposited dusts in Sharjah, United Arab Emirates. Heliyon 2024; 10:e29088. [PMID: 38617947 PMCID: PMC11015408 DOI: 10.1016/j.heliyon.2024.e29088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Road dust is a major source of pollution in the environment, carrying different pollutants, including heavy metals and metalloids, from one location to another. This study assesses the concentrations of eight heavy metals and one metalloid (Zn, Pb, Mn, Fe, Cr, Cu, Cd, Ni, and As) in dust samples collected from sixty-eight streets of Sharjah, United Arab Emirates using ICP-OES, as well as investigates their effects on both the environment and humans. Mean concentrations of the elements in μg/g across the sites were 392 ± 46 (Zn), 68.28 ± 11.3 (Pb), 1437 ± 67 (Mn), 39,481 ± 4611 (Fe), 460 ± 31 (Cr), 150 ± 44 (Cu), 1.25 ± 0.65 (Cd), 856 ± 72 (Ni), and 0.97 ± 0.28 (As). The Cdeg and ERI calculated from the study were 54.79 and 573, respectively, suggesting varying pollution levels. The highest contributions were from Ni, Cd, Zn, Cu, Cr, and Pb, especially in areas with heavy traffic. The non-carcinogenic risk assessments were generally low for the three routes of exposure, except HQoral that was slightly higher for children. Similarly, none of the elements exhibited any carcinogenic risk except chromium. Overall, the cancer risk is considered low. In view of the limited studies from UAE in relation to the metal content of road-deposited dusts, the current study serves as novel knowledge, especially in the context of geographical areas with a higher occurrence of sandstorms and the presence of particulate matter. The study also adds to the global understanding of the contribution of street dust to environmental pollution and its implications for human health.
Collapse
Affiliation(s)
- Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abiodun O. Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, P. O. Roma 180, Roma, Lesotho
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Abdallah Shanableh
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Finland
| | - Anthony Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
10
|
Kutluyer Kocabaş F, Başaran E, Kocabaş M. Seasonal Monitoring of Heavy Metal Pollution in Water and Zebra Mussels Dreissena polymorpha as a Potential Bioindicator Species from Lake Habitat. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:43. [PMID: 38409431 DOI: 10.1007/s00128-024-03869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
In aquatic ecosystem, metal pollution is an important environmental hazard. Mussels as a bioindicator species are often used for assessment the presence of potentially toxic metals. Hence, the present study aimed to assess the effect of seasonal variations on some heavy metals (Cd, Cr, Pb, As, Zn and Cu) accumulation in water and Dreissena polymorpha from lake habitat. Our result indicated that Zn accumulated at a very high level in the zebra mussels while As accumulated at a high level in water samples. Seasonal variations significantly affected Cu concentration in the water samples (P < 0.05) while Cr concentration in the mussel samples was significantly affected by seasonal variations (P < 0.05). According to the water analysis, mean concentrations of metals are below the maximum limits established by the World Health Organization and USEPA, except As. Overall, our data emphasize anthropogenic pollution in the Turkish aquatic environment and confirm the use of D. polymorpha as a prospective biomonitor for metal polluted sites'.
Collapse
Affiliation(s)
| | | | - Mehmet Kocabaş
- Faculty of Forestry, Department of Wildlife Ecology and Management, Karadeniz Technical University, Trabzon, 61080, Türkiye
| |
Collapse
|
11
|
de Silva A, Ranasinghe R, Sounthararajah A, Haghighi H, Kodikara J. Beyond Conventional Monitoring: A Semantic Segmentation Approach to Quantifying Traffic-Induced Dust on Unsealed Roads. SENSORS (BASEL, SWITZERLAND) 2024; 24:510. [PMID: 38257603 PMCID: PMC11154504 DOI: 10.3390/s24020510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Road dust is a mixture of fine and coarse particles released into the air due to an external force, such as tire-ground friction or wind, which is harmful to human health when inhaled. Continuous dust emission from the road surfaces is detrimental to the road itself and the road users. Due to this, multiple dust monitoring and control techniques are currently adopted in the world. The current dust monitoring methods require expensive equipment and expertise. This study introduces a novel pragmatic and robust approach to quantifying traffic-induced road dust using a deep learning method called semantic segmentation. Based on the authors' previous works, the best-performing semantic segmentation machine learning models were selected and used to identify dust in an image pixel-wise. The total number of dust pixels was then correlated with real-world dust measurements obtained from a research-grade dust monitor. Our method shows that semantic segmentation can be adopted to quantify traffic-induced dust reasonably. Over 90% of the predictions from both correlations fall in true positive quadrant, indicating that when dust concentrations are below the threshold, the segmentation can accurately predict them. The results were validated and extended for real-time application. Our code implementation is publicly available.
Collapse
Affiliation(s)
- Asanka de Silva
- ARC Industrial Transformation Research Hub (ITRH)—SPARC Hub, Department of Civil Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia; (A.d.S.); (R.R.); (A.S.)
| | - Rajitha Ranasinghe
- ARC Industrial Transformation Research Hub (ITRH)—SPARC Hub, Department of Civil Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia; (A.d.S.); (R.R.); (A.S.)
| | - Arooran Sounthararajah
- ARC Industrial Transformation Research Hub (ITRH)—SPARC Hub, Department of Civil Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia; (A.d.S.); (R.R.); (A.S.)
| | - Hamed Haghighi
- Product Development Hub, Road Science, Downer EDI Works Pty Ltd., Somerton, VIC 3061, Australia;
| | - Jayantha Kodikara
- ARC Industrial Transformation Research Hub (ITRH)—SPARC Hub, Department of Civil Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia; (A.d.S.); (R.R.); (A.S.)
| |
Collapse
|
12
|
Klaver ZM, Crane RC, Ziemba RA, Bard RL, Adar SD, Brook RD, Morishita M. Reduction of Outdoor and Indoor PM 2.5 Source Contributions via Portable Air Filtration Systems in a Senior Residential Facility in Detroit, Michigan. TOXICS 2023; 11:1019. [PMID: 38133420 PMCID: PMC10748160 DOI: 10.3390/toxics11121019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 μm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults in Detroit, Michigan. This double-blind randomized crossover intervention study has shown that, compared to sham, air filtration for 3 days decreased 3-day average brachial systolic blood pressure by 3.2 mmHg. The results also showed that commercially available HEPA-type and true HEPA PAFs mitigated median indoor PM2.5 concentrations by 58% and 65%, respectively. However, to our knowledge, no health intervention study in which a significant positive health effect was observed has also evaluated how outdoor and indoor PM2.5 sources impacted the subjects. With that in mind, detailed characterization of outdoor and indoor PM2.5 samples collected during this study and a source apportionment analysis of those samples using a positive matrix factorization model were completed. The aims of this most recent work were to characterize the indoor and outdoor sources of the PM2.5 this community was exposed to and to assess how effectively commercially available HEPA-type and true HEPA PAFs were able to reduce indoor and outdoor PM2.5 source contributions. Methods: Approximately 24 h daily indoor and outdoor PM2.5 samples were collected on Teflon and Quartz filters from the apartments of 40 study subjects during each 3-day intervention period. These filters were analyzed for mass, carbon, and trace elements. Environmental Protection Agency Positive Matrix Factorization (PMF) 5.0 was utilized to determine major emission sources that contributed to the outdoor and indoor PM2.5 levels during this study. Results: The major sources of outdoor PM2.5 were secondary aerosols (28%), traffic/urban dust (24%), iron/steel industries (15%), sewage/municipal incineration (10%), and oil combustion/refinery (6%). The major sources of indoor PM2.5 were organic compounds (45%), traffic + sewage/municipal incineration (14%), secondary aerosols (13%), smoking (7%), and urban dust (2%). Infiltration of outdoor PM2.5 for sham, HEPA-type, and true HEPA air filtration was 79 ± 24%, 61 ± 32%, and 51 ± 34%, respectively. Conclusions: The results from our study showed that intervention with PAFs was able to significantly decrease indoor PM2.5 derived from outdoor and indoor PM2.5 sources. The PAFs were also able to significantly reduce the infiltration of outdoor PM2.5. The results of this study provide insights into what types of major PM2.5 sources this community is exposed to and what degree of air quality and systolic blood pressure improvements are possible through the use of commercially available PAFs in a real-world setting.
Collapse
Affiliation(s)
- Zachary M. Klaver
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ryan C. Crane
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | - Robert L. Bard
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara D. Adar
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert D. Brook
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Masako Morishita
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Shrestha J, Khan RK, McClintock S, DeGroote J, Zeman CL. Correlations between Educational Struggle, Toxic Sites by School District and Demographic Variables, with Geographical Information System Projections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7160. [PMID: 38131712 PMCID: PMC10742704 DOI: 10.3390/ijerph20247160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
This correlational study associated data on children enrolled in individualized educational plans in their K-12 schools (IEP) and an algorithm-calculated score of neurotoxins at contaminated sites located in each school district. The study also mapped and projected the correlations using Geographical Information System (GIS) technology. These data were populated in ArcMap 10.5 (a GIS software) for generating maps and data to conduct geospatial analysis. A total of 1 Superfund site and 39 CERCLA sites were identified as contaminated sites for this analysis. The majority of contaminants were heavy metals such as lead, arsenic, mercury, and cadmium. The mean toxic score of all contaminated sites combined was 13.4 (SD 14.4). Correlational analysis between the IEP numbers from each school district and toxic scores from the contaminated school district sites exhibited a positive relationship (F = 23.7, p < 0.0001). Correlations were also seen among higher toxics scores, IEP numbers, and children under the age of 10 (p < 0.00052) as well as higher proportions of black students in areas with high toxics scores (p = 0.0032). Black students were also far more likely to be enrolled in an IEP (p < 0.0001). Household income and poverty percentage in contaminated areas were also correlated (p = 0.0002). Individuals without college degrees were overrepresented in high toxic score school districts (p < 0.0001). The important low socio-economic status indicator of free and reduced lunch programs also correlated with increasing toxic scores (p = 0.0012) and IEP numbers (p = 0.0416). This study emphasizes the need to account for multiple exposures to wholistically appreciate environmental factors contributing to negative health outcomes.
Collapse
Affiliation(s)
- Junu Shrestha
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois, Springfield, IL 62703, USA;
| | - Raihan K. Khan
- Department of Health Sciences, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA 22801, USA;
| | - Shane McClintock
- Clinton County Environmental Health Department, Clinton County, DeWitt, IA 52742, USA;
| | - John DeGroote
- Department of Geography, College of Social & Behavioral Sciences, University of Northern Iowa, Cedar Falls, IA 50614, USA;
| | - Catherine L. Zeman
- Department of Health Sciences, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA 22801, USA;
| |
Collapse
|
14
|
Olstrup H, Flanagan E, Persson JO, Rittner R, Krage Carlsen H, Stockfelt L, Xu Y, Rylander L, Gustafsson S, Spanne M, Åström DO, Engström G, Oudin A. The Long-Term Mortality Effects Associated with Exposure to Particles and NO x in the Malmö Diet and Cancer Cohort. TOXICS 2023; 11:913. [PMID: 37999565 PMCID: PMC10674607 DOI: 10.3390/toxics11110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
In this study, the long-term mortality effects associated with exposure to PM10 (particles with an aerodynamic diameter smaller than or equal to 10 µm), PM2.5 (particles with an aerodynamic diameter smaller than or equal to 2.5 µm), BC (black carbon), and NOx (nitrogen oxides) were analyzed in a cohort in southern Sweden during the period from 1991 to 2016. Participants (those residing in Malmö, Sweden, born between 1923 and 1950) were randomly recruited from 1991 to 1996. At enrollment, 30,438 participants underwent a health screening, which consisted of questionnaires about lifestyle and diet, a clinical examination, and blood sampling. Mortality data were retrieved from the Swedish National Cause of Death Register. The modeled concentrations of PM10, PM2.5, BC, and NOx at the cohort participants' home addresses were used to assess air pollution exposure. Cox proportional hazard models were used to estimate the associations between long-term exposure to PM10, PM2.5, BC, and NOx and the time until death among the participants during the period from 1991 to 2016. The hazard ratios (HRs) associated with an interquartile range (IQR) increase in each air pollutant were calculated based on the exposure lag windows of the same year (lag0), 1-5 years (lag1-5), and 6-10 years (lag6-10). Three models were used with varying adjustments for possible confounders including both single-pollutant estimates and two-pollutant estimates. With adjustments for all covariates, the HRs for PM10, PM2.5, BC, and NOx in the single-pollutant models at lag1-5 were 1.06 (95% CI: 1.02-1.11), 1.01 (95% CI: 0.95-1.08), 1.07 (95% CI: 1.04-1.11), and 1.11 (95% CI: 1.07-1.16) per IQR increase, respectively. The HRs, in most cases, decreased with the inclusion of a larger number of covariates in the models. The most robust associations were shown for NOx, with statistically significant positive HRs in all the models. An overall conclusion is that road traffic-related pollutants had a significant association with mortality in the cohort.
Collapse
Affiliation(s)
- Henrik Olstrup
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
| | - Jan-Olov Persson
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Ralf Rittner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
| | - Hanne Krage Carlsen
- School of Public Health and Community Medicine, Institute of Medicine, Center of Registers, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Yiyi Xu
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
| | | | - Mårten Spanne
- Environment Department, City of Malmö, 205 80 Malmö, Sweden
| | - Daniel Oudin Åström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences at Malmö, CRC, Lund University, 221 00 Lund, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 63 Lund, Sweden; (E.F.); (D.O.Å.)
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
15
|
Ekman J, Quartey P, Ussif AM, Ricklund N, Egbenya DL, Wiafe GA, Tsegah KM, Karikari A, Löfstedt H, Djankpa FT. Dynamics of pre-shift and post-shift lung function parameters among wood workers in Ghana. Ann Occup Environ Med 2023; 35:e39. [PMID: 37928378 PMCID: PMC10621010 DOI: 10.35371/aoem.2023.35.e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/09/2022] [Accepted: 08/14/2023] [Indexed: 11/07/2023] Open
Abstract
Background Diseases affecting the lungs and airways contribute significantly to the global burden of disease. The problem in low- and middle-income countries appears to be exacerbated by a shift in global manufacturing base to these countries and inadequate enforcement of environmental and safety standards. In Ghana, the potential adverse effects on respiratory function associated with occupational wood dust exposure have not been thoroughly investigated. Methods Sixty-four male sawmill workers and 64 non-woodworkers participated in this study. The concentration of wood dust exposure, prevalence and likelihood of association of respiratory symptoms with wood dust exposure and changes in pulmonary function test (PFT) parameters in association with wood dust exposure were determined from dust concentration measurements, symptoms questionnaire and lung function test parameters. Results Sawmill workers were exposed to inhalable dust concentration of 3.09 ± 0.04 mg/m3 but did not use respirators and engaged in personal grooming habits that are known to increase dust inhalation. The sawmill operators also showed higher prevalence and likelihoods of association with respiratory symptoms, a significant cross-shift decline in some PFT parameters and a shift towards a restrictive pattern of lung dysfunction by end of daily shift. The before-shift PFT parameters of woodworkers were comparable to those of non-woodworkers, indicating a lack of chronic effects of wood dust exposure. Conclusions Wood dust exposure at the study site was associated with acute respiratory symptoms and acute changes in some PFT parameters. This calls for institution and enforcement of workplace and environmental safety policies to minimise exposure at sawmill operating sites, and ultimately, decrease the burden of respiratory diseases.
Collapse
Affiliation(s)
- John Ekman
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Philip Quartey
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Abdala Mumuni Ussif
- Department of Forensic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, Örebro, Sweden
| | - Daniel Lawer Egbenya
- Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gideon Akuamoah Wiafe
- Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Korantema Mawuena Tsegah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akua Karikari
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Håkan Löfstedt
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Navarro-Ciurana D, Corbella M, Meroño D. Effects of Road Dust Particle Size on Mineralogy, Chemical Bulk Content, Pollution and Health Risk Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6655. [PMID: 37681795 PMCID: PMC10488125 DOI: 10.3390/ijerph20176655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Because of the rising environmental and health concerns associated with atmospheric pollution caused by potentially toxic elements (PTEs), several road dust studies have been performed across the world in recent decades. This paper illustrates the effects of particle size on the PTE contents, mineralogical composition, environmental pollution and health risk assessments in road dust from Barcelona (Spain). The samples were sieved into five size fractions ranging from <45 to 500-800 µm. Although the major mineral contents (tectosilicates, phyllosilicates, and carbonates) were profuse in all fractions, the identified inhalable PTE particles (e.g., Fe, Cr, Cu, Zn, Ni, and REE), with size < 10 µm, were more pervasive in the finest fraction (<45 μm). This is consistent with the concentrations measured: the finest fractions were richer in PTEs than the coarser ones, resulting in a direct correlation with the enrichment factor (EFx), geo-accumulation (Igeo), and non-carcinogenic (HI) and carcinogenic (CRI) values. Igeo and EFx values can be appropriate tracers for some common elements (e.g., Zn, Sb, Sn, Cu, and Cr), but they do not seem adequate for anthropogenic particles accumulated at concentrations similar to the geogenic background. Overall, the HI and CRI values obtained in Barcelona were acceptable, reflecting no serious health impacts in the study area, except for Cr. Our results suggest that fine dust particles are a more suitable fraction to conduct pollution and health risk assessments than coarser ones, although the EFx, Igeo, HI, and CRI threshold values should be redefined in the future to include all emergent pollutants as well. In summary, monitoring programs should include at least the road dust evaluation of <45 µm particles, which can be performed with a simple sieving method, which is both time- and cost-effective.
Collapse
Affiliation(s)
- Dídac Navarro-Ciurana
- Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Edifici Cs s/n, 08193 Bellaterra, Spain; (M.C.); (D.M.)
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, i Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Corbella
- Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Edifici Cs s/n, 08193 Bellaterra, Spain; (M.C.); (D.M.)
| | - Daniel Meroño
- Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Edifici Cs s/n, 08193 Bellaterra, Spain; (M.C.); (D.M.)
| |
Collapse
|
17
|
Abdulrahman N, Honda TJ, Ali A, Abdulrahman N, Vrinceanu D, Shishodia S. Impacts of Indoor Dust Exposure on Human Colonic Cell Viability, Cytotoxicity and Apoptosis. TOXICS 2023; 11:633. [PMID: 37505597 PMCID: PMC10383473 DOI: 10.3390/toxics11070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Environmental exposure to indoor dust is known to be associated with myriad health conditions, especially among children. Established routes of exposure include inhalation and non-dietary ingestion, which result in the direct exposure of gastrointestinal epithelia to indoor dust. Despite this, little prior research is available on the impacts of indoor dust on the health of human gastrointestinal tissue. METHODS Cultured human colonic (CCD841) cells were exposed for 24 h to standard trace metal dust (TMD) and organic contaminant dust (OD) samples at the following concentrations: 0, 10, 25, 50, 75, 100, 250, and 500 µg/mL. Cell viability was assessed using an MTT assay and protease analysis (glycyl-phenylalanyl-aminofluorocoumarin (GF-AFC)); cytotoxicity was assessed with a lactate dehydrogenase release assay, and apoptosis was assessed using a Caspase-Glo 3/7 activation assay. RESULTS TMD and OD decreased cellular metabolic and protease activity and increased apoptosis and biomarkers of cell membrane damage (LDH) in CCD841 human colonic epithelial cells. Patterns appeared to be, in general, dose-dependent, with the highest TMD and OD exposures associated with the largest increases in apoptosis and LDH, as well as with the largest decrements in metabolic and protease activities. CONCLUSIONS TMD and OD exposure were associated with markers of reduced viability and increased cytotoxicity and apoptosis in human colonic cells. These findings add important information to the understanding of the physiologic effects of indoor dust exposure on human health. The doses used in our study represent a range of potential exposure levels, and the effects observed at the higher doses may not necessarily occur under typical exposure conditions. The effects of long-term, low-dose exposure to indoor dust are still not fully understood and warrant further investigation. Future research should explore these physiological mechanisms to further our understanding and inform public health interventions.
Collapse
Affiliation(s)
- Noura Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Trenton J Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ayat Ali
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Nabras Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Daniel Vrinceanu
- Department of Physics, Texas Southern University, Houston, TX 77004, USA
| | - Shishir Shishodia
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
18
|
Singh AK, Kumar M, Bauddh K, Singh A, Singh P, Madhav S, Shukla SK. Environmental impacts of air pollution and its abatement by plant species: A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79587-79616. [PMID: 37322401 DOI: 10.1007/s11356-023-28164-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Air pollution is one of the major global environmental issues urgently needed attention for its control through sustainable approaches. The release of air pollutants from various anthropogenic and natural processes imposes serious threats to the environment and human health. The green belt development using air pollution-tolerant plant species has become popular approach for air pollution remediation. Plants' biochemical and physiological attributes, especially relative water content, pH, ascorbic acid, and total chlorophyll content, are taken into account for assessing air pollution tolerance index (APTI). In contrast, anticipated performance index (API) is assessed based on socio-economic characteristics including "canopy structure, type, habit, laminar structure, economic value and APTI score" of plant species. Based on previous work, plants with high dust-capturing capacity are identified in Ficus benghalensis L. (0.95 to 7.58 mg/cm2), and highest overall PM accumulation capacity was observed in Ulmus pumila L. (PM10 = 72 µg/cm2 and PM2.5 = 70 µg/cm2) in the study from different regions. According to APTI, the plant species such as M. indica (11 to 29), Alstonia scholaris (L.) R. Br. (6 to 24), and F. benghalensis (17 to 26) have been widely reported as high air pollution-tolerant species and good to best performer in terms of API at different study sites. Statistically, previous studies show that ascorbic acid (R2 = 0.90) has good correlation with APTI among all the parameters. The plant species with high pollution tolerance capacity can be recommended for future plantation and green belt development.
Collapse
Affiliation(s)
- Akshay Kumar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Ajai Singh
- Department of Civil Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, New Delhi, India, 110065
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India, 110025
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222.
| |
Collapse
|
19
|
Tesfaye AH, Engdaw GT, Desye B, Abere G. Occupational respiratory morbidity and associated factors among hairdressers in Ethiopia: a cross-sectional study. BMJ Open 2023; 13:e074299. [PMID: 37344118 DOI: 10.1136/bmjopen-2023-074299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE This study was designed to determine the prevalence and factors associated with occupational respiratory morbidity among hairdressers in Northwestern Ethiopia. DESIGN A cross-sectional study was conducted from 6 July 2022 to 17 August 2022. The data were collected using a standardised American Thoracic Society questionnaire. The collected data were entered into EpiData V.4.6 and analysed using Stata V.14. A multivariable logistic regression analysis was conducted to identify factors associated with occupational respiratory morbidity. The association was determined using an adjusted OR (AOR) with a 95% CI at a p value of <0.05. SETTING The study was conducted in Gondar city, Northwestern Ethiopia. PARTICIPANTS A total of 403 hairdressers participated in this study. OUTCOME MEASURES The primary outcome is the prevalence of occupational respiratory morbidity. RESULTS The total response rate was 95.5%. The majority, 250 (62%) of the respondents were women. The mean age (±SD) of the respondents was 27 (±6.0) years. The overall prevalence of occupational respiratory morbidity during the past 12 months was found to be 134 (33.3%) (95% CI (28.7% to 38.1%)). Female hairdressers (18.6%) showed greater respiratory morbidity than male hairdressers (14.7%). Working experience 3-5 years (AOR: 3.05; 95% CI (1.76 to 5.30)) and working experience >5 years (AOR: 6.22; 95% CI (2.73 to 14.16)), overweight (body mass index (BMI)) (AOR: 3.01; 95% CI (1.19 to 7.58)) and working near roadsides (AOR: 2.15; 95% CI (1.33 to 3.37)) were risk factors of occupational respiratory morbidity among hairdressers. CONCLUSIONS This study concluded that one-third of hairdressers experienced occupational respiratory morbidity. Longer work experience, higher BMI and working near roadsides were identified as significant risk factors for respiratory morbidity in hairdressers. Dietary calorie restrictions for overweight individuals and the development and implementation of air pollution mitigation measures targeted at roadside workers are advised to curb the problem.
Collapse
Affiliation(s)
- Amensisa Hailu Tesfaye
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Garedew Tadege Engdaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Desye
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Giziew Abere
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
20
|
Bassetti OG, McDonough RA, Shakya KM. Soil contamination in community gardens of Philadelphia and Pittsburgh, Pennsylvania. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:782. [PMID: 37261617 DOI: 10.1007/s10661-023-11329-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
Community gardens have been seen sprouting up in and around urban settings such as Philadelphia and Pittsburgh over the past several decades. Due to the long histories of industrial activities and urbanization, these soils in urban regions may be at a high risk for various contaminants such as metals and metalloids. Using inductively coupled plasma mass spectrometry (ICP-MS), we measured 7 elements (lead (Pb), zinc (Zn), copper (Cu), vanadium (V), cadmium (Cd), nickel (Ni), and arsenic (As)) in soil samples collected from a total of 21 community gardens in Philadelphia City, Philadelphia suburban areas, and Pittsburgh City during September and October 2021. We found that the city areas in Philadelphia and Pittsburgh had higher elemental concentrations in community garden soils compared to the suburbs. We found that all elements except vanadium were below the Pennsylvania Department of Environmental Protection (PADEP) guidelines. When compared to more stringent Canadian Council of Ministers of the Environment (CCME) guidelines of a maximum of 140 mg/kg of lead in the soil, 36% percent of Philadelphia community gardens, 60% of Pittsburgh gardens, and 20% of the Philadelphia suburb gardens exceeded the CCME guideline. In Philadelphia city, generally, elemental concentrations exhibited a negative trend with increasing distance to historical smelter locations, although a significant correlation was observed for only zinc. We found that the soil from the raised beds had lower concentrations of lead and arsenic, but many of the samples from the raised beds had higher concentrations of zinc, copper, vanadium, and nickel. This discrepancy in raised beds is most likely attributed to these elements being actively deposited in the soil from present day sources such as vehicles on the road and active industrial sites. Understanding and recognizing such variations of these contaminants in community gardens are essential to understanding how industrial legacies and modern pollution continue to put urban communities at a disproportionate risk of health impacts.
Collapse
Affiliation(s)
- Olivia G Bassetti
- Department of Geography and the Environment, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA
| | - Rebecca A McDonough
- Department of Geography and the Environment, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA
| | - Kabindra M Shakya
- Department of Geography and the Environment, Villanova University, 800 E. Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
21
|
Coker ES, Saha Turna N, Schouwenburg M, Jalil A, Bradshaw C, Kuo M, Mastel M, Kazemian H, Roushorne M, Henderson SB. Characterization of the short-term temporal variability of road dust chemical mixtures and meteorological profiles in a near-road urban site in British Columbia. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:502-516. [PMID: 36880994 DOI: 10.1080/10962247.2023.2186964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 05/26/2023]
Abstract
Implications: Non-tailpipe emissions driven by springtime road dust in northern latitude communities is increasing in importance for air pollution control and improving our understanding of the health effects of chemical mixtures from particulate matter exposure. High-volume samples from a near-road site indicated that days affected by springtime road dust are substantively different from other days with respect to particulate matter mixture composition and meteorological drivers. The high load of trace elements in PM10 on high road dust days has important implications for the acute toxicity of inhaled air and subsequent health effects. The complex relationships between road dust and weather identified in this study may facilitate further research on the health effects of chemical mixtures related to road dust while also highlighting potential changes in this unique form of air pollution as the climate changes.
Collapse
Affiliation(s)
- Eric S Coker
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Mya Schouwenburg
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, Canada
- Natural Resources & Environmental Studies Institute, University of Northern British Columbia, Prince George, Canada
| | - Ahmad Jalil
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, Canada
| | - Charles Bradshaw
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, Canada
| | - Michael Kuo
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - Molly Mastel
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, Canada
- Occupational and Environmental Health Division, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, Canada
- Natural Resources & Environmental Studies Institute, University of Northern British Columbia, Prince George, Canada
- Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, Canada
| | | | - Sarah B Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, Canada
- Occupational and Environmental Health Division, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Taye AE, Chandravanshi BS. Health and ecological risk assessment of potentially toxic metals in road dust at Lalibela and Sekota towns, Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:765. [PMID: 37249712 DOI: 10.1007/s10661-023-11406-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The ecological and health problems resulted from heavy metals (Mn, Fe, Ni, Co, Cu, Zn, Cd, Hg, Pb, As, and Cr) in the road dust in the towns of Sekota and Lalibela, Ethiopia were assessed. The average heavy metal concentrations were ranged from 0.088 (Cd) to 2.714 (Fe) mg/kg. Individual metal and cumulative metals pollution levels in both towns revealed that Lalibela is moderately polluted by Zn, Pb, and Ni and Sekota being moderately polluted by Zn, Pb, Ni, As, Hg, and Cu. Furthermore, the United States Environmental Protection Agency's health risk evaluation model showed that the total heavy metal health risk levels in the road dust ranged from 5.71 × 10-3 (adult) to 2.57 × 10-2 (children), with an average risk of 7.35 × 10-2. Lalibela was found to have higher chance of risk than Sekota. The total lifetime cancer risk varied from 4.51 × 10-9 (for adults, Sekota) to 7.75 × 10-9 (for children, Lalibela), with a mean risk of 6.12 × 10-9 implying a low chance of getting cancer. The hazard quotient and hazard index of all the metals were below the limit. In general, children were found to be more susceptible than adults.
Collapse
Affiliation(s)
- Asamene Embiale Taye
- Department of Chemistry, College of Natural and Computational Science, Woldia University, P.O. Box 400, Woldia, Ethiopia.
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Myszka R, Enfrin M, Giustozzi F. Microplastics in road dust: A practical guide for identification and characterisation. CHEMOSPHERE 2023; 315:137757. [PMID: 36610511 DOI: 10.1016/j.chemosphere.2023.137757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The contamination of the environment by microplastics (MPs) in road dust poses a serious ecological and health concern. MPs have been detected in road dust worldwide and their presence has been mainly attributed to plastic litter fragmentation and vehicle tyre abrasion. Although current technologies such as Raman and Fourier Transform InfraRed spectroscopy as well as Scanning Electron Microscopy are capable of detecting MPs in road dust, the analysis of MPs shape and MPs smaller than 20 μm is limited and often labour demanding. More accurate, cost-effective and rapid techniques have now become necessary to analyse MPs in road dust, particularly since the development of large infrastructure projects that incorporate recycled plastic into road assets and roadside furniture. Nile red (NR) staining is a promising technique to identify MPs in environmental samples; however, it has not yet been applied to road dust. This study investigates the use of NR fluorescence microscopy to detect MPs in road dust and provides information about MP amount, shape and size distribution. The staining duration and temperature, solvent selection and NR concentration were optimised considering 33 different road dust materials, including 13 types of plastic. The NR staining procedure developed in this work is capable of successfully differentiating between MPs down to 1 μm and other non-plastic road dust materials. Future applications include assessing the contribution of plastic-modified roads to MP pollution, comparing the level of MP pollution in urban and rural areas and providing a rapid, simple, inexpensive and reliable monitoring approach for further studies to compare MP using a singular optimised methodology.
Collapse
Affiliation(s)
- Rebecca Myszka
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Marie Enfrin
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia
| | - Filippo Giustozzi
- Royal Melbourne Institute of Technology, Civil and Infrastructure Engineering, Melbourne 3001, Victoria, Australia.
| |
Collapse
|
24
|
Sepadi MM, Nkosi V. Personal PM 2.5 Exposure Monitoring of Informal Cooking Vendors at Indoor and Outdoor Markets in Johannesburg, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032465. [PMID: 36767829 PMCID: PMC9915915 DOI: 10.3390/ijerph20032465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 05/06/2023]
Abstract
Air pollutants of concern include particulate matter (PM) in fine size fractions. Thus far, a few studies have been conducted to study the adverse health effects of environmental and occupational air pollutants among informal vendors in big cities in South Africa. Informal vendors in these cities may experience higher exposure to road dust, cooking fumes, and air pollution. This exposure assessment was part of a health risk assessment study of vendors. The objective of this exposure assessment was to determine the differences between outdoor and indoor informal vendors' personal PM2.5 exposures during trading hours. A walkthrough survey was conducted to map the homogeneous exposure groups (HEGs) at vendor markets for sampling purposes, and one market was selected from each of the three identified HEGs. Twenty-five informal cooked food vendors from both indoor (inside buildings) and outdoor (street or roadside vendors) markets in the inner city of Johannesburg, South Africa, participated in the study. HEG-1 were vendors from indoor stalls who used electricity and gas for cooking (10 vendors), HEG-2 was composed of informal outdoor vendors at a fenced site market who used open fire for cooking (10 vendors), and HEG-3 (5 vendors) were roadside vendors who used gas for cooking. Cooking vendors from outdoor markets recorded higher TWA concentrations than indoor market vendors. The vendors' PM2.5 concentrations ranged from <0.01 mg/m3 to 0.77 mg/m3. The mean concentrations of PM2.5 were found to be 0.12 mg/m3, and 0.18 mg/m3 for HEG-2, and HEG-3, respectively. HEG-2 recorded the highest PM2.5 TWA concentrations, followed by HEG-3 and HEG-1. All concentrations were below the South African occupational exposure limit. The findings point to the need for further research into the health risks associated with outdoor cooking vendors, particularly those who utilize open fires.
Collapse
Affiliation(s)
- Maasago Mercy Sepadi
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2094, South Africa
- Correspondence: ; Tel.: +27-(11)-5596339
| | - Vusumuzi Nkosi
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2094, South Africa
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg 2094, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
25
|
Kacer J, Altmaier R, Latta D, O'Shaughnessy PT, Cwiertny DM. Evaluation of airborne particulates and associated metals originating from steel slag applied to rural unpaved roads. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:238-246. [PMID: 36743127 PMCID: PMC9851133 DOI: 10.1039/d2ea00040g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Various metals have toxic effects by the inhalation route, and electric arc furnace (EAF) steel slag is known to contain metals with a potential for toxicity to humans. In some states, EAF slag is applied to unpaved (gravel) roads as a low-cost supplement to limestone and other crushed stone, where it may be a public health concern for the local population. This study compared the mass of selected metals in the PM10 size fraction of fugitive dust from roads where slag was applied to metals in fugitive dust where slag was not applied. Manganese, designated by the EPA as a hazardous air pollutant (HAP) and one of the primary metals of concern in the slag, was 1.3 times more concentrated in the PM10 fraction from the slag-covered roads as compared to the PM10 fraction from the non-slag-covered roads, but that increase was not significant (p = 0.26). Other metals detected in the airborne dust from both slag-covered and non-slag-covered roads that are also designated as HAPs are antimony, arsenic, chromium, cobalt, lead, nickel, and selenium. In addition, hourly sampling of PM10 and metals in the PM10 fraction was conducted at one of the sample locations where slag had been applied to the road. Manganese mass in the PM10 was positively correlated (Spearman r = 0.86) with the particulate mass in the PM10. Wind direction and the interaction of traffic and wind direction were found to be statistically significant factors affecting manganese concentrations in the fugitive emissions from the road to which EAF slag had been applied. This research demonstrated that application of steel slag can result in elevated levels of manganese in the airborne dust generated by vehicular traffic on the unpaved roadway.
Collapse
Affiliation(s)
- James Kacer
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa Iowa City 52242 Iowa USA
| | - Ralph Altmaier
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa Iowa City 52242 Iowa USA
| | - Drew Latta
- Department of Civil and Environmental Engineering, College of Engineering, University of Iowa Iowa City 52242 Iowa USA
| | - Patrick T O'Shaughnessy
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa Iowa City 52242 Iowa USA
| | - David M Cwiertny
- Department of Civil and Environmental Engineering, College of Engineering, University of Iowa Iowa City 52242 Iowa USA
- Center for Health Effects of Environmental Contamination, University of Iowa W195 Chemistry Building Iowa City 52242 Iowa USA
| |
Collapse
|
26
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
27
|
Freer J, Bucher PG, Braun M, Lottermoser BG. Food processing by-products and wastes as potential dust suppressants at mine sites: Results from unconfined compressive strength testing. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1012-1026. [PMID: 35503459 DOI: 10.1080/10962247.2022.2072975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The application of dust suppressants is an effective technique to reduce fugitive emissions, but commercially available products are costly and may harm the environment. By contrast, wastes and by-products from food production and processing can be sustainable alternatives, as they are biodegradable, considered cost-effective and have adhesive properties. The study aimed to investigate the application potential of biogenic wastes and by-products from the food industry to control dust emissions from mine soils. Unconfined compressive strength tests (UCS) were conducted on medium- to coarse-grained sand treated with sixteen biomaterials at two different additive concentrations (2 wt%, 4 wt%). UCS tests showed that rinsing water from jam production (1,366 kPa), corn steep liquor (1,502 kPa), chicory vinasses (1,723 kPa), decantation syrup (2,026 kPa) and palatinose molasses (7,535 kPa) significantly enhanced the mechanical strength of the substrate (11 kPa), indicating a strong potential of these biomaterials as dust suppressants. Such biomaterials that contained biopolymers and not only mono- and disaccharides achieved on average higher UCS values, possibly due to the formation of 3D-network structures. Moreover, the data indicated a low potential for substances with high glucose and fructose content, as they had minor or no impact on soil strength.Implications: The UCS test results indicate that food processing wastes and by-products can be sustainable alternatives to existing dust suppressants. Hence, the present study supports an environmentally friendly and cost-effective dust control of exposed surfaces at mine and mineral processing sites and provides new markets for the food industry's wastes and by-products. Moreover, this research extends our understanding of dust suppressant treatment of soils and contributes to evaluating biogenic food processing wastes and by-products as environmentally benign dust suppressants.
Collapse
Affiliation(s)
- Justus Freer
- Institute of Mineral Resources Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany
| | - Peter G Bucher
- Institute of Mineral Resources Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany
| | - Marius Braun
- Institute of Mineral Resources Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany
| | - Bernd G Lottermoser
- Institute of Mineral Resources Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Short-Term Associations between PM 10 and Respiratory Health Effects in Visby, Sweden. TOXICS 2022; 10:toxics10060333. [PMID: 35736941 PMCID: PMC9227158 DOI: 10.3390/toxics10060333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
The old Swedish city Visby, located on the island Gotland, has, for several years, reported higher PM10 concentrations than any other city in Sweden. In Visby, local limestone is used, both in road paving and as sand used for anti-slip measures, resulting in a clear annual pattern of PM10 with the highest concentrations during winter/spring when studded tires are allowed. This study analyzes the short-term associations between PM10 and daily number of patients with acute respiratory problems (ICD–10 diagnoses: J00–J99) seeking care at the hospital or primary healthcare units in Visby during the period of 2013–2019. The daily mean of PM10 was on average 45 µg m−3 during winter/spring and 18 µg m−3 during summer/autumn. Four outcome categories were analyzed using quasi-Poisson regression models, stratifying for period and adjusting for calendar variables and weather. An increase in respiratory visits was associated with increasing concentrations in PM10 during the summer/autumn period, most prominent among children, where asthma visits increased by 5% (95% CI: 2–9%) per 10 µg m−3 increase in PM10. For the winter/spring period, no significant effects were observed, except for the diagnose group ‘upper airways’ in adults, where respiratory visits increased by 1% (95% CI: 0.1–1.9%) per 10 µg m−3 increase. According to the results, limestone in particles seem to be relatively harmless at the exposure concentrations observed in Visby, and this is in line with the results from a few experimental and occupational studies.
Collapse
|
29
|
O’Day PA, Pattammattel A, Aronstein P, Leppert VJ, Forman HJ. Iron Speciation in Respirable Particulate Matter and Implications for Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7006-7016. [PMID: 35235749 PMCID: PMC9179659 DOI: 10.1021/acs.est.1c06962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM) air pollution poses a major global health risk, but the role of iron (Fe) is not clearly defined because chemistry at the particle-cell interface is often not considered. Detailed spectromicroscopy characterizations of PM2.5 samples from the San Joaquin Valley, CA identified major Fe-bearing components and estimated their relative proportions. Iron in ambient PM2.5 was present in spatially and temporally variable mixtures, mostly as Fe(III) oxides and phyllosilicates, but with significant fractions of metallic iron (Fe(0)), Fe(II,III) oxide, and Fe(III) bonded to organic carbon. Fe(0) was present as aggregated, nm-sized particles that comprised up to ∼30% of the Fe spectral fraction. Mixtures reflect anthropogenic and geogenic particles subjected to environmental weathering, but reduced Fe in PM originates from anthropogenic sources, likely as abrasion products. Possible mechanistic pathways involving Fe(0) particles and mixtures of Fe(II) and Fe(III) surface species may generate hydrogen peroxide and oxygen-centered radical species (hydroxyl, hydroperoxyl, or superoxide) in Fenton-type reactions. From a health perspective, PM mixtures with reduced and oxidized Fe will have a disproportionate effect in cellular response after inhalation because of their tendency to shuttle electrons and produce oxidants and electrophiles that induce inflammation and oxidative stress.
Collapse
Affiliation(s)
- Peggy A. O’Day
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- Environmental
Systems Graduate Program, University of
California, Merced, 95343, United States
| | - Ajith Pattammattel
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- NSLS
II, Brookhaven National Laboratory, Upton, New York 11973 United States
| | - Paul Aronstein
- Environmental
Systems Graduate Program, University of
California, Merced, 95343, United States
| | - Valerie J. Leppert
- Materials
Science and Engineering Department, University
of California, Merced, California 95343, United States
| | - Henry Jay Forman
- Life
and Environmental Sciences Department and the Sierra Nevada Research
Institute, University of California, Merced, California 95343, United States
- Leonard
Davis School of Gerontology, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Lee J, Lee WR, Yoo KB, Cho J, Yoon J. Risk of Cerebro-Cardiovascular Diseases among Police Officers and Firefighters: A Nationwide Retrospective Cohort Study. Yonsei Med J 2022; 63:585-590. [PMID: 35619583 PMCID: PMC9171666 DOI: 10.3349/ymj.2022.63.6.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Police officers and firefighters are exposed to risk factors for cerebro-cardiovascular diseases, and the actual risk is expected to increase compared with other occupational groups. The present study aimed to estimate the risks of cerebro-cardiovascular diseases in police officers and firefighters compared to other occupational groups. MATERIALS AND METHODS Using the National Health Insurance Service data, we constructed a retrospective cohort of public officers. Three-year consecutive health insurance registration data were used to identify police officers and firefighters. Cerebro-cardiovascular diseases consisted of acute myocardial infarction, other ischemic heart disease, cardiac arrhythmia, and stroke. We compared the incidences of cerebro-cardiovascular diseases between each of the two occupational groups (police officers and firefighters) and other public officers by calculating standardized incidence ratios (SIRs). RESULTS SIRs and 95% confidence intervals of all cerebro-cardiovascular diseases for police officers and firefighters were 1.71 (1.66-1.76) and 1.22 (1.12-1.31), respectively, as compared with all public officers. The incidence ratios remained significantly higher compared to general and education officers. Subgroup analyses for myocardial infarction, stroke, and cardiac arrhythmia exhibited significant increases in incidence ratios among police officers and firefighters. CONCLUSION This study suggests that both police officers and firefighters are at high risk of cerebro-cardiovascular diseases. Therefore, medical protection measures for these occupational groups should be improved.
Collapse
Affiliation(s)
- Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Ri Lee
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Ki-Bong Yoo
- Department of Health Administration, Yonsei University Graduate School, Wonju, Korea
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jinha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Mohammed S, Mohammed FK. Pollution characteristics, risk assessment, and source apportionment of potentially toxic elements in road dust at two industrial parks in Trinidad and Tobago, West Indies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:445. [PMID: 35604459 DOI: 10.1007/s10661-022-10109-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Potentially toxic elements can enter the environment through natural and anthropogenic processes, with the latter considered the primary contributor. Road dust samples from two industrial parks on the island of Trinidad were investigated for heavy metal content, and the pollution status, potential health risks, and source apportionment were evaluated. Samples were acid-digested and analysed by flame atomic absorption spectroscopy. The average levels of cadmium, chromium, copper, manganese, nickel, lead, and zinc in road dust at the Frederick Settlement Industrial Park were 1.14 μg/g, 15.13 μg/g, 66.42 μg/g, 768.49 μg/g, 37.95 μg/g, 55.90 μg/g, and 573.04 μg/g, respectively, while average concentrations at the O'Meara Industrial Park were 1.20 μg/g, 16.97 μg/g, 42.72 μg/g, 482.65 μg/g, 21.12 μg/g, 136.77 μg/g, and 358.70 μg/g, respectively. Contamination assessments evaluated both Fredrick Settlement and O'Meara as typically uncontaminated to moderately polluted, with the overall ecological risk deemed low at all locations. Hazard index values at all sampling areas were lower than 1, indicating no potential non-carcinogenic risks to children or adults, while the carcinogenic exposure risks for cadmium, chromium, and nickel were considered low. Principal component analysis and cluster analysis revealed two main sources of contamination for Fredrick Settlement, and three main sources for O'Meara. Based on the groupings obtained, the presence of potentially toxic elements was attributed primarily to specific anthropogenic activities within the industrial parks, with lesser contributions from vehicular-related sources.
Collapse
Affiliation(s)
- Saleema Mohammed
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Faisal K Mohammed
- Department of Chemistry, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
32
|
Mattonai M, Nacci T, Modugno F. Analytical strategies for the quali-quantitation of tire and road wear particles – A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Concentration of Microplastics in Road Dust as a Function of the Drying Period—A Case Study in G City, Korea. SUSTAINABILITY 2022. [DOI: 10.3390/su14053006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microplastics (MPs) are plastic particles < 5 mm in diameter, which are detected in air, soil, and water, causing various environmental problems. In total, 37.3% of MPs are generated from point pollution sources and 62.7% from non-point sources; most of the non-point-source MPs are from vehicles tires, road-marking paint, and bitumen used in road pavements. In this study, the concentrations of MPs generated from roads in Goyang city, South Korea, were examined in terms of the drying period (0, 1, 2, or 3 d). Road dust sampling was performed at the kerb and quantitative and qualitative analyses were conducted for each sample. The MP concentrations were 552 (±39) MPs g−1 for a 0 d drying period and 1530 (±602) MPs g−1 for a 3 d drying period, confirming that the MP concentration in road dust increased with the increase in drying period. Among the detected substances, black particles accounted for the highest proportion (72%) and were found to be bitumen and tyre particles. This study also confirmed that the MPs accumulated on roads were washed away when rainfall exceeded a certain amount.
Collapse
|
34
|
Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. SUSTAINABILITY 2022. [DOI: 10.3390/su14020919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.
Collapse
|
35
|
Abstract
Abstract
Background
Particles from non-exhaust emissions derived from traffic activities are a dominant cause of toxic metal pollution in urban environments. Recently, studies applying multiple isotope values using the Iso-source and positive matrix factorization (PMF) models have begun to be used as useful tools to evaluate the contribution of each pollution source in urban environments. However, data on the metal concentrations and isotopic compositions of each potential source are lacking. Therefore, this study presents data on toxic metals and Cu, Zn, and Pb isotopic compositions in tires, which are one of the important non-exhaust emission sources.
Findings
Among the toxic metals, Zn had the highest concentration in all tire samples, and the mean concentrations were in the order of Zn > Cu > Pb > Sn > Sb > Ni > Cr > As > Cd. Ni, Zn, Sn, and Sb had higher concentrations in domestic tires (South Korea), and the Cu, Cd, and Pb concentrations were relatively higher in imported tires. The mean values of δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb ranged from − 1.04 to − 0.22‰, − 0.09 to − 0.03‰, and 1.1242 to 1.1747, respectively. The concentrations and isotopic compositions of Cu and Pb in the tires showed large differences depending on the product and manufacturer. However, the differences in Zn concentration and δ66ZnIRMM3702 values were very small compared with those of Cu and Pb. The relationships of the Zn concentration and isotopic composition showed that domestic tires are clearly distinguishable from imported tires. Bi-plots of Cu, Zn, and Pb isotopic compositions indicated that tires can be clearly discriminated from natural-origin and other non-exhaust traffic emission sources.
Conclusions
The multi-isotope signatures of Cu, Zn, and Pb exhibited different isotopic values for other non-exhaust traffic emission sources than for tires, and application of the multi-isotope technique may be a powerful method for distinguishing and managing non-exhaust sources of metal contamination in urban environments.
Collapse
|
36
|
Stallworth AM, Chase EH, McDevitt B, Marak KK, Freedman MA, Wilson RT, Burgos WD, Warner NR. Efficacy of oil and gas produced water as a dust suppressant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149347. [PMID: 34426301 PMCID: PMC8530883 DOI: 10.1016/j.scitotenv.2021.149347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of oil and gas produced water (OGPW) applied to unpaved roads to reduce particulate matter (PM10) generation has not been well-characterized. Here we quantify the efficacy of OGPW compared to commercial and alternative byproducts as dust suppressants applied to unpaved roads and estimate efficacy of a dust suppressant extrapolated from both lab experiments and published data for OGPW across U.S. states. Both treated and untreated OGPW, simulated brines, and commercial dust suppressants were characterized by major and trace element composition and then applied to road aggregate in the laboratory. PM10 generation after treatment was quantified, both before and after simulated rain events to assess the need for multiple applications. We found the dust suppression efficacy of all OGPW to be less than commercial products and alternative byproducts such as waste soybean oil. In addition, OGPW lost efficacy following simulated rain events, which would require repeated applications of OGPW to maintain dust suppression. The dust suppression efficacy of OGPW can be estimated based on two chemical measurements, the sodium absorption ratio (SAR) and the total dissolved solids (TDS). OGPW with the lowest SAR and highest TDS performed best as dust suppressants while high SAR and lower TDS led to greater dust generation.
Collapse
Affiliation(s)
- Audrey M Stallworth
- Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, United States.
| | - Eric H Chase
- Center for Dirt and Gravel Road Studies, Larson Transportation Institute, Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, United States.
| | - Bonnie McDevitt
- Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, United States.
| | - Katherine K Marak
- Department of Chemistry, Penn State University, University Park, PA 16802, United States.
| | - Miriam Arak Freedman
- Department of Chemistry, Penn State University, University Park, PA 16802, United States; Department of Meteorology and Atmospheric Science, Penn State University, University Park, PA 16802, United States.
| | - Robin Taylor Wilson
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA 19122, United States.
| | - William D Burgos
- Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, United States.
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, United States.
| |
Collapse
|
37
|
Quantification and Characterization of Metals in Ultrafine Road Dust Particles. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Road dust is an important source of resuspended particulate matter (PM) but information is lacking on the chemical composition of the ultrafine particle fraction (UFP; <0.1 µm). This study investigated metal concentrations in UFP isolated from the “dust box” of sweepings collected by the City of Toronto, Canada, using regenerative-air-street sweepers. Dust box samples from expressway, arterial and local roads were aerosolized in the laboratory and were separated into thirteen particle size fractions ranging from 10 nm to 10 µm (PM10). The UFP fraction accounted for about 2% of the total mass of resuspended PM10 (range 0.23–8.36%). Elemental analysis using ICP-MS and ICP-OES revealed a marked enrichment in Cd, Cr, Zn and V concentration in UFP compared to the dust box material (nano to dust box ratio ≥ 2). UFP from arterial roads contained two times more Cd, Zn and V and nine times more Cr than UFP from local roads. The highest median concentration of Zn was observed for the municipal expressway, attributed to greater volumes of traffic, including light to heavy duty vehicles, and higher speeds. The observed elevated concentrations of transition metals in UFP are a human health concern, given their potential to cause oxidative stress in lung cells.
Collapse
|
38
|
Seasonal Variations in the Daily Mortality Associated with Exposure to Particles, Nitrogen Dioxide, and Ozone in Stockholm, Sweden, from 2000 to 2016. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban air pollutant emissions and concentrations vary throughout the year due to various factors, e.g., meteorological conditions and human activities. In this study, seasonal variations in daily mortality associated with increases in the concentrations of PM10 (particulate matter), PM2.5–10 (coarse particles), BC (black carbon), NO2 (nitrogen dioxide), and O3 (ozone) were calculated for Stockholm during the period from 2000 to 2016. The excess risks in daily mortality are presented in single and multi-pollutant models during the whole year and divided into four different seasons, i.e., winter (December–February), spring (March–May), summer (June–August), and autumn (September–November). The excess risks in the single-pollutant models associated with an interquartile range (IQR) increase for a lag 02 during the whole year were 0.8% (95% CI: 0.1–1.4) for PM10, 1.1% (95% CI: 0.4–1.8) for PM2.5–10, 0.5% (95% CI: −0.5–1.5) for BC, −1.5% (95% CI: −0.5–−2.5) for NO2, and 1.9% (95% CI: 1.0–2.9) for O3. When divided into different seasons, the excess risks for PM10 and PM2.5–10 showed a clear pattern, with the strongest associations during spring and autumn, but with weaker associations during summer and winter, indicating increased risks associated with road dust particles during these seasons. For BC, which represents combustion-generated particles, the pattern was not very clear, but the strongest positive excess risks were found during autumn. The excess risks for NO2 were negative during all seasons, and in several cases even statistically significantly negative, indicating that NO2 in itself was not harmful at the concentrations prevailing during the measurement period (mean values < 20 µg m−3). For O3, the excess risks were statistically significantly positive during “all year” in both the single and the multi-pollutant models. The excess risks for O3 in the single-pollutant models were also statistically significantly positive during all seasons.
Collapse
|
39
|
Associations between Dust Exposure and Hospitalizations in El Paso, Texas, USA. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Southwestern USA has been identified as one of the most persistent dust-producing regions of North America, where exposure to inhalable particulate matter (PM10) originating from desertic landscape during dust events/dust exposures (DEs) can reach hazardous levels. El Paso, Texas’s ambient air has reached hazardous levels of PM10 from dust with near zero visibility due to these natural events originating in the surrounding Chihuahuan Desert. The aim of this study was to investigate whether dust exposures in El Paso (generally acute, short-term exposures from nearby source areas) are associated with significant increases in hospitalizations on the day of the exposure and up to seven days afterwards. Using a Poisson regression, it was found that the relative risks of hospitalizations due to a variety of conditions were associated with dust exposures (through increases of 100 μg/m3 maximum hourly PM10 and/or increases of 4.5 m/s maximum hourly wind speed) in El Paso County, Texas between 2010 and 2014. Valley fever, coronary atherosclerosis, genitourinary diseases, neurodegenerative diseases, injury and poisoning, circulatory system conditions, respiratory system diseases, births, septicemia, Associated Diseases (the aggregation of hospital admissions for all causes, each associated with at least 5% of hospitalizations), and all ICD-9 admissions were significantly positively associated with dust exposures, indicated from higher to lower significant risk, at different lag periods after exposure. These findings, showing that an association does exist between dust exposures and hospitalizations, have important implications for residents of the world’s dryland cities.
Collapse
|
40
|
Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction. SUSTAINABILITY 2021. [DOI: 10.3390/su132011516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Roadside dust resulting from industrialization of society has an adverse effect on the environment and human health. However, despite the global research progress in this field, to date, no bibliometric report on the subject has been documented. Hence, bibliometric mapping is important to assess the quality and quantity of the global research activities on road dust. Data were retrieved from the Web of Science Core Collection and Scopus, while RStudio software was used for data analysis. A total of 1186 publications were retrieved from these databases, and progressive growth in the subject over the last 10 years was observed, considering the positive correlation (y = 0.0024 × 3 − 0.1454 × 2 + 2.6061 × −8.5371; R2 = 0.961) obtained for these indices. China had the highest publications, and environmental science-related journals dominated publications on road dust. The findings suggest that other regions of the world, such as the Middle East and Africa, need to channel their research efforts toward this field, considering the shortage of publications on the subject from these regions. Therefore, this study shows that assessing research activity on road dust is important for planning impactful research directions and setting protective and adaptive policies related to the field.
Collapse
|
41
|
Characteristics and Extent of Particulate Matter Emissions of a Ropeway Public Mobility System in the City Center of Perugia (Central Italy). ATMOSPHERE 2021. [DOI: 10.3390/atmos12101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Minimetrò (MM) is a ropeway public mobility system that has been in operation in the city of Perugia for about ten years to integrate with urban mobility and lighten vehicular traffic in the historic city center. The purpose of this work was to evaluate the impact of MM as a source of pollutants in the urban context, and the exposure of people in the cabins and the platforms along the MM line. These topics have been investigated by means of intensive measurement and sampling campaigns performed in February and June 2015 on three specific sites of the MM line representative of different sources and levels of urban pollution. Stationary and dynamic measurements of particle size distribution, nanoparticle and black carbon aerosol number and mass concentrations measurements were performed by means of different bench and portable instruments. Aerosol sampling was carried out using low volume and high-volume aerosol samplers, and the samples nalysed by off-line methods. Results show that MM is a considerable source of atmospheric particulate matter having characteristics very similar to those of the common urban road dust in Perugia. In the lack of clear indications on road dust effect, the contribution of MM to the aerosol in Perugia cannot be neglected.
Collapse
|
42
|
Tung NT, Ho KF, Niu X, Sun J, Shen Z, Wu F, Cao J, Dung HB, Thuy TPC, Hsiao TC, Liu WT, Chuang HC. Loss of E-cadherin due to road dust PM 2.5 activates the EGFR in human pharyngeal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53872-53887. [PMID: 34036507 DOI: 10.1007/s11356-021-14469-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Exposure to road dust particulate matter (PM) causes adverse health impacts on the human airway. However, the effects of road dust on the upper airway epithelium in humans remain unclear. We investigated the involvement of the epidermal growth factor receptor (EGFR) after PM with an aerodynamic diameter of < 2.5 μm (PM2.5)-induced E-cadherin disruption of human pharyngeal epithelial cells. First, we collected road dust PM2.5 from 10 Chinese cities, including Wuhan, Nanjing, Shanghai, Guangzhou, Chengdu, Beijing, Lanzhou, Tianjin, Harbin, and Xi'an. Human pharyngeal FaDu cells were exposed to road dust PM2.5 at 50 μg/mL for 24 h, cytotoxicity (cell viability and lactate dehydrogenase (LDH)) was assessed, and expressions of the proinflammatory interleukin (IL)-6 and high-mobility group box 1 (HMGB1) protein, receptor for advanced glycation end products (RAGE), occludin, E-cadherin, EGFR, and phosphorylated (p)-EGFR were determined. The E-cadherin gene was then knocked down to investigate EGFR activation in FaDu cells. Exposure to road dust PM2.5 resulted in a decrease in cell viability and increases in LDH and IL-6. Our data suggested that PM2.5 could decrease expressions of occludin and E-cadherin and increase expressions of EGFR and p-EGFR, which was confirmed by E-cadherin-knockdown. Our results showed a negative association between the alterations in E-cadherin and total elemental components in correlation analysis, especially S, Cl, K, Ti, Mn, Fe, Cu, Zn, and Pb. Exposure to metals in PM2.5 from road dust may lead to loss of the barrier function of the upper airway epithelium and activation of the EGFR. Our study showed the adverse effects of road dust PM2.5 on pharyngeal epithelial cells of the human upper airway.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wu
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Hoang Ba Dung
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Phan Chung Thuy
- Otorhinolaryngology Department, Faculty of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
43
|
Characteristics of Potentially Toxic Elements, Risk Assessments, and Isotopic Compositions (Cu-Zn-Pb) in the PM10 Fraction of Road Dust in Busan, South Korea. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pollution status of ten potentially toxic elements (PTEs), isotopic compositions (Cu, Zn, Pb), and the potential ecological risk posed by them were investigated in the PM10 fraction of road dust in Busan Metropolitan city, South Korea. Enrichment factors revealed extremely to strongly polluted levels of Sb, Cd, Zn, Pb, and Cu in the PM10 fraction of road dust, with Sb levels being the highest. Statistical analyses showed that the major cause for contamination with PTEs was non-exhaust traffic emissions such as tire and brake wear. Cu and Zn isotopic compositions of road dust were related to traffic-related emission sources such as brake and tires. Pb isotopic compositions were close to that of road paint, indicating that Pb was a different source from Cu and Zn in this study. No significant health risk was posed by the PTEs. Taking into account the total length of road in Busan, a high quantity of PTEs in road dust (PM10) can have serious deleterious effects on the atmospheric environment and ecosystems. The results of metal concentrations and isotopic compositions in road dust will help identify and manage atmospheric fine particle and coastal metal contamination derived from fine road dust.
Collapse
|
44
|
Human Health Risk Assessment of Heavy Metals in the Urban Road Dust of Zhengzhou Metropolis, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The goal of this research is to assess hazardous heavy metal levels in PM2.5 fractioned road dust in order to quantify the risk of inhalation and potential health effects. To accomplish this, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to determine concentrations of eight heavy metals (Cr, Cu, Ni, Zn, Cd, As, Pb, and Hg) in the PM2.5 portion of road dust samples from five different land use areas (commercial, residential, industrial, parks, and educational) in Zhengzhou, China. The following were the average heavy metal concentrations in the city: Cr 46.26 mg/kg, Cu 25.13 mg/kg, Ni 12.51 mg/kg, Zn 152.35 mg/kg, Cd 0.56 mg/kg, As 11.53 mg/kg, Pb 52.15 mg/kg, and Hg 0.32 mg/kg. Two pollution indicators, the Pollution Index (PI) and the Geoaccumulation Index (Igeo), were used to determine the degree of contamination. Both PI and Igeo indicated the extreme pollution of Hg and Cd, while PI also ranked Zn in the extreme polluted range. The US Environmental Protection Agency (USEPA) model for adults and children was used to estimate health risks by inhalation. The results identified non-carcinogenic exposure of children to lead (HI > 0.1) in commercial and industrial areas. Both children and adults in Zhengzhou’s commercial, residential, and park areas are exposed to higher levels of copper (Cu), lead (Pb), and zinc (Zn).
Collapse
|
45
|
Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Road dust (RD) resuspension is one of the main sources of particulate matter in cities with adverse impacts on air quality, health, and climate. Studies on the variability of the deposited PM10 fraction of RD (RD10) have been limited in Latin America, whereby our understanding of the central factors that control this pollutant remains incomplete. In this study, forty-one RD10 samples were collected in two Andean cities (Bogotá and Manizales) and analyzed for ions, minerals, and trace elements. RD10 levels varied between 1.8–45.7 mg/m2, with an average of 11.8 mg/m2, in Bogotá and between 0.8–26.7 mg/m2, with an average of 5.7 mg/m2, in Manizales. Minerals were the most abundant species in both cities, with a fraction significantly larger in Manizales (38%) than Bogotá (9%). The difference could be explained mainly by the complex topography and the composition of soil derived from volcanic ash in Manizales. The volcanic activity was also associated with SO4−2 and Cl−. Enrichment factors and principal component analysis were conducted to explore potential factors associated to sources of RD10. Elements such as Cu, Pb, Cr, Ni, V, Sb, and Mo were mainly associated with exhaust and non-exhaust traffic emissions.
Collapse
|
46
|
Youn JS, Kim YM, Siddiqui MZ, Watanabe A, Han S, Jeong S, Jung YW, Jeon KJ. Quantification of tire wear particles in road dust from industrial and residential areas in Seoul, Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147177. [PMID: 33895514 DOI: 10.1016/j.scitotenv.2021.147177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, we examined tire and road wear microparticles (TRWMPs) in road dust along the Seoul metropolitan area, from industrial and residential areas. The road dust samples were collected via vacuum sweep methods and then filtered to obtain particles with diameters less than 75 μm. To quantify the TRWMPs in road dust, we used the raw materials of tire components, natural rubber (NR), and styrene-butadiene rubber (SBR), as standard materials. We evaluated the usability of the pyrolyzer-gas chromatography/mass spectrometry py-GC/MS method introduced in ISO/TS 20593 by confirming the decomposition temperatures of the NR and SBR by thermogravimetric (TG) and evolved gas analysis (EGA)-MS. The average of TRWMPs in industrial and residential area road dust were 22,581 and 9818 μg/g, respectively, indicating that the industrial area has 2.5 times higher TRWMPs concentration. Further, the NR, the main component of truck bus radial, to SBR, the main component of passenger car radial, ratio was slightly higher in the industrial area than in the residential area. This presumably means that the high traffic volume, including heavy duty vehicles in industrial areas, affected the higher concentration of TRWMPs. This study reveals the growing evidence of the importance of TRWMPs in road dust and how TRWMPs quantity can impact the air quality of the Seoul metropolitan area.
Collapse
Affiliation(s)
- Jong-Sang Youn
- Department of Environmental Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Muhammad Zain Siddiqui
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | | | - Sehyun Han
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sangmin Jeong
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Won Jung
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea; Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
47
|
O'Brien S, Okoffo ED, Rauert C, O'Brien JW, Ribeiro F, Burrows SD, Toapanta T, Wang X, Thomas KV. Quantification of selected microplastics in Australian urban road dust. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125811. [PMID: 33892382 DOI: 10.1016/j.jhazmat.2021.125811] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation (< 250 µm, 250-500 µm, 500-1000 µm, 1000-2000 µm and 2000-5000 µm) established that the < 250 µm size fraction contained the majority of microplastics by mass (mg/g). Microplastic concentrations in road dust demonstrated a significant relationship with the volume of vehicles (r2 = 0.63), suggesting traffic, as a proxy for human movement, is associated with increased microplastic concentrations in the built environment.
Collapse
Affiliation(s)
- Stacey O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Elvis Dartey Okoffo
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Francisca Ribeiro
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Stephen D Burrows
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
48
|
Selley L, Lammers A, Le Guennec A, Pirhadi M, Sioutas C, Janssen N, Maitland-van der Zee AH, Mudway I, Cassee F. Alterations to the urinary metabolome following semi-controlled short exposures to ultrafine particles at a major airport. Int J Hyg Environ Health 2021; 237:113803. [PMID: 34517159 PMCID: PMC8504201 DOI: 10.1016/j.ijheh.2021.113803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Inflammation, oxidative stress and reduced cardiopulmonary function following exposure to ultrafine particles (UFP) from airports has been reported but the biological pathways underlying these toxicological endpoints remain to be explored. Urinary metabolomics offers a robust method by which changes in cellular pathway activity can be characterised following environmental exposures. OBJECTIVE We assessed the impact of short-term exposures to UFP from different sources at a major airport on the human urinary metabolome. METHODS 21 healthy, non-smoking volunteers (aged 19-27 years) were repeatedly (2-5 visits) exposed for 5h to ambient air at Amsterdam Airport Schiphol, while performing intermittent, moderate exercise. Pre- to-post exposure changes in urinary metabolite concentrations were assessed via 1H NMR spectroscopy and related to total and source-specific particle number concentrations (PNC) using linear mixed effects models. RESULTS Total PNC at the exposure site was on average, 53,500 particles/cm3 (range 10,500-173,200) and associated with significant reductions in urinary taurine (-0.262 AU, 95% CI: -0.507 to -0.020) and dimethylamine concentrations (-0.021 AU, 95% CI: -0.040 to -0.067). Aviation UFP exposure accounted for these changes, with the reductions in taurine and dimethylamine associating with UFP produced during both aircraft landing and take-off. Significant reductions in pyroglutamate concentration were also associated with aviation UFP specifically, (-0.005 AU, 95% CI: -0.010 - <0.000) again, with contributions from both landing and take-off UFP exposure. While non-aviation UFPs induced small changes to the urinary metabolome, their effects did not significantly impact the overall response to airport UFP exposure. DISCUSSION Following short-term exposures at a major airport, aviation-related UFP caused the greatest changes to the urinary metabolome. These were consistent with a heightened antioxidant response and altered nitric oxide synthesis. Although some of these responses could be adaptive, they appeared after short-term exposures in healthy adults. Further study is required to determine whether long-term exposures induce injurious effects.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom.
| | - Ariana Lammers
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Adrien Le Guennec
- Randall Centre of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anke H Maitland-van der Zee
- Amsterdam UMC, University of Amsterdam, Department of Respiratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ian Mudway
- Environmental Research Group, Faculty of Medicine, School of Publuc Health, Imperial College London, London, United Kingdom; National Institute of Health Research, Health Protection Research Unit in Environmental and Health, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Shirkhanloo H, Faghihi-Zarandi A, Mobarake MD. Thiol modified bimodal mesoporous silica nanoparticles for removal and determination toxic vanadium from air and human biological samples in petrochemical workers. NANOIMPACT 2021; 23:100339. [PMID: 35559840 DOI: 10.1016/j.impact.2021.100339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/15/2023]
Abstract
Investigation of exposure to toxic vanadium (V) in petrochemical workers is very important for human health, and it must be removed and determined in workplace air and human biological samples. In this research, the enriched adsorbent based on the thiol modified bimodal mesoporous silica nanoparticle (HS-UVM7) was used for the extraction vanadium in human blood by the dispersive sonication ionic liquid micro solid phase extraction (DS-IL-μ-SPE) at pH of 4.5. In addition, the vanadium (V) was removed from the industrial workplace air based on HS-UVM7 adsorbent by the liquid-solid phase-gas removal (LSP-GR). In the static and dynamic system, the vanadium (V) was removed from artificial air with HS-UVM7 and compared with the polyvinyl chloride membrane (PCM, sorbent in 7300 NIOSH). The LSP-GR procedure based on HS-UVM7 had more recovery and adsorption capacity as compared to PCM. The adsorption capacity of HS-UVM7 and UVM7 adsorbents were obtained 144.1 mg g-1 and 23.3 mg g-1, respectively. In addition, the main parameters effected on extraction vanadium in blood samples and removal from air were studied and optimized by ET-AAS. The LOD, RSD%, linear range (LR) and enrichment factor (EF) was achieved 0.03 μg L-1, 3.1, 0.1-4.5 μg L-1 and 48.7, respectively for extraction of vanadium in 10 mL of blood samples by the DS-IL-MSPE procedure. The validation of the methodology was confirmed by standard addition to gas phase and using certified reference materials (CRM, NIST) or ICP-MS in human blood samples.
Collapse
Affiliation(s)
- Hamid Shirkhanloo
- Research Institute of Petroleum Industry, West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran.
| | - Ali Faghihi-Zarandi
- Modeling in Health Research Center, Institute for Futures Studies in Health, Occupational Health Engineering Department, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
50
|
Vlasov D, Kosheleva N, Kasimov N. Spatial distribution and sources of potentially toxic elements in road dust and its PM 10 fraction of Moscow megacity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143267. [PMID: 33176932 DOI: 10.1016/j.scitotenv.2020.143267] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 05/22/2023]
Abstract
For the first time, the contents of potentially toxic elements (PTEs) in road dust and in its PM10 fraction were studied in Moscow from June 09 to July 30, 2017 on roads with different traffic intensities, inside courtyards with parking lots, and on pedestrian walkways in parks. The contents of PTEs in road dust and PM10 fraction were analyzed by ICP-MS and ICP-AES. The main pollutants of road dust and its PM10 fraction included Sb, Zn, W, Sn, Bi, Cd, Cu, Pb, and Mo. PM10 was a major carrier of W, Bi, Sb, Zn, Sn (accounts for >65% of their total contents in road dust); Cu (>50%); and Cd, Pb, Mo, Co, Ni (30-50%). PM10 fraction was 1.2-6.4 times more polluted with PTEs than bulk samples. Resuspension of roadside soil particles accounted for 34% of the mass of PTEs in road dust and for 64% in the PM10 fraction. Other important sources of PTEs were non-exhaust vehicles emissions (~ 20% for dust and ~14% for PM10) and industrial emissions (~20% and ~6%). The road dust and PM10 particles were most contaminated in the central part of the city due to the large number of cars and traffic congestions. Local anomalies of individual PTEs were observed near industrial zones mainly in the west, south, and southeast of Moscow. In the yards of residential buildings the total enrichment of road dust and PM10 with PTEs was only 1.1-1.5 times lower than that on major roads which poses a serious danger to the population spending a significant part of their lives in residential areas. The spatial pattern of the PTEs distribution in road dust and its PM10 fraction should assist in more efficient planning of washing and mechanical cleaning of the road surface from dust to minimize the risk to public health.
Collapse
Affiliation(s)
- Dmitry Vlasov
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Natalia Kosheleva
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolay Kasimov
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|