1
|
Mirata S, Almonti V, Passalacqua M, Vernazza S, Bassi AM, Di Giuseppe D, Gualtieri AF, Scarfì S. Toxicity of size separated chrysotile fibres: The relevance of the macrophage-endothelial axis crosstalk. Toxicology 2024; 511:154032. [PMID: 39674395 DOI: 10.1016/j.tox.2024.154032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Asbestos minerals have been widely exploited due to their physical-chemical properties, and chrysotile asbestos has accounted for about 95% of all asbestos commercially employed worldwide. The exposure to chrysotile, classified like other five amphibole asbestos species as carcinogenic to humans, represents a serious occupational and environmental hazard. Nevertheless, this mineral is still largely employed in about 65% of the countries worldwide, which still allow its "safe use". The complex mechanisms through which the mineral fibres induce toxicity are not yet completely understood. In this regard, the morphometric parameters of asbestos fibres (e.g., length, width, aspect ratio) are known for their fundamental role in determining the degree of pathogenicity. In this context, the potential toxicity of short chrysotile fibres remains widely debated due to the contradictory results from countless studies. Thus, the present study investigated the different toxicity mechanisms of two representative batches of short (length ≤5 µm) and long (length >5 µm) chrysotile fibres obtained by cryogenic milling. The fibre doses were based upon equal mass and size, since due to chrysotile ability to form bundles, it was not possible to calculate the number of fibers applied per cell. The cytotoxic, genotoxic, and pro-inflammatory potential of the two size-separated chrysotile fractions was investigated on human THP-1-derived macrophages and HECV endothelial cells, both separately and in a co-culture setup, mimicking the alveolar pro-inflammatory microenvironment, in time course experiments up to 1 week. Both chrysotile fractions displayed cytotoxic, genotoxic, and pro-inflammatory effects, with results comparable to the well-known damaging effects of crocidolite asbestos, or higher, as in the case of the longer chrysotile fraction. Furthermore, in presence of HECV, fibre-treated macrophages showed prolonged inflammation, indicating an interesting crosstalk between these cells able to sustain a low-grade chronic inflammation in the lung. In conclusion, these results help to shed light on some important open questions on the mechanisms of toxicity of chrysotile asbestos fibres.
Collapse
Affiliation(s)
- Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, Genova 16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy
| | - Vanessa Almonti
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Mario Passalacqua
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy.
| | - Stefania Vernazza
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Anna Maria Bassi
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy; Department Experimental Medicine, University of Genova, Genova 16132, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Sonia Scarfì
- Department Earth, Environment and Life Sciences, University of Genova, Genova 16132, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa 56122, Italy
| |
Collapse
|
2
|
Seetharaman ATM, Owens CE, Gangaraju R. Cysteinyl Leukotriene Receptor Antagonism by Montelukast to Treat Visual Deficits. J Ocul Pharmacol Ther 2024; 40:617-628. [PMID: 39358316 DOI: 10.1089/jop.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Montelukast, a Food and Drug Administration-approved drug for asthma and allergic rhinitis modulates leukotriene (LT) receptors and serves as a critical anti-inflammatory agent. Recent research suggests that the LT signaling pathway targeted by montelukast has broader implications for diseases such as fibrosis, cardiovascular diseases, cancer, cerebrovascular disease, and immune defense. This expanded understanding highlights montelukast's potential for repurposing in conditions involving aberrant stress mechanisms, including ocular diseases marked by inflammation, oxidative stress, ER stress, and apoptosis, among several others. This review delves into montelukast's therapeutic mechanisms across various diseases, draws parallels to ocular conditions, and examines clinical trials and associated adverse effects to underscore the unmet need for cysteinyl LT receptor antagonism by montelukast as an effective therapy for visual deficits.
Collapse
Affiliation(s)
- Amritha T M Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Caroline E Owens
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Tirpakova Z, Demcisakova Z, Luptakova L, Hurnikova J, Coma M, Urban L, Gal P, Medvecky L, Petrovova E. Novel approach for biomaterial assessment: utilizing the Ex Ovo quail cam assay for biocompatibility pre-screening. Vet Res Commun 2024; 49:24. [PMID: 39570443 PMCID: PMC11582168 DOI: 10.1007/s11259-024-10574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
In recent years, the chorioallantoic membrane (CAM) has emerged as a crucial component of biocompatibility testing for biomaterials designed for regenerative strategies and tissue engineering applications. This study explores angiogenic potential of an innovative acellular and porous biopolymer scaffold, based on polyhydroxybutyrate and chitosan (PHB/CHIT), using the ex ovo quail CAM assay as an alternative to the conventional chick CAM test. On embryonic day 6 (ED6), we placed the tested biomaterials on the CAM alone or soaked them with various substances, including vascular endothelial growth factor (VEGF-A), saline, or the endogenous angiogenesis inhibitor Angiostatin. After 72 h (ED9), we analyzed blood vessels formation, a sign of ongoing angiogenesis, in the vicinity of the scaffold and within its pores. We employed marker for cell proliferation (PHH3), embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and endothelial cells (QH1) for morphological and histochemical analysis. Our findings demonstrated the robust angiogenic potential of the untreated scaffold without additional influence from the angiogenic factor VEGF-A. Furthermore, gene expression analysis revealed an upregulation of pro-angiogenic growth factors, including VEGF-A, ANG-2, and VE-Cadherin after 5 days of implantation, indicative of a pro-angiogenic microenvironment. These results underscore the inherent angiogenic potential of the PHB/CHIT composite. Additionally, monitoring of CAM microvilli growing to the scaffold provides a methodology for investigating the biocompatibility of materials using the ex ovo quail CAM assay as a suitable alternative model compared to the chicken CAM platform. This approach offers a rapid screening method for biomaterials in the field of tissue repair/regeneration and engineering.
Collapse
Affiliation(s)
- Zuzana Tirpakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Julia Hurnikova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Matus Coma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Kosice, Slovakia
| | - Lukas Urban
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Kosice, Slovakia
| | - Peter Gal
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Kosice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Prague, Prague, Czech Republic
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubomir Medvecky
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
- Institute of Materials Research, The Slovak Academy of Sciences, Kosice, Slovakia
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia.
- University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 041 81, Slovakia.
| |
Collapse
|
4
|
Ortiz R, Ramos-Méndez J. Tumor growth and vascular redistribution contributes to the dosimetric preferential effect of microbeam radiotherapy: a Monte Carlo study. Sci Rep 2024; 14:26585. [PMID: 39496724 PMCID: PMC11535247 DOI: 10.1038/s41598-024-77415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
The radiobiological mechanisms behind the favorable response of tissues to microbeam radiation therapy (MRT) are not fully described yet. Among other factors, the differential action to tumor and normal tissue vasculature is considered to contribute to MRT efficacy. This computational study evaluates the relevance of tumor growth stage and associated vascular redistribution to this effect. A multiscale approach was employed with two simulation softwares: TOPAS and CompuCell3D. Segmentation images of the angioarchitecture of a non-bearing tumor mouse brain were used. The tumor vasculature at different tumor growth stages was obtained by simulating the tumor proliferation and spatial vascular redistribution. The radiation-induced damage to vascular cells and consequent change in oxygen perfusion were simulated for normal and tumor tissues. The multiscale model showed that oxygen perfusion to tissues and vessels decreased as a function of the tumor proliferation stage, and with the decrease in uniformity of the vasculature spatial distribution in the tumor tissue. This led to an increase in the fraction of hypoxic (up to 60%) and necrotic (10%) tumor cells at advanced tumor stages, whereas normal tissues remained normoxic. These results showed that tumor stage and spatial vascular distribution contribute to the preferential effect of MRT in tumors.
Collapse
Affiliation(s)
- Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA, 94143, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Daniele A, Lucas SJE, Rendeiro C. Variability of flow-mediated dilation across lower and upper limb conduit arteries. Eur J Appl Physiol 2024; 124:3265-3278. [PMID: 38878074 PMCID: PMC11519148 DOI: 10.1007/s00421-024-05517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/23/2024] [Indexed: 10/30/2024]
Abstract
Endothelial dysfunction is an early predictor of atherosclerosis and cardiovascular disease. Flow-mediated dilation (FMD) is the gold standard to assess endothelial function in humans. FMD reproducibility has been mainly assessed in the brachial artery (BA) with limited research in lower limb arteries. The purpose of this study was to compare FMD reproducibility in the upper limb BA and lower limb superficial femoral artery (SFA) in young healthy adults.Fifteen young healthy adults (nine males; six females) underwent FMD, resting diameter, velocity, and shear rate measurements on three occasions to determine intra-and inter-day reproducibility in both BA and SFA, assessed by coefficient of variation (CV), intraclass correlation coefficient (ICC), and Bland-Altman plots.BA FMD CVs (intra-day: 4.2%; inter-day: 8.7%) and ICCs (intra-day: 0.967; inter-day: 0.903) indicated excellent reproducibility and reliability, while for SFA FMD, both CVs (intra-day: 11.6%; inter-day: 26.7%) and ICCs (intra-day: 0.898; inter-day: 0.651) showed good/moderate reproducibility and reliability. BA FMD was significantly more reproducible than SFA FMD (p < 0.05). Diameter reproducibility was excellent and similar between arteries, while resting velocity and shear rate have lower reproducibility in the BA compared to SFA. Bland-Altman plots displayed no proportional and fixed bias between measurements.In summary, SFA FMD is less reproducible than BA FMD, with identical volume of ultrasound training. Given the increasing interest in using SFA FMD to test the efficacy of interventions targeting lower limb's vascular health and as a potential biomarker for peripheral arterial disease risk, future studies should ensure higher levels of training for adequate reproducibility.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual Dimorphism in Impairment of Acetylcholine-Mediated Vasorelaxation in Zucker Diabetic Fatty (ZDF) Rat Aorta: A Monogenic Model of Obesity-Induced Type 2 Diabetes. Int J Mol Sci 2024; 25:11328. [PMID: 39457110 PMCID: PMC11508232 DOI: 10.3390/ijms252011328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Several reports, including our previous studies, indicate that hyperglycemia and diabetes mellitus exert differential effects on vascular function in males and females. This study examines sex differences in the vascular effects of type 2 diabetes (T2D) in an established monogenic model of obesity-induced T2D, Zucker Diabetic Fatty (ZDF) rats. Acetylcholine (ACh) responses were assessed in phenylephrine pre-contracted rings before and after apocynin, a NADPH oxidase (NOX) inhibitor. The mRNA expressions of aortic endothelial NOS (eNOS), and key NOX isoforms were also measured. We demonstrated the following: (1) diabetes had contrasting effects on aortic vasorelaxation in ZDF rats, impairing relaxation to ACh in females while enhancing it in male ZDF rats; (2) inhibition of NOX, a major source of superoxide in vasculature, restored aortic vasorelaxation in female ZDF rats; and (3) eNOS and NOX4 mRNA expressions were elevated in female (but not male) ZDF rat aortas compared to their respective leans. This study highlights sexual dimorphism in ACh-mediated vasorelaxation in the aorta of ZDF rats, suggesting that superoxide may play a role in the impaired vasorelaxation observed in female ZDF rats.
Collapse
Affiliation(s)
- Rifat Ara Islam
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, Stockton, CA 94115, USA;
| | - Sonali Shaligram
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA;
| | - John N. Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA;
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.A.I.); (S.S.)
| |
Collapse
|
7
|
Passier M, Bentley K, Loerakker S, Ristori T. YAP/TAZ drives Notch and angiogenesis mechanoregulation in silico. NPJ Syst Biol Appl 2024; 10:116. [PMID: 39368976 PMCID: PMC11455968 DOI: 10.1038/s41540-024-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Endothelial cells are key players in the cardiovascular system. Among other things, they are responsible for sprouting angiogenesis, the process of new blood vessel formation essential for both health and disease. Endothelial cells are strongly regulated by the juxtacrine signaling pathway Notch. Recent studies have shown that both Notch and angiogenesis are influenced by extracellular matrix stiffness; however, the underlying mechanisms are poorly understood. Here, we addressed this challenge by combining computational models of Notch signaling and YAP/TAZ, stiffness- and cytoskeleton-regulated mechanotransducers whose activity inhibits both Dll4 (Notch ligand) and LFng (Notch-Dll4 binding modulator). Our simulations successfully mimicked previous experiments, indicating that this YAP/TAZ-Notch crosstalk elucidates the Notch and angiogenesis mechanoresponse to stiffness. Additional simulations also identified possible strategies to control Notch activity and sprouting angiogenesis via cytoskeletal manipulations or spatial patterns of alternating stiffnesses. Our study thus inspires new experimental avenues and provides a promising modeling framework for further investigations into the role of Notch, YAP/TAZ, and mechanics in determining endothelial cell behavior during angiogenesis and similar processes.
Collapse
Affiliation(s)
- Margot Passier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Katie Bentley
- The Francis Crick Institute, London, UK
- Department of Informatics, King's College London, London, UK
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
8
|
Tew WY, Tan CS, Yan CS, Loh HW, Wang X, Wen X, Wei X, Yam MF. Mechanistic study on vasodilatory and antihypertensive effects of hesperetin: ex vivo and in vivo approaches. Hypertens Res 2024; 47:2416-2434. [PMID: 38914702 DOI: 10.1038/s41440-024-01652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 06/26/2024]
Abstract
Hesperetin is one of the prominent flavonoids found in citrus fruit. Several research studies have reported that hesperetin can promote vasodilation in vascular tissue by increasing the level of nitric oxide and cyclic nucleotides. However, these may not be the only pathway for hesperetin to exert its vasodilatory effect. In addition to vasodilation, hesperetin has been found to carry an antihypertensive effect through intraperitoneal injection, although no study has comprehensively investigated the antihypertensive effect of hesperetin through oral administration. Therefore, this study aimed to determine the possible mechanism pathways involved in hesperetin-induced vasodilation and investigated its antihypertensive effects on hypertensive rats' model via oral administration. The ex vivo experimental findings showed that the NO/sGC/cGMP signalling pathway was involved in hesperetin-mediated vasodilation. Moreover, hesperetin activated the AC/cAMP/PKA pathway through PGI2 and activated the β2-adrenergic receptor. Hesperetin can act as a voltage-gated potassium channel (KV) and ATP-sensitive potassium channel (KATP) opener. The intracellular calcium in vascular smooth muscle was reduced by hesperetin through blocking the voltage-operated calcium channels (VOCC) and inositol triphosphate receptor (IP3R). In the in vivo assessment, hesperetin shows a significant decrease in Spontaneously Hypertensive rats' blood pressure following 21 days of oral treatment. The sub-chronic toxicity assessment demonstrated that hesperetin exhibited no deleterious effects on the body weights, clinical biochemistry and haematological profile of Sprague-Dawley rats. This study implies that hesperetin holds promise as a potential medication for hypertension treatment, devoid of undesirable side effects.
Collapse
Affiliation(s)
- Wan Yin Tew
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Chu Shan Tan
- Material Characterization and Inorganic Spectroscopy, Perkin Elmer Sdn. Bhd., #2.01. Level 2, Wisma Academy, Lot 4A, Jalan 19/1, 46300, Petaling Jaya, Selangor, Malaysia
| | - Chong Seng Yan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Hui Wei Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Xuye Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Xu Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Xu Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China.
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China.
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
9
|
Jucaud V. Allogeneic HLA Humoral Immunogenicity and the Prediction of Donor-Specific HLA Antibody Development. Antibodies (Basel) 2024; 13:61. [PMID: 39189232 PMCID: PMC11348167 DOI: 10.3390/antib13030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
The development of de novo donor-specific HLA antibodies (dnDSAs) following solid organ transplantation is considered a major risk factor for poor long-term allograft outcomes. The prediction of dnDSA development is a boon to transplant recipients, yet the assessment of allo-HLA immunogenicity remains imprecise. Despite the recent technological advances, a comprehensive evaluation of allo-HLA immunogenicity, which includes both B and T cell allorecognition, is still warranted. Recent studies have proposed using mismatched HLA epitopes (antibody and T cell) as a prognostic biomarker for humoral alloimmunity. However, the identification of immunogenic HLA mismatches has not progressed despite significant improvements in the identification of permissible mismatches. Certainly, the prediction of dnDSA development may benefit permissible HLA mismatched organ transplantations, personalized immunosuppression, and clinical trial design. However, characteristics that go beyond the listing of mismatched HLA antibody epitopes and T cell epitopes, such as the generation of HLA T cell epitope repertoires, recipient's HLA class II phenotype, and immunosuppressive regiments, are required for the precise assessment of allo-HLA immunogenicity.
Collapse
Affiliation(s)
- Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 91367, USA
| |
Collapse
|
10
|
Duranova H, Kuzelova L, Borotova P, Simora V, Fialkova V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:419-439. [PMID: 38817111 DOI: 10.1093/mam/ozae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Human umbilical vein endothelial cells (HUVECs) are primary cells isolated from the vein of an umbilical cord, extensively used in cardiovascular studies and medical research. These cells, retaining the characteristics of endothelial cells in vivo, serve as a valuable cellular model system for understanding vascular biology, endothelial dysfunction, pathophysiology of diseases such as atherosclerosis, and responses to different drugs or treatments. Transmission electron microscopy (TEM) has been a cornerstone in revealing the detailed architecture of multiple cellular model systems including HUVECs, allowing researchers to visualize subcellular organelles, membrane structures, and cytoskeletal elements. Among them, the endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus can be meticulously examined to recognize alterations indicative of cellular responses to various stimuli. Importantly, Weibel-Palade bodies are characteristic secretory organelles found in HUVECs, which can be easily distinguished in the TEM. These distinctive structures also dynamically react to different factors through regulated exocytosis, resulting in complete or selective release of their contents. This detailed review summarizes the ultrastructural features of HUVECs and highlights the utility of TEM as a pivotal tool for analyzing HUVECs in diverse research frameworks, contributing valuable insights into the comprehension of HUVEC behavior and enriching our knowledge into the complexity of vascular biology.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lenka Kuzelova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Petra Borotova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
11
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
12
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
13
|
Ermolinskiy PB, Maksimov MK, Muravyov AV, Lugovtsov AE, Scheglovitova ON, Priezzhev AV. Forces of interaction of red blood cells and endothelial cells at different concentrations of fibrinogen: Measurements with laser tweezers in vitro. Clin Hemorheol Microcirc 2024; 86:303-312. [PMID: 37927250 DOI: 10.3233/ch-231941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Blood microrheology depends on the constituents of blood plasma, the interaction between blood cells resulting in red blood cell (RBC) and platelets aggregation, and adhesion of RBC, platelets and leukocytes to vascular endothelium. The main plasma protein molecule -actuator of RBC aggregation is fibrinogen. In this paper the effect of interaction between the endothelium and RBC at different fibrinogen concentrations on the RBC microrheological properties was investigated in vitro. Laser tweezers were used to measure the RBC-endothelium interaction forces. It was shown for the first time that the interaction forces between RBC and endothelium are comparable with the RBC aggregation forces, they increase with fibrinogen concentration and reach the saturation level of about 4 pN at the concentration of 4 mg/ml. These results are important for better understanding the mechanisms of RBC and endothelium interaction and developing the novel therapeutic protocols of the microrheology correction in different pathologies.
Collapse
Affiliation(s)
- Petr B Ermolinskiy
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Matvey K Maksimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Muravyov
- K.D. Ushinsky Yaroslavl State Pedagogical University, Yaroslavl, Russia
| | - Andrei E Lugovtsov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N Scheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | | |
Collapse
|
14
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
15
|
Gualtero DF, Lafaurie GI, Buitrago DM, Castillo Y, Vargas-Sanchez PK, Castillo DM. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med 2023; 10:1250263. [PMID: 37711554 PMCID: PMC10498784 DOI: 10.3389/fcvm.2023.1250263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The dysbiosis of the oral microbiome and vascular translocation of the periodontopathic microorganism to peripheral blood can cause local and systemic extra-oral inflammation. Microorganisms associated with the subgingival biofilm are readily translocated to the peripheral circulation, generating bacteremia and endotoxemia, increasing the inflammation in the vascular endothelium and resulting in endothelial dysfunction. This review aimed to demonstrate how the dysbiosis of the oral microbiome and the translocation of oral pathogen-induced inflammation to peripheral blood may be linked to cardiovascular diseases (CVDs). The dysbiosis of the oral microbiome can regulate blood pressure and activate endothelial dysfunction. Similarly, the passage of periodontal microorganisms into the peripheral circulation and their virulence factors have been associated with a vascular compartment with a great capacity to activate endothelial cells, monocytes, macrophages, and plaquettes and increase interleukin and chemokine secretion, as well as oxidative stress. This inflammatory process is related to atherosclerosis, hypertension, thrombosis, and stroke. Therefore, oral diseases could be involved in CVDs via inflammation. The preclinic and clinical evidence suggests that periodontal disease increases the proinflammatory markers associated with endothelial dysfunction. Likewise, the evidence from clinical studies of periodontal treatment in the long term evidenced the reduction of these markers and improved overall health in patients with CVDs.
Collapse
|
16
|
Ariyasinghe NR, de Souza Santos R, Gross A, Aghamaleky-Sarvestany A, Kreimer S, Escopete S, Parker SJ, Sareen D. Proteomics of novel induced pluripotent stem cell-derived vascular endothelial cells reveal extensive similarity with an immortalized human endothelial cell line. Physiol Genomics 2023; 55:324-337. [PMID: 37306406 PMCID: PMC10396221 DOI: 10.1152/physiolgenomics.00166.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
The vascular endothelium constitutes the inner lining of the blood vessel, and malfunction and injuries of the endothelium can cause cardiovascular diseases as well as other diseases including stroke, tumor growth, and chronic kidney failure. Generation of effective sources to replace injured endothelial cells (ECs) could have significant clinical impact, and somatic cell sources like peripheral or cord blood cannot credibly supply enough endothelial cell progenitors for multitude of treatments. Pluripotent stem cells are a promising source for a reliable EC supply, which have the potential to restore tissue function and treat vascular diseases. We have developed methods to differentiate induced pluripotent stem cells (iPSCs) efficiently and robustly across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) with high purity. These iECs present with canonical endothelial cell markers and exhibit measures of endothelial cell functionality with the uptake of Dil fluorescent dye-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and tube formation. Using proteomic analysis, we revealed that the iECs are more proteomically similar to established human umbilical vein ECs (HUVECs) than to iPSCs. Posttranslational modifications (PTMs) were most shared between HUVECs and iECs, and potential targets for increasing the proteomic similarity of iECs to HUVECs were identified. Here we demonstrate an efficient robust method to differentiate iPSCs into functional ECs, and for the first time provide a comprehensive protein expression profile of iECs, which indicates their similarities with a widely used immortalized HUVECs, allowing for further mechanistic studies of EC development, signaling, and metabolism for future regenerative applications.NEW & NOTEWORTHY We have developed methods to differentiate induced pluripotent stem cells (iPSCs) across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) and demonstrated the proteomic similarity of these cells to a widely used endothelial cell line (HUVECs). We also identified posttranslational modifications and targets for increasing the proteomic similarity of iECs to HUVECs. In the future, iECs can be used to study EC development, signaling, and metabolism for future regenerative applications.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Roberta de Souza Santos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Andrew Gross
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Simion Kreimer
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sean Escopete
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sarah J Parker
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- iPSC Core, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
17
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
An T, Zhang X, Gao X, Zhang X, Shen T, Li H, Dou L, Huang X, Man Y, Li G, Tang W, Li J. Phosphoenolpyruvate induces endothelial dysfunction and cell senescence through stimulation of metabolic reprogramming. J Bioenerg Biomembr 2023; 55:103-114. [PMID: 37046136 DOI: 10.1007/s10863-023-09965-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Endothelial dysfunction is a key early link in the pathogenesis of atherosclerosis, and the accumulation of senescent vascular endothelial cells causes endothelial dysfunction. Phosphoenolpyruvate (PEP), which is a high-energy glycolytic intermediate, protects against ischemia-reperfusion injury in isolated rat lung, heart, and liver tissue by quickly providing ATP. However, it was reported that serum PEP concentrations are 13-fold higher in healthy elderly compare to the young. Unlike that of other cell types, the energy required for the physiological function of endothelial cells is mainly derived from glycolysis. Recently, it is unclear whether circulating accumulation of PEP affects endothelial cell function. In this study, we found for the first time that 50-250 μM of PEP significantly promoted THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs) through increased expression of vascular endothelial adhesion factor 1 (VCAM1) and intercellular adhesion factor 1 (ICAM1) in HUVECs. Meanwhile, 50-250 μM of PEP decreased the expression of endothelial nitric oxide synthase (eNOS) and cellular level of nitric oxide (NO) in HUVECs. Moreover, PEP increased levels of ROS, enhanced the numbers of SA-β-Gal-positive cells and upregulated the expression of cell cycle inhibitors such as p21, p16 and the phosphorylation level of p53 on Ser15, and the expression of proinflammatory factors including TNF-α, IL-1β, IL-6, IL-8, IL-18 and MCP-1 in HUVECs. Furthermore, PEP increased both oxygen consumption rate (OCR) and glycolysis rate, and was accompanied by reduced NAD+/NADH ratios and enhanced phosphorylation levels of AMPKα (Thr172), p38 MAPK (T180/Y182) and NF-κB p65 (Ser536) in HUVECs. Notably, PEP had no significant effect on hepG2 cells. In conclusion, these results demonstrated that PEP induced dysfunction and senescence in vascular endothelial cells through stimulation of metabolic reprogramming.
Collapse
Affiliation(s)
- Tong An
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Xiaoyi Zhang
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Xin Gao
- Clinical Trial Center, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Hongxia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| | - Jian Li
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
19
|
Nappi F, Avtaar Singh SS. Distinctive Signs of Disease as Deterrents for the Endothelial Function: A Systematic Review. Metabolites 2023; 13:metabo13030430. [PMID: 36984870 PMCID: PMC10057506 DOI: 10.3390/metabo13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Endothelial integrity plays a major role in homeostasis and is responsive to the numerous endogenous factors released. While its functional role in vascular tone is well described, its role in the pathophysiology of cardiovascular disease is of interest as a potential therapeutic target. We performed a systematic review to provide an overview of new therapeutic and diagnostic targets for the treatment of coronary artery disease related to endothelial dysfunction. Databases of PubMed, Ovid’s version of MEDLINE, and EMBASE were interrogated with appropriate search terms. Inclusion criteria have been met by 28 studies that were included in the final systematic review. We identified inflammation, pulmonary hypertension, diabetes mellitus and Fabry disease as pathophysiological mechanisms and explored the therapeutic options related to these conditions including medications such as Canakinumab. Endothelial dysfunction has a key role in several different pathophysiological processes which can be targeted for therapeutic options. Ongoing research should be targeted at making the transition to clinical practice. Further research is also needed on understanding the amelioration of endothelial dysfunction with the use of cardiovascular medications.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
- Correspondence: ; Tel.: +33-149334104; Fax: +33-149334119
| | | |
Collapse
|
20
|
Grala M, Kołodziejczyk AM, Białkowska K, Walkowiak B, Komorowski P. Assessment of the influence of gold nanoparticles stabilized with PAMAM dendrimers on HUVEC barrier cells. Micron 2023; 168:103430. [PMID: 36905752 DOI: 10.1016/j.micron.2023.103430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Civilization diseases, cancer, frequent mutations of viruses and other pathogens constitute the need to look for new drugs, as well as systems for their targeted delivery. One of the promising way of using drugs is supplying them by linking to nanostructures. One of the solution for the development of nanobiomedicine are metallic nanoparticles stabilized with various polymer structures. In this report, we present the synthesis of gold nanoparticles, their stabilization with polyamidoamine (PAMAM) dendrimers with ethylenediamine core and the characteristics of the obtained product (AuNPs/PAMAM). The presence, size and morphology of synthesized gold nanoparticles were evaluated by ultraviolet-visible light spectroscopy, transmission electron microscopy and atomic force microscopy. The hydrodynamic radius distribution of the colloids was analyzed by dynamic light scattering technique. Additionally, the cytotoxicity and changes in mechanical properties of human umbilical vein endothelial cell line (HUVEC) cells caused by AuNPs/PAMAM were assessed. The results of studies on the nanomechanical properties of cells suggest a two-step changes in cell elasticity as a response to contact with nanoparticles. When using AuNPs/PAMAM in lower concentrations, no changes in cell viability were observed and the cells were softer than untreated cells. When higher concentrations were used, a decrease in the cells viability to about 80 % were observed, as well as non-physiological stiffening of the cells. The presented results may play a significant role in the development of nanomedicine.
Collapse
Affiliation(s)
- Magdalena Grala
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| | - Agnieszka M Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland.
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| | - Bogdan Walkowiak
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd, Lodz, Poland; Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd, Lodz, Poland
| |
Collapse
|
21
|
Yu WL, Park JY, Park HJ, Kim SN. Changes of local microenvironment and systemic immunity after acupuncture stimulation during inflammation: A literature review of animal studies. Front Neurol 2023; 13:1086195. [PMID: 36712435 PMCID: PMC9875056 DOI: 10.3389/fneur.2022.1086195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
An increasing number of studies have demonstrated the underlying mechanisms by which acupuncture therapy mediates both local and systemic immunomodulation. However, the connection between alterations in the local microenvironment and the resulting change in systemic immunity remains unclear. In this review, we focus on cell-specific changes in local immune responses following acupuncture stimulation and their link to systemic immune modulation. We have gathered the most recent evidence for chemo- and mechano-reactive changes in endothelial cells, neutrophils, macrophages, and mast cells in response to acupuncture. Local signaling is then related to the activation of systemic neuro-immunity including the cholinergic, adrenal, and splenic nervous systems and pain-related neuromodulation. This review aims to serve as a reference for further research in this field.
Collapse
Affiliation(s)
- Wei-Lien Yu
- College of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang-si, Republic of Korea,*Correspondence: Seung-Nam Kim ✉
| |
Collapse
|
22
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Poly(2-Methoxyethyl Acrylate) (PMEA)-Coated Anti-Platelet Adhesive Surfaces to Mimic Native Blood Vessels through HUVECs Attachment, Migration, and Monolayer Formation. COATINGS 2022. [DOI: 10.3390/coatings12060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Confluent monolayers of human umbilical vein endothelial cells (HUVECs) on a poly(2-methoxyethyl acrylate) (PMEA) antithrombogenic surface play a major role in mimicking the inner surface of native blood vessels. In this study, we extensively investigated the behavior of cell–polymer and cell–cell interactions by measuring adhesion strength using single-cell force spectroscopy. In addition, the attachment and migration of HUVECs on PMEA-analogous substrates were detected, and the migration rate was estimated. Moreover, the bilateral migration of HUVECs between two adjacent surfaces was observed. Furthermore, the outer surface of HUVEC was examined using frequency-modulation atomic force microscopy (FM-AFM). Hydration was found to be an indication of a healthy glycocalyx layer. The results were compared with the hydration states of individual PMEA-analogous polymers to understand the adhesion mechanism between the cells and substrates in the interface region. HUVECs could attach and spread on the PMEA surface with stronger adhesion strength than self-adhesion strength, and migration occurred over the surface of analogue polymers. We confirmed that platelets could not adhere to HUVEC monolayers cultured on the PMEA surface. FM-AFM images revealed a hydration layer on the HUVEC surfaces, indicating the presence of components of the glycocalyx layer in the presence of intermediate water. Our findings show that PMEA can mimic original blood vessels through an antithrombogenic HUVEC monolayer and is thus suitable for the construction of artificial small-diameter blood vessels.
Collapse
|
24
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
25
|
Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. Vet Sci 2022; 9:vetsci9050217. [PMID: 35622745 PMCID: PMC9147025 DOI: 10.3390/vetsci9050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity, where there is enhancement of stored body fat in adipose tissues, is associated with cardiovascular complications that are mainly related to atherosclerosis. Time-restricted feeding (TRF) is a form of restricted eating aimed at reducing weight in obese subjects. The present study aims to investigate changes in vascular endothelial function, endothelial nitric oxide synthase (eNOS), and protein kinase B (Akt) protein expressions with TRF in obese and normal rats. Male Sprague Dawley rats were divided into two normal and three obese groups; obesity was induced in the obese groups by feeding with a high-fat diet (HFD) for six weeks. After six weeks, rats were equally divided into five groups (n = 7 per group): Normal group (NR) which continued on a standard diet for six more weeks, normal group switched to TRF with a standard diet for six weeks (NR + TRFSD), obese group (OR) which continued on HFD for six more weeks, obese group switched to TRF of HFD (OR + TRFHFD), and obese group switched to TRF of a standard diet (OR + TRFSD). TRF was practiced for six weeks, after which the rats were sacrificed. Aortic endothelium-dependent and endothelium-independent relaxations and contractions were assessed using the organ bath. Aortic eNOS and Akt protein expressions were determined using immunoblotting. Fasting blood glucose, body weight, body mass index (BMI), serum lipid profile, Lee’s index, serum insulin levels, and sensitivity (HOMA-IR) were also measured. Endothelium-dependent relaxation was significantly impaired, while endothelium-dependent contraction increased in obese rats compared to that in normal rats. Both obese groups which underwent TRF with a HFD and standard diet improved their impairments in endothelium-dependent relaxation and reduced endothelium-dependent contraction; these were associated with increased expressions of aortic eNOS and Akt protein. Both obese groups with TRF reduced body weight, BMI, Lee’s index, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and improved insulin sensitivity. TRF improved endothelium-dependent relaxation and reduced endothelium-dependent contraction, thus attenuating endothelial dysfunction in obese rats. These were associated with increased aortic eNOS and Akt protein expressions.
Collapse
|
26
|
Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants (Basel) 2022; 11:antiox11020431. [PMID: 35204313 PMCID: PMC8869085 DOI: 10.3390/antiox11020431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia and is considered a major health problem in the world. It is associated with endothelial dysfunction which causes progressive vascular damage. DM is a known risk factor for atherosclerosis and cardiovascular complications such as peripheral artery disease, coronary artery disease, and stroke. Medicinal plants may act as an alternative resource or adjunctive treatment option in the treatment of diabetes and its cardiovascular complications. Parkia speciosa (Fabaceae) is a plant found abundantly in the Southeast Asian region. Its seeds, with or without pods, and roots have long been used as a traditional medicine in this region to treat hypertension and diabetes. Studies have shown its numerous beneficial pharmacological properties. Extracts of P. speciosa, particularly from its seeds and empty pods, show the presence of polyphenols. They also exhibit potent antioxidant, hypoglycemic, anti-inflammatory, and antihypertensive properties. Its hypoglycemic properties are reported to be associated with the presence of β-sitosterol, stigmasterol, and stigmat-4-en-3-one. The current review aimed to provide an overview of the current status of P. speciosa, its pharmacological potential, and its phytochemical content in attenuating diabetic vasculopathy. Glycemic status, oxidative stress, inflammation, and hyperlipidemia are known to play pivotal roles in the initiation and severity of diabetic cardiovascular diseases; thus, targeting these factors might be beneficial for preventing and/or treating diabetic vasculopathy.
Collapse
|
27
|
Tran PM, Tang SS, Salgado-Pabón W. Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Front Microbiol 2022; 13:840236. [PMID: 35185854 PMCID: PMC8851161 DOI: 10.3389/fmicb.2022.840236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin β-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, β-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that β-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that β-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that β-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, β-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that β-toxin is an anti-angiogenic virulence factor and highlight a mechanism where β-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.
Collapse
Affiliation(s)
- Phuong M. Tran
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sharon S. Tang
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
28
|
Borek-Dorosz A, Pieczara A, Czamara K, Stojak M, Matuszyk E, Majzner K, Brzozowski K, Bresci A, Polli D, Baranska M. What is the ability of inflamed endothelium to uptake exogenous saturated fatty acids? A proof-of-concept study using spontaneous Raman, SRS and CARS microscopy. Cell Mol Life Sci 2022; 79:593. [PMID: 36380212 PMCID: PMC9666316 DOI: 10.1007/s00018-022-04616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Endothelial cells (EC) in vivo buffer and regulate the transfer of plasma fatty acid (FA) to the underlying tissues. We hypothesize that inflammation could alter the functionality of the EC, i.e., their capacity and uptake of different FA. The aim of this work is to verify the functionality of inflamed cells by analyzing their ability to uptake and accumulate exogenous saturated FA. Control and inflammatory human microvascular endothelial cells stimulated in vitro with two deuterium-labeled saturated FA (D-FA), i.e., palmitic (D31-PA) and myristic (D27-MA) acids. Cells were measured both by spontaneous and stimulated Raman imaging to extract detailed information about uptaken FA, whereas coherent anti-Stokes Raman scattering and fluorescence imaging showed the global content of FA in cells. Additionally, we employed atomic force microscopy to obtain a morphological image of the cells. The results indicate that the uptake of D-FA in inflamed cells is dependent on their concentration and type. Cells accumulated D-FA when treated with a low concentration, and the effect was more pronounced for D27-MA, in normal cells, but even more so, in inflamed cells. In the case of D31-PA, a slightly increased uptake was observed for inflamed cells when administered at higher concentration. The results provide a better understanding of the EC inflammation and indicate the impact of the pathological state of the EC on their capacity to buffer fat. All the microscopic methods used showed complementarity in the analysis of FA uptake by EC, but each method recognized this process from a different perspective.
Collapse
Affiliation(s)
| | - Anna Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Arianna Bresci
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Dario Polli
- Physics Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy ,Institute for Photonics and Nanotechnology at CNR (CNR-IFN), Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland ,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| |
Collapse
|
29
|
Paracrine Shear-Stress-Dependent Signaling from Endothelial Cells Affects Downstream Endothelial Function and Inflammation. Int J Mol Sci 2021; 22:ijms222413300. [PMID: 34948110 PMCID: PMC8709076 DOI: 10.3390/ijms222413300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs), mainly ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and major contributors to disability worldwide. Despite their heterogeneity, almost all CVDs share a common feature: the endothelial dysfunction. This is defined as a loss of functionality in terms of anti-inflammatory, anti-thrombotic and vasodilatory abilities of endothelial cells (ECs). Endothelial function is greatly ensured by the mechanotransduction of shear forces, namely, endothelial wall shear stress (WSS). Low WSS is associated with endothelial dysfunction, representing the primary cause of atherosclerotic plaque formation and an important factor in plaque progression and remodeling. In this work, the role of factors released by ECs subjected to different magnitudes of shear stress driving the functionality of downstream endothelium has been evaluated. By means of a microfluidic system, HUVEC monolayers have been subjected to shear stress and the conditioned media collected to be used for the subsequent static culture. The results demonstrate that conditioned media retrieved from low shear stress experimental conditions (LSS-CM) induce the downregulation of endothelial nitric oxide synthase (eNOS) expression while upregulating peripheral blood mononuclear cell (PBMC) adhesion by means of higher levels of adhesion molecules such as E-selectin and ICAM-1. Moreover, LSS-CM demonstrated a significant angiogenic ability comparable to the inflammatory control media (TNFα-CM); thus, it is likely related to tissue suffering. We can therefore suggest that ECs stimulated at low shear stress (LSS) magnitudes are possibly involved in the paracrine induction of peripheral endothelial dysfunction, opening interesting insights into the pathogenetic mechanisms of coronary microvascular dysfunction.
Collapse
|
30
|
Differential Capability of Clinically Employed Dermal Regeneration Scaffolds to Support Vascularization for Tissue Bioengineering. Biomedicines 2021; 9:biomedicines9101458. [PMID: 34680575 PMCID: PMC8533449 DOI: 10.3390/biomedicines9101458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
The loss of skin integrity has always represented a major challenge for clinicians dealing with dermal defects, such as ulcers (diabetic, vascular and chronic), postoncologic resections (i.e., radical vulvectomy) or dermatologic disorders. The introduction in recent decades of acellular dermal matrices (ADMs) supporting the repair and restoration of skin functionality represented a significant step toward achieving clean wound repair before performing skin grafts. Hard-to-heal ulcers generally depend on local ischemia and nonadequate vascularization. In this context, one possible innovative approach could be the prevascularization of matrices with vessel-forming cells (inosculation). This paper presents a comparative analysis of the most widely used dermal templates, i.e., Integra® Bilayer Matrix Wound Dressing, PELNAC®, PriMatrix® Dermal Repair Scaffold, Endoform® Natural Dermal Template, and Myriad Matrix®, testing their ability to be colonized by human adult dermal microvascular endothelial cells (ADMECs) and to induce and support angiogenesis in vitro and in vivo. By in vitro studies, we demonstrated that Integra® and PELNAC® possess superior pro-adhesive and pro-angiogenetic properties. Animal models allowed us to demonstrate the ability of preseeded ADMECs on Integra® to promote the engraftment, integration and vascularization of ADMs at the site of application.
Collapse
|
31
|
Cortez‐Jugo C, Czuba‐Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021; 10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Bio-nanoscience research encompasses studies on the interactions of nanomaterials with biological structures or what is commonly referred to as the biointerface. Fundamental studies on the influence of nanomaterial properties, including size, shape, composition, and charge, on the interaction with the biointerface have been central in bio-nanoscience to assess nanomaterial efficacy and safety for a range of biomedical applications. However, the state of the cells, tissues, or biological models can also influence the behavior of nanomaterials at the biointerface and their intracellular processing. Focusing on the "bio" in bio-nano, this review discusses the impact of biological properties at the cellular, tissue, and whole organism level that influences nanomaterial behavior, including cell type, cell cycle, tumor physiology, and disease states. Understanding how the biological factors can be addressed or exploited to enhance nanomaterial accumulation and uptake can guide the design of better and suitable models to improve the outcomes of materials in nanomedicine.
Collapse
Affiliation(s)
- Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Ewa Czuba‐Wojnilowicz
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Abigail Tan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
32
|
Cheng X, Cheng K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev 2021; 40:71-88. [PMID: 33156478 PMCID: PMC7897269 DOI: 10.1007/s10555-020-09942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Metastasis is a multistep process that accounts for the majority of cancer-related death. By the end of metastasize dissemination, circulating tumor cells (CTC) need to extravasate the blood vessels at metastatic sites to form new colonization. Although cancer cell extravasation is a crucial step in cancer metastasis, it has not been successfully targeted by current anti-metastasis strategies due to the lack of a thorough understanding of the molecular mechanisms that regulate this process. This review focuses on recent progress in cancer extravasation visualization techniques, including the development of both in vitro and in vivo cancer extravasation models, that shed light on the underlying mechanisms. Specifically, multiple cancer extravasation stages, such as the adhesion to the endothelium and transendothelial migration, are successfully probed using these technologies. Moreover, the roles of different cell adhesive molecules, chemokines, and growth factors, as well as the mechanical factors in these stages are well illustrated. Deeper understandings of cancer extravasation mechanisms offer us new opportunities to escalate the discovery of anti-extravasation drugs and therapies and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
33
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
34
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Ciesielski O, Biesiekierska M, Panthu B, Vialichka V, Pirola L, Balcerczyk A. The Epigenetic Profile of Tumor Endothelial Cells. Effects of Combined Therapy with Antiangiogenic and Epigenetic Drugs on Cancer Progression. Int J Mol Sci 2020; 21:ijms21072606. [PMID: 32283668 PMCID: PMC7177242 DOI: 10.3390/ijms21072606] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Collapse
Affiliation(s)
- Oskar Ciesielski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marta Biesiekierska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Baptiste Panthu
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Varvara Vialichka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- Correspondence: ; Tel.: +48-42-635-45-10
| |
Collapse
|
36
|
Gronek P, Wielinski D, Cyganski P, Rynkiewicz A, Zając A, Maszczyk A, Gronek J, Podstawski R, Czarny W, Balko S, CT. Clark C, Celka R. A Review of Exercise as Medicine in Cardiovascular Disease: Pathology and Mechanism. Aging Dis 2020; 11:327-340. [PMID: 32257545 PMCID: PMC7069454 DOI: 10.14336/ad.2019.0516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Physical inactivity and resultant lower energy expenditure contribute unequivocally to cardiovascular diseases, such as coronary artery disease and stroke, which are considered major causes of disability and mortality worldwide. AIM The aim of the study was to investigate the influence of physical activity (PA) and exercise on different aspects of health - genetics, endothelium function, blood pressure, lipid concentrations, glucose intolerance, thrombosis, and self - satisfaction. Materials and. METHODS In this article, we conducted a narrative review of the influence PA and exercise have on the cardiovascular system, risk factors of cardiovascular diseases, searching the online databases; Web of Science, PubMed and Google Scholar, and, subsequently, discuss possible mechanisms of this action. RESULTS AND DISCUSSION Based on our narrative review of literature, discussed the effects of PA on telomere length, nitric oxide synthesis, thrombosis risk, blood pressure, serum glucose, cholesterol and triglycerides levels, and indicated possible mechanisms by which physical training may lead to improvement in chronic cardiovascular diseases. CONCLUSION PA is effective for the improvement of exercise tolerance, lipid concentrations, blood pressure, it may also reduce the serum glucose level and risk of thrombosis, thus should be advocated concomitant to, or in some cases instead of, traditional drug-therapy.
Collapse
Affiliation(s)
- Piotr Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznań University of Physical Education, Poznań, Poland.
| | - Dariusz Wielinski
- Department of Anthropology and Biometry, Poznań University of Physical Education, Poznań, Poland.
| | - Piotr Cyganski
- Department of Cardiology and Cardiosurgery, I Cardiology Clinic, City Hospital in Olsztyn, University of Warmia and Mazury in Olsztyn, Poland.
| | - Andrzej Rynkiewicz
- Department of Cardiology and Cardiosurgery, I Cardiology Clinic, City Hospital in Olsztyn, University of Warmia and Mazury in Olsztyn, Poland.
| | - Adam Zając
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.
| | - Adam Maszczyk
- Department of Methodology and Statistics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznań University of Physical Education, Poznań, Poland.
| | - Robert Podstawski
- Department of Physical Education and Sport, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Wojciech Czarny
- Department of Human Sciences, University of Rzeszow, Rzeszów, Poland.
| | - Stefan Balko
- Department of Physical Education and Sport, Faculty of Education, Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic.
| | - Cain CT. Clark
- School of Life Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom.
| | - Roman Celka
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznań University of Physical Education, Poznań, Poland.
| |
Collapse
|
37
|
Uremic Serum Induces Inflammation in Cultured Human Endothelial Cells and Triggers Vascular Repair Mechanisms. Inflammation 2020; 42:2003-2010. [PMID: 31312972 DOI: 10.1007/s10753-019-01061-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation and cardiovascular disease (CVD) are common in end-stage renal disease (ESRD) patients whose vascular endothelium is in direct contact with the uremic toxins found in the blood. These toxins are believed to affect vascular injury and repair process, which is impaired in ESRD patients. The exact mechanisms behind these interactions are not clear. So, we wanted to investigate what happens at the molecular level of endothelial cells when exposed to uremic serum from ESRD patients with diabetes and/or hypertension and its effect on the expression of molecules associated with vascular injury and repair. Cultured human endothelial cells (ECV304) were incubated in the presence of normal or uremic sera from ESRD patients with diabetes and/or hypertension. The expressions of monocyte chemoattractant protein 1 (MCP-1), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) were investigated in endothelial cells (ECV304) by real-time PCR and ELISA. The expression of MCP-1, VEGF, and SDF-1 was elevated in endothelial cells upon exposure to uremic sera from ESRD patients with diabetes and/or hypertension when compared with cells treated with healthy serum. MCP-1 expression in endothelial cells treated with uremic serum from ESRD patients with hypertension only was significantly increased compared with its expression in other cohorts. Exposure of endothelial cells to uremic serum causes endothelial injury and inflammation characterized by an increase in MCP-1 expression. This injury activates the initiation of vascular repair process in these cells by increasing the expression of VEGF and SDF-1. These molecules can be important biomarkers of chronic kidney disease-associated CVD.
Collapse
|
38
|
Zaric B, Obradovic M, Trpkovic A, Banach M, Mikhailidis DP, Isenovic ER. Endothelial Dysfunction in Dyslipidaemia: Molecular Mechanisms and Clinical Implications. Curr Med Chem 2020; 27:1021-1040. [DOI: 10.2174/0929867326666190903112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
The endothelium consists of a monolayer of Endothelial Cells (ECs) which form
the inner cellular lining of veins, arteries, capillaries and lymphatic vessels. ECs interact with
the blood and lymph. The endothelium fulfils functions such as vasodilatation, regulation of
adhesion, infiltration of leukocytes, inhibition of platelet adhesion, vessel remodeling and
lipoprotein metabolism. ECs synthesize and release compounds such as Nitric Oxide (NO),
metabolites of arachidonic acid, Reactive Oxygen Species (ROS) and enzymes that degrade
the extracellular matrix. Endothelial dysfunction represents a phenotype prone to atherogenesis
and may be used as a marker of atherosclerotic risk. Such dysfunction includes impaired
synthesis and availability of NO and an imbalance in the relative contribution of endothelialderived
relaxing factors and contracting factors such as endothelin-1 and angiotensin. This
dysfunction appears before the earliest anatomic evidence of atherosclerosis and could be an
important initial step in further development of atherosclerosis. Endothelial dysfunction was
historically treated with vitamin C supplementation and L-arginine supplementation. Short
term improvement of the expression of adhesion molecule and endothelial function during
antioxidant therapy has been observed. Statins are used in the treatment of hyperlipidaemia, a
risk factor for cardiovascular disease. Future studies should focus on identifying the mechanisms
involved in the beneficial effects of statins on the endothelium. This may help develop
drugs specifically aimed at endothelial dysfunction.
Collapse
Affiliation(s)
- Bozidarka Zaric
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
39
|
Krüger-Genge A, Dietze S, Yan W, Liu Y, Fang L, Kratz K, Lendlein A, Jung F. Endothelial cell migration, adhesion and proliferation on different polymeric substrates. Clin Hemorheol Microcirc 2019; 70:511-529. [DOI: 10.3233/ch-189317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Stefanie Dietze
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Wan Yan
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Yue Liu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Liang Fang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
40
|
Lee MD, Wilson C, Saunter CD, Kennedy C, Girkin JM, McCarron JG. Spatially structured cell populations process multiple sensory signals in parallel in intact vascular endothelium. Sci Signal 2018; 11:11/561/eaar4411. [PMID: 30563865 DOI: 10.1126/scisignal.aar4411] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow, blood clotting, angiogenesis, vascular permeability, and vascular remodeling are each controlled by a large number of variable, noisy, and interacting chemical inputs to the vascular endothelium. The endothelium processes the entirety of the chemical composition to which the cardiovascular system is exposed, carrying out sophisticated computations that determine physiological output. Processing this enormous quantity of information is a major challenge facing the endothelium. We analyzed the responses of hundreds of endothelial cells to carbachol (CCh) and adenosine triphosphate (ATP) and found that the endothelium segregates the responses to these two distinct components of the chemical environment into separate streams of complementary information that are processed in parallel. Sensitivities to CCh and ATP mapped to different clusters of cells, and each agonist generated distinct signal patterns. The distinct signals were features of agonist activation rather than properties of the cells themselves. When there was more than one stimulus present, the cells communicated and combined inputs to generate new distinct signals that were nonlinear combinations of the inputs. Our results demonstrate that the endothelium is a structured, collaborative sensory network that simplifies the complex environment using separate cell clusters that are sensitive to distinct aspects of the overall biochemical environment and interactively compute signals from diverse but interrelated chemical inputs. These features enable the endothelium to selectively process separate signals and perform multiple computations in an environment that is noisy and variable.
Collapse
Affiliation(s)
- Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
41
|
Sangwung P, Zhou G, Lu Y, Liao X, Wang B, Mutchler SM, Miller M, Chance MR, Straub AC, Jain MK. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vasc Med 2017; 22:363-369. [PMID: 28825355 PMCID: PMC5898218 DOI: 10.1177/1358863x17722211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemoglobin subunit alpha (HBA) expression in endothelial cells (ECs) has recently been shown to control vascular tone and function. We sought to elucidate the transcriptional regulation of HBA expression in the EC. Gain of KLF2 or KLF4 function studies led to significant induction of HBA in ECs. An opposite effect was observed in ECs isolated from animals with endothelial-specific ablation of Klf2, Klf4 or both. Promoter reporter assays demonstrated that KLF2/KLF4 transactivated the hemoglobin alpha promoter, an effect that was abrogated following mutation of all four putative KLF-binding sites. Fine promoter mutational studies localized three out of four KLF-binding sites (sites 2, 3, and 4) as critical for the transactivation of the HBA promoter by KLF2/KLF4. Chromatin immunoprecipitation studies showed that KLF4 bound to the HBA promoter in ECs. Thus, KLF2 and KLF4 serve as important regulators that promote HBA expression in the endothelium.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Guangjin Zhou
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yuan Lu
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan Miller
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
42
|
Greven J, Pfeifer R, Zhi Q, Pape HC. Update on the role of endothelial cells in trauma. Eur J Trauma Emerg Surg 2017; 44:667-677. [PMID: 28674817 DOI: 10.1007/s00068-017-0812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/21/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE This review gives an overview of physiological processes, mainly regarding vascular endothelial cells and their important role in hemostasis, information processing, and communication during trauma. An insight is given into molecules and cells involved in the first innate immune response through to the behavior of endothelial cells in developing trauma. The goal of this review is to show the overlap of crucial factors related to the endothelium and the development of trauma. METHODS A systemic literature search was performed using Google scholar and PubMed. RESULTS The results of the literature search showed that the endothelium, especially the vascular endothelium, is involved in various cellular and subcellular pathways of activation, suppression, and transfer of information. A variety of molecules and cells are orchestrated, subsequently the endothelium gets in contact with a traumatizing event. CONCLUSION The endothelium is one of the first barriers that comes into contact with exo- and endogenous trauma-related signals and is a pivotal point in activating subsequent pathways and cascades by transfer of information.
Collapse
Affiliation(s)
- J Greven
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany.
| | - R Pfeifer
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Q Zhi
- Department of Trauma and Reconstructive Surgery, University of Aachen Medical Center, Pauwelsstr 30, 52074, Aachen, Germany
| | - H C Pape
- Department for Traumatology, University of Zürich Medical Center, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
43
|
Félétou M. Discovery of Nitric Oxide and Translation to Clinical Application. Physiology (Bethesda) 2017; 31:76-7. [PMID: 26865574 DOI: 10.1152/physiol.00056.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
44
|
Zakharova IS, Zhiven' MK, Saaya SB, Shevchenko AI, Smirnova AM, Strunov A, Karpenko AA, Pokushalov EA, Ivanova LN, Makarevich PI, Parfyonova YV, Aboian E, Zakian SM. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med 2017; 15:54. [PMID: 28257636 PMCID: PMC5336693 DOI: 10.1186/s12967-017-1156-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 01/25/2023] Open
Abstract
Background Endothelial and smooth muscle cells are considered promising resources for regenerative medicine and cell replacement therapy. It has been shown that both types of cells are heterogeneous depending on the type of vessels and organs in which they are located. Therefore, isolation of endothelial and smooth muscle cells from tissues relevant to the area of research is necessary for the adequate study of specific pathologies. However, sources of specialized human endothelial and smooth muscle cells are limited, and the search for new sources is still relevant. The main goal of our study is to demonstrate that functional endothelial and smooth muscle cells can be obtained from an available source—post-surgically discarded cardiac tissue from the right atrial appendage and right ventricular myocardium. Methods Heterogeneous primary cell cultures were enzymatically isolated from cardiac explants and then grown in specific endothelial and smooth muscle growth media on collagen IV-coated surfaces. The population of endothelial cells was further enriched by immunomagnetic sorting for CD31, and the culture thus obtained was characterized by immunocytochemistry, ultrastructural analysis and in vitro functional tests. The angiogenic potency of the cells was examined by injecting them, along with Matrigel, into immunodeficient mice. Cells were also seeded on characterized polycaprolactone/chitosan membranes with subsequent analysis of cell proliferation and function. Results Endothelial cells isolated from cardiac explants expressed CD31, VE-cadherin and VEGFR2 and showed typical properties, namely, cytoplasmic Weibel-Palade bodies, metabolism of acetylated low-density lipoproteins, formation of capillary-like structures in Matrigel, and production of extracellular matrix and angiogenic cytokines. Isolated smooth muscle cells expressed extracellular matrix components as well as α-actin and myosin heavy chain. Vascular cells derived from cardiac explants demonstrated the ability to stimulate angiogenesis in vivo. Endothelial cells proliferated most effectively on membranes made of polycaprolactone and chitosan blended in a 25:75 ratio, neutralized by a mixture of alkaline and ethanol. Endothelial and smooth muscle cells retained their functional properties when seeded on the blended membranes. Conclusions We established endothelial and smooth muscle cell cultures from human right atrial appendage and right ventricle post-operative explants. The isolated cells revealed angiogenic potential and may be a promising source of patient-specific cells for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1156-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I S Zakharova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. .,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.
| | - M K Zhiven'
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - Sh B Saaya
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - A I Shevchenko
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - A M Smirnova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - A Strunov
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - A A Karpenko
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - E A Pokushalov
- Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation
| | - L N Ivanova
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - P I Makarevich
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Laboratory of gene and cell therapy, Institute of regenerative medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Y V Parfyonova
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - E Aboian
- Division of Vascular Surgery, Palo Alto Medical Foundation, Burlingame, USA
| | - S M Zakian
- The Federal Research Center Institute of Cytology And Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Siberian Federal Biomedical Research Center, Ministry of Health Care of Russian Federation, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
45
|
Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: Quo vadis? Acta Physiol (Oxf) 2017; 219:100-107. [PMID: 26820582 DOI: 10.1111/apha.12657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. Félétou
- Institut de Recherches Servier; Suresnes France
- Li Ka Shing Faculty of Medicine; Hong Kong China
| | - P. M. Vanhoutte
- Institut de Recherches Servier; Suresnes France
- Li Ka Shing Faculty of Medicine; Hong Kong China
| |
Collapse
|
46
|
Čejková S, Králová Lesná I, Poledne R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. COR ET VASA 2016. [DOI: 10.1016/j.crvasa.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 2016; 36:492-512. [PMID: 26661232 PMCID: PMC4794103 DOI: 10.1177/0271678x15616138] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals. Eur J Appl Physiol 2015; 115:1801-11. [PMID: 25840674 DOI: 10.1007/s00421-015-3164-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. METHODS Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). RESULTS In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027-0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043-0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. CONCLUSION AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.
Collapse
|
49
|
Androfagina OV, Kuznetsova TV, Svetkina AA. [Mexidol in the rehabilitation of patients in the acute ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:77-79. [PMID: 26978645 DOI: 10.17116/jnevro201511512277-79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UNLABELLED Research objective - studying of results of a comprehensive neuro-rehabilitation patients in the acute ischemic stroke (according to the Samara regional vascular centre). MATERIAL AND METHODS A review of the work of RVC on the main indicators for 2014, detailed analysis of 20 patients in the acute period of ischemic stroke, in which treatment was used the drug mexidol with the dynamics on standardized assessment scales (NIHSS, Rankin, Rivermead, MoCA, HADS). RESULTS AND DISCUSSION The use of «Mexidol» in the treatment of stroke leads to a significant statistically and clinically significant improvement in cognitive, motor, sensory functions, reduction of fatigue, anxiety, improved adaptation to physical loads.
Collapse
Affiliation(s)
| | | | - A A Svetkina
- Seredavina Samara Regional Clinical Hospital, Samara
| |
Collapse
|
50
|
Molina-Sánchez P, Andrés V. Isolation of Mouse Primary Aortic Endothelial Cells by Selection with Specific Antibodies. Methods Mol Biol 2015; 1339:111-7. [PMID: 26445784 DOI: 10.1007/978-1-4939-2929-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endothelial cells (ECs) are key blood-vessel-wall components that play critical roles in the regulation of many physiological processes, including angiogenesis, coagulation, and vascular tone control, and in pathological events such as vessel inflammation and leukocyte infiltration. EC dysfunction is one of the first events associated with the development of atherosclerosis and is sustained throughout progression of the disease. The study of ECs in vitro has become an invaluable tool for investigating these vascular processes at the molecular level, and is widely used in the search for therapeutic targets and strategies. This chapter describes a protocol for the isolation and culture of primary mouse aortic ECs based on antibody-mediated EC selection.
Collapse
Affiliation(s)
- Pedro Molina-Sánchez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Vascular Biology Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Vascular Biology Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|