1
|
Hirabayashi K, Kawabata Duncan K, Tagai K, Kyutoku Y, Dan I. Right prefrontal activation associated with deviations from expected lipstick texture assessed with functional near-infrared spectroscopy. FRONTIERS IN NEUROERGONOMICS 2024; 5:1331083. [PMID: 38751731 PMCID: PMC11094294 DOI: 10.3389/fnrgo.2024.1331083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
Introduction There is a continuous consumer demand for ever superior cosmetic products. In marketing, various forms of sensory evaluation are used to measure the consumer experience and provide data with which to improve cosmetics. Nonetheless, potential downsides of existing approaches have led to the exploration of the use of neuroimaging methods, such as functional near-infrared spectroscopy (fNIRS), to provide addition information about consumers' experiences with cosmetics. The aim of the present study was to investigate the feasibility of a real-time brain-based product evaluation method which detects the incongruency between a product, in this case lipstick, and a consumer's expectations. Method Thirty healthy, female, habitual lipstick users were asked to apply six different lipsticks varying in softness and to rate the softness of and their willingness to pay (WTP) for each lipstick. Cerebral hemodynamic responses in frontal areas were measured with fNIRS during lipstick application and analyzed using the general linear model (GLM). Incongruency scores between softness and expectation were calculated in order to understand how far removed each lipstick was from a participant's optimal softness preference. The correlation between brain activation (beta scores) during the application of each lipstick and the respective incongruency scores from each participant were acquired using semi-partial correlation analysis, controlling for the effects of WTP. Results We revealed a significant intra-subject correlation between incongruency scores and activation in the right inferior frontal gyrus (IFG). This confirms that as the texture incongruency scores increased for the lipstick samples, activation in each individual's right IFG also increased. Conclusion The correlation observed between incongruency perceived by participants and activation of the right IFG not only suggests that the right IFG may play an important role in detecting incongruity when there is a discrepancy between the perceived texture and the consumer's expectations but also that measuring activity in the IFG may provide a new objective measurement of the consumer experience, thus contributing to the development of superior cosmetics.
Collapse
Affiliation(s)
- Kazue Hirabayashi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
- Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | | | - Keiko Tagai
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| | - Yasushi Kyutoku
- Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Obesity is a chronic illness and its prevalence is growing worldwide and numerous factors play a role in the regulation of food intake. The prefrontal cortex (PFC) is involved in high-order executive function, regulation of limbic reward regions, and the inhibition of impulsive behaviors. Understanding the role of the PFC in the control of appetite regulation may contribute to a greater understanding of the etiology of obesity and could improve weight loss outcomes. RECENT FINDINGS Neuroimaging studies have identified lower activation in the left dorsolateral PFC (DLPFC) in obese compared to lean individuals and others have focused on efforts to improve cognitive control in this area of the brain. The DLPFC is a critical brain area associated with appetitive control, food craving, and executive functioning, indicating a candidate target area for treatment. Further studies are needed to advance our understanding of the relationship between obesity, appetite, and the DLPFC and provide validation for the effectiveness of novel treatments in clinical populations.
Collapse
Affiliation(s)
- Marci E Gluck
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| | - Pooja Viswanath
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA
| |
Collapse
|
3
|
Rosner AO, Barlow SM. Hemodynamic changes in cortical sensorimotor systems following hand and orofacial motor tasks and pulsed pneumotactile stimulation. Somatosens Mot Res 2016; 33:145-155. [PMID: 27550186 DOI: 10.1080/08990220.2016.1219711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We performed a functional near-infrared spectroscopy (fNIRS) study of the evoked hemodynamic responses seen in hand and face sensorimotor cortical representations during (1) active motor tasks and (2) pulsed pneumotactile stimulation. Contralateral fNIRS measurements were performed on 22 healthy adult participants using a block paradigm that consisted of repetitive right hand and right oral angle somatosensory stimulation using a pulsed pneumotactile array stimulator, and repetitive right-hand grip compression and bilabial compressions on strain gages. Results revealed significant oxyhemoglobin (HbO) modulation across stimulus conditions in corresponding somatotopic cortical regions. Of the 22 participants, 86% exhibited a decreased HbO response during at least one of the stimulus conditions, which may be indicative of cortical steal, or hypo-oxygenation occurring in channels adjacent to the primary areas of activation. Across all conditions, 56% of participants' HbO responses were positive and 44% were negative. Hemodynamic responses most likely differed across hand and face motor and somatosensory cortical regions due to differences in regional arterial/venous anatomy, cortical vascular beds, extent and orientation of somatotopy, task dynamics, and mechanoreceptor typing in hand and face. The combination of optical imaging and task conditions allowed for non-invasive examination of hemodynamic changes in somatosensory and motor cortices using natural, pneumatic stimulation of glabrous hand and hairy skin of the lower face and functionally relevant and measurable motor tasks involving the same structures.
Collapse
Affiliation(s)
- Austin O Rosner
- a Department of Special Education and Communication Disorders , University of Nebraska , Lincoln , NE , USA.,b Center for Brain, Biology, and Behavior , Department of Biological Systems Engineering, University of Nebraska , Lincoln , NE , USA
| | - Steven M Barlow
- a Department of Special Education and Communication Disorders , University of Nebraska , Lincoln , NE , USA.,b Center for Brain, Biology, and Behavior , Department of Biological Systems Engineering, University of Nebraska , Lincoln , NE , USA
| |
Collapse
|
4
|
Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel L, Alonso-Alonso M, Audette M, Malbert C, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin 2015; 8:1-31. [PMID: 26110109 PMCID: PMC4473270 DOI: 10.1016/j.nicl.2015.03.016] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/11/2022]
Abstract
Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.
Collapse
Key Words
- 5-HT, serotonin
- ADHD, attention deficit hyperactivity disorder
- AN, anorexia nervosa
- ANT, anterior nucleus of the thalamus
- B N, bulimia nervosa
- BAT, brown adipose tissue
- BED, binge eating disorder
- BMI, body mass index
- BOLD, blood oxygenation level dependent
- BS, bariatric surgery
- Brain
- CBF, cerebral blood flow
- CCK, cholecystokinin
- Cg25, subgenual cingulate cortex
- DA, dopamine
- DAT, dopamine transporter
- DBS, deep brain stimulation
- DBT, deep brain therapy
- DTI, diffusion tensor imaging
- ED, eating disorders
- EEG, electroencephalography
- Eating disorders
- GP, globus pallidus
- HD-tDCS, high-definition transcranial direct current stimulation
- HFD, high-fat diet
- HHb, deoxygenated-hemoglobin
- Human
- LHA, lateral hypothalamus
- MER, microelectrode recording
- MRS, magnetic resonance spectroscopy
- Nac, nucleus accumbens
- Neuroimaging
- Neuromodulation
- O2Hb, oxygenated-hemoglobin
- OCD, obsessive–compulsive disorder
- OFC, orbitofrontal cortex
- Obesity
- PD, Parkinson's disease
- PET, positron emission tomography
- PFC, prefrontal cortex
- PYY, peptide tyrosine tyrosine
- SPECT, single photon emission computed tomography
- STN, subthalamic nucleus
- TMS, transcranial magnetic stimulation
- TRD, treatment-resistant depression
- VBM, voxel-based morphometry
- VN, vagus nerve
- VNS, vagus nerve stimulation
- VS, ventral striatum
- VTA, ventral tegmental area
- aCC, anterior cingulate cortex
- dTMS, deep transcranial magnetic stimulation
- daCC, dorsal anterior cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- fNIRS, functional near-infrared spectroscopy
- lPFC, lateral prefrontal cortex
- pCC, posterior cingulate cortex
- rCBF, regional cerebral blood flow
- rTMS, repetitive transcranial magnetic stimulation
- rtfMRI, real-time functional magnetic resonance imaging
- tACS, transcranial alternate current stimulation
- tDCS, transcranial direct current stimulation
- tRNS, transcranial random noise stimulation
- vlPFC, ventrolateral prefrontal cortex
- vmH, ventromedial hypothalamus
- vmPFC, ventromedial prefrontal cortex
Collapse
Affiliation(s)
| | - E. Aarts
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - B. Weber
- Department of Epileptology, University Hospital Bonn, Germany
| | - M. Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - V. Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - L.E. Stoeckel
- Massachusetts General Hospital, Harvard Medical School, USA
| | - M. Alonso-Alonso
- Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | | | | | | |
Collapse
|