1
|
Yang F, Han S, Zhang Y, Chen X, Gai W, Zhao T. Phylogenomic Analysis and Functional Characterization of the APETALA2/Ethylene-Responsive Factor Transcription Factor Across Solanaceae. Int J Mol Sci 2024; 25:11247. [PMID: 39457030 PMCID: PMC11508751 DOI: 10.3390/ijms252011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly understood, primarily because of the complex interactions between whole-genome duplications (WGDs) and tandem duplications. In this study, a total of 1282 AP2/ERF proteins are identified from 7 Solanaceae genomes. The amplification of AP2/ERF genes was driven not only by WGDs but also by the presence of clusters of tandem duplicated genes. The conservation of synteny across different chromosomes provides compelling evidence for the impact of the WGD event on the distribution pattern of AP2/ERF genes. Distinct expression patterns suggest that the multiple copies of AP2/ERF genes evolved in different functional directions, catalyzing the diversification of roles among the duplicated genes, which was of great significance for the adaptability of Solanaceae. Gene silencing and overexpression assays suggest that ERF-1 members' role in regulating the timing of floral initiation in C. annuum. Our findings provide insights into the genomic origins, duplication events, and function divergence of the Solanaceae AP2/ERF.
Collapse
Affiliation(s)
| | | | | | | | - Wenxian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (F.Y.); (S.H.); (Y.Z.); (X.C.)
| | - Tao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (F.Y.); (S.H.); (Y.Z.); (X.C.)
| |
Collapse
|
2
|
Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, Tian X, Zeng RF, Huang XM. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi ( Litchi chinensis Sonn.). HORTICULTURE RESEARCH 2024; 11:uhae150. [PMID: 38988620 PMCID: PMC11233856 DOI: 10.1093/hr/uhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
SHORT VEGETATIVE PHASE (SVP), a member of the MADS-box transcription factor family, has been reported to regulate bud dormancy in deciduous perennial plants. Previously, three LcSVPs (LcSVP1, LcSVP2 and LcSVP3) were identified from litchi genome, and LcSVP2 was highly expressed in the terminal buds of litchi during growth cessation or dormancy stages and down-regulated during growth stages. In this study, the role of LcSVP2 in governing litchi bud dormancy was examined. LcSVP2 was highly expressed in the shoots, especially in the terminal buds at growth cessation stage, whereas low expression was showed in roots, female flowers and seeds. LcSVP2 was found to be located in the nucleus and have transcription inhibitory activity. Overexpression of LcSVP2 in Arabidopsis thaliana resulted in a later flowering phenotype compared to the wild-type control. Silencing LcSVP2 in growing litchi terminal buds delayed re-entry of dormancy, resulting in significantly lower dormancy rate. The treatment also significantly up-regulated litchi FLOWERING LOCUS T2 (LcFT2). Further study indicates that LcSVP2 interacts with an AP2-type transcription factor, SMALL ORGAN SIZE1 (LcSMOS1). Silencing LcSMOS1 promoted budbreak and delayed bud dormancy. Abscisic acid (200 mg/L), which enforced bud dormancy, induced a short-term increase in the expression of LcSVP2 and LcSMOS1. Our study reveals that LcSVP2 may play a crucial role, likely together with LcSMOS1, in dormancy onset of the terminal bud and may also serve as a flowering repressor in evergreen perennial litchi.
Collapse
|
3
|
Liu X, Zhang W, Tang N, Chen Z, Rao S, Cheng H, Luo C, Ye J, Cheng S, Xu F. Genomic-wide identification and expression analysis of AP2/ERF transcription factors in Zanthoxylum armatum reveals the candidate genes for the biosynthesis of terpenoids. THE PLANT GENOME 2024; 17:e20422. [PMID: 38129947 DOI: 10.1002/tpg2.20422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Terpenoids are the main active components in the Zanthoxylum armatum leaves, which have extensive medicinal value. The Z. armatum leaf is the main by-product in the Z. armatum industry. However, the transcription factors involved in the biosynthesis of terpenoids are rarely reported. This study was performed to identify and classify the APETALA2/ethylene-responsive factor (AP2/ERF) gene family of Z. armatum. The chromosome distribution, gene structure, conserved motifs, and cis-acting elements of the promoter of the species were also comprehensively analyzed. A total of 214 ZaAP2/ERFs were identified. From the obtained transcriptome and terpenoid content data, four candidate ZaAP2/ERFs involved in the biosynthesis of terpenoids were selected via correlation and weighted gene co-expression network analysis. A phylogenetic tree was constructed using 13 AP2/ERFs related to the biosynthesis of terpenoids in other plants. ZaERF063 and ZaERF166 showed close evolutionary relationships with the ERFs in other plant species and shared a high AP2-domain sequence similarity with the two closest AP2/ERF proteins, namelySmERF8 from Salvia miltiorrhiza and AaERF4 from Artemisia annua. Further investigation into the effects of methyl jasmonate (MeJA) treatment on the content of terpenoids in Z. armatum leaves revealed that MeJA significantly induced the upregulation of ZaERF166 and led to a significant increase in the terpenoids content in Z. armatum leaves, indicating that ZaERF166 might be involved in the accumulation of terpenoids of Z. armatum. Results will be beneficial for the functional characterization of AP2/ERFs in Z. armatum and establishment of the theoretical foundation to increase the production of terpenoids via the manipulation of the regulatory elements and strengthen the development and utilization of Z. armatum leaves.
Collapse
Affiliation(s)
- Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | | | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Ding J, Yao B, Yang X, Shen L. SmRAV1, an AP2 and B3 Transcription Factor, Positively Regulates Eggplant's Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4174. [PMID: 38140500 PMCID: PMC10747502 DOI: 10.3390/plants12244174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.
Collapse
Affiliation(s)
| | | | | | - Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (J.D.); (B.Y.); (X.Y.)
| |
Collapse
|
5
|
Zhou Y, Zheng R, Peng Y, Chen J, Zhu X, Xie K, Su Q, Huang R, Zhan S, Peng D, Zhao K, Liu ZJ. Bioinformatic Assessment and Expression Profiles of the AP2/ERF Superfamily in the Melastoma dodecandrum Genome. Int J Mol Sci 2023; 24:16362. [PMID: 38003550 PMCID: PMC10671166 DOI: 10.3390/ijms242216362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiyue Zheng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Yukun Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Jiemin Chen
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Xuanyi Zhu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Xie
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Qiuli Su
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Ruiliu Huang
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Suying Zhan
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Donghui Peng
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (R.Z.); (Y.P.); (J.C.); (X.Z.); (K.X.); (Q.S.); (R.H.); (S.Z.); (D.P.)
| |
Collapse
|
6
|
Jiang D, Xia M, Xing H, Gong M, Jiang Y, Liu H, Li HL. Exploring the Heat Shock Transcription Factor ( HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2999. [PMID: 37631210 PMCID: PMC10459109 DOI: 10.3390/plants12162999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.
Collapse
Affiliation(s)
- Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China
| | - Maoqin Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Min Gong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Yajun Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| |
Collapse
|
7
|
He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Genome-Wide Identification and Functional Analysis of the AP2/ERF Transcription Factor Family in Citrus Rootstock under Waterlogging Stress. Int J Mol Sci 2023; 24:ijms24108989. [PMID: 37240335 DOI: 10.3390/ijms24108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus plants are sensitive to waterlogging, and the roots are the first plant organ affected by hypoxic stress. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) can modulate plant growth and development. However, the information on AP2/ERF genes in citrus rootstock and their involvement in waterlogging conditions is limited. Previously, a rootstock cultivar, Citrus junos cv. Pujiang Xiangcheng was found to be highly tolerant to waterlogging stress. In this study, a total of 119 AP2/ERF members were identified in the C. junos genome. Conserved motif and gene structure analyses indicated the evolutionary conservation of PjAP2/ERFs. Syntenic gene analysis revealed 22 collinearity pairs among the 119 PjAP2/ERFs. The expression profiles under waterlogging stress showed differential expression of PjAP2/ERFs, of which, PjERF13 was highly expressed in both root and leaf. Furthermore, the heterologous expression of PjERF13 significantly enhanced the tolerance of transgenic tobacco to waterlogging stress. The overexpression of PjERF13 decreased the oxidative damage in the transgenic plants by reducing the H2O2 and MDA contents and increasing the antioxidant enzyme activities in the root and leaf. Overall, the current study provided basic information on the AP2/ERF family in the citrus rootstock and uncovered their potential function in positively regulating the waterlogging stress response.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Xu Y, Li X, Yang X, Wassie M, Shi H. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). BMC Genomics 2023; 24:32. [PMID: 36658499 PMCID: PMC9854111 DOI: 10.1186/s12864-022-09104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND 'Whangkeumbae' (Pyrus pyrifolia) is a typical climacteric fruit variety of sand pear with excellent taste. However, the rapid postharvest ethylene production limits the shelf life of 'Whangkeumbae' fruit. AP2/ERF superfamily is a large family of transcription factors involved in plant growth and development, including fruit ripening and senescence through the ethylene signaling pathway. The numbers and functions of AP2/ERF superfamily members in sand pear remain largely unknown. RESULTS In this study, a total of 234 AP2/ERF family members were identified through the transcriptome of Pyrus pyrifolia 'Whangkeumbae' (17 genes) and Pyrus pyrifolia genome (223 genes) analyses. Six genes (Accession: EVM0023062.1, EVM0034833.1, EVM0027049.1, EVM0034047.1, EVM0028755.1, EVM0015862.1) identified via genome analysis shared 100% identity with PpERF14-L, PpERF5-L, PpERF3a, PpERF3, PpERF017 and PpERF098, respectively, which were identified from transcriptome sequencing. Further, the AP2/ERF superfamily members were divided into AP2, ERF, and RAV subfamilies, each comprising 38, 188, and 8 members, respectively. Tissue-specific expression analysis showed that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 were predominantly expressed in fruits than in other tissues. Additionally, PpERF5-L and PpERF017 showed higher expressions at the early stage of fruit development. While, PpERF51B-L exhibited higher expression during the fruit ripening stage. Besides, PpERF061 and PpERF113 had pronounced expressions during fruit senescence. CONCLUSION These results indicate that PpERF061, PpERF113, PpERF51L-B, PpERF5-L, and PpERF017 could play crucial roles in sand pear fruit development, ripening, and senescence. Overall, this study provides valuable information for further functional analysis of the AP2/ERF genes during fruit ripening and senescence in sand pear.
Collapse
Affiliation(s)
- Yue Xu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiaona Li
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Xiong Yang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Misganaw Wassie
- grid.458515.80000 0004 1770 1110Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Haiyan Shi
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| |
Collapse
|
9
|
Muto A, Bruno L, Madeo ML, Ludlow R, Ferrari M, Stimpson L, LoGiudice C, Picardi E, Ferrante A, Pasti L, Müller CT, Chiappetta AAC, Rogers HJ, Bitonti MB, Spadafora ND. Comparative transcriptomic profiling of peach and nectarine cultivars reveals cultivar-specific responses to chilled postharvest storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1062194. [PMID: 36507427 PMCID: PMC9733835 DOI: 10.3389/fpls.2022.1062194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Peach (Prunus persica (L.) Batsch,) and nectarine fruits (Prunus persica (L.) Batsch, var nectarine), are characterized by a rapid deterioration at room temperature. Therefore, cold storage is widely used to delay fruit post-harvest ripening and extend fruit commercial life. Physiological disorders, collectively known as chilling injury, can develop typically after 3 weeks of low-temperature storage and affect fruit quality. METHODS A comparative transcriptomic analysis was performed to identify regulatory pathways that develop before chilling injury symptoms are detectable using next generation sequencing on the fruits of two contrasting cultivars, one peach (Sagittaria) and one nectarine, (Big Top), over 14 days of postharvest cold storage. RESULTS There was a progressive increase in the number of differentially expressed genes between time points (DEGs) in both cultivars. More (1264) time point DEGs were identified in 'Big Top' compared to 'Sagittaria' (746 DEGs). Both cultivars showed a downregulation of pathways related to photosynthesis, and an upregulation of pathways related to amino sugars, nucleotide sugar metabolism and plant hormone signal transduction with ethylene pathways being most affected. Expression patterns of ethylene related genes (including biosynthesis, signaling and ERF transcription factors) correlated with genes involved in cell wall modification, membrane composition, pathogen and stress response, which are all involved later during storage in development of chilling injury. DISCUSSION Overall, the results show that common pathways are activated in the fruit of 'Big Top' nectarine and 'Sagittaria' peach in response to cold storage but include also differences that are cultivar-specific responses.
Collapse
Affiliation(s)
- Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Richard Ludlow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Louise Stimpson
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Claudio LoGiudice
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Science, Università degli Studi di Milano, Milan, Italy
| | - Luisa Pasti
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Natasha Damiana Spadafora
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Genome-Wide Analysis of the Almond AP2/ERF Superfamily and Its Functional Prediction during Dormancy in Response to Freezing Stress. BIOLOGY 2022; 11:biology11101520. [PMID: 36290423 PMCID: PMC9598233 DOI: 10.3390/biology11101520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary The ethylene-responsive element (AP2/ERF) is one of the key and conserved transcription factors (TFs) in plants, and it plays a crucial role in regulating plant growth, development, and stress response. The cultivated almond in Xinjiang is often affected by short-term ultralow temperature freezing stress during the winter dormancy period, resulting in the death of large-scale almond plants. In this study, we conducted the first genome-wide analysis of the PdAP2/ERF family in almond, including protein physicochemical properties, phylogenetic relationships, motif types, gene structures, gene replication types, collinearity relationships, and cis-element types in promoter regions. We further analyzed the expression patterns of the PdAP2/ERF gene in different tissues of almond and under freezing stress at different temperatures in annual dormant branches using transcriptome data. In addition, we also analyzed the expression levels of 13 PdAP2/ERF genes in four tissues of almond and in annual dormant branches treated with freezing stress at different temperatures using fluorescence quantitative technology. This study laid the foundation for further exploring the function of the PdAP2/ERF gene in almond. Abstract The AP2/ERF transcription factor family is one of the largest transcription factor families in plants and plays an important role in regulating plant growth and development and the response to biotic and abiotic stresses. However, there is no report on the AP2/ERF gene family in almond (Prunus dulcis). In this study, a total of 136 PdAP2/ERF genes were identified from the almond genome, and their protein physicochemical properties were analyzed. The PdAP2/ERF members were divided into five subgroups: AP2, RAV, ERF, DREB, and Soloist. The PdAP2/ERF members in each subgroup had conserved motif types and exon/intron numbers. PdAP2/ERFS members are distributed on eight chromosomes, with 22 pairs of segmental duplications and 28 pairs of tandem duplications. We further explored the colinear relationship between almond and Arabidopsis thaliana, Oryza sativa, Malus domestica, and Prunus persicaAP2/ERF genes and their evolution. The results of cis-acting elements showed that PdAP2/ERF members are widely involved in various processes, such as growth and development, hormone regulation, and stress response. The results based on transcriptome expression patterns showed that PdAP2/ERF genes had significant tissue-specific expression characteristics and were involved in the response of annual dormant branches of almond to low-temperature freezing stress. In addition, the fluorescence quantitative relative expression results of 13 representative PdAP2/ERF genes in four tissues of ‘Wanfeng’ almond and under six low-temperature freezing treatments of annual dormant branches were consistent with the transcriptome results. It is worth noting that the fluorescence quantitative expression level showed that the PdERF24 gene was extremely significant at −30 °C, suggesting that this gene may play an important role in the response of almond dormancy to ultralow temperature freezing stress. Finally, we identified 7424 and 6971 target genes based on AP2 and ERF/DREB DNA-binding sites, respectively. The GO and KEGG enrichment results showed that these target genes play important roles in protein function and multiple pathways. In summary, we conducted bioinformatics and expression pattern studies on PdAP2/ERF genes, including 13 PdAP2/ERF genes, and performed fluorescence quantitative analysis of annual dormant shoots under different low-temperature freezing stress treatments to understand the tolerance of almond dormancy to freezing stress and suggest future improvements.
Collapse
|
11
|
Zhai Y, Fan Z, Cui Y, Gu X, Chen S, Ma H. APETALA2/ethylene responsive factor in fruit ripening: Roles, interactions and expression regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:979348. [PMID: 36061806 PMCID: PMC9434019 DOI: 10.3389/fpls.2022.979348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 05/08/2023]
Abstract
Insects and animals are attracted to, and feed on ripe fruit, thereby promoting seed dispersal. As a vital vitamin and nutrient source, fruit make up an indispensable and enjoyable component of the human diet. Fruit ripening involves a series of physiological and biochemical changes in, among others, pigmentation, chlorophyll (Chl) degradation, texture, sugar accumulation, and flavor. Growing evidence indicates that the coordinated and ordered trait changes during fruit ripening depend on a complex regulatory network consisting of transcription factors, co-regulators, hormonal signals, and epigenetic modifications. As one of the predominant transcription factor families in plants and a downstream component of ethylene signaling, more and more studies are showing that APETALA2/ethylene responsive factor (AP2/ERF) family transcription factors act as critical regulators in fruit ripening. In this review, we focus on the regulatory mechanisms of AP2/ERFs in fruit ripening, and in particular the recent results on their target genes and co-regulators. We summarize and discuss the role of AP2/ERFs in the formation of key fruit-ripening attributes, the enactment of their regulatory mechanisms by interaction with other proteins, their role in the orchestration of phytohormone-signaling networks, and the epigenetic modifications associated with their gene expression. Our aim is to provide a multidimensional perspective on the regulatory mechanisms of AP2/ERFs in fruit ripening, and a reference for understanding and furthering research on the roles of AP2/ERF in fruit ripening.
Collapse
Affiliation(s)
- Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yuanyuan Cui
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaojiao Gu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma,
| |
Collapse
|
12
|
Xing H, Jiang Y, Zou Y, Long X, Wu X, Ren Y, Li Y, Li HL. Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses. BMC PLANT BIOLOGY 2021; 21:561. [PMID: 34823471 PMCID: PMC8620233 DOI: 10.1186/s12870-021-03329-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. RESULTS A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. CONCLUSION A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yusong Jiang
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yong Zou
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoling Long
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoli Wu
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yun Ren
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Hong-Lei Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
13
|
He S, Hao X, He S, Hao X, Chen X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in sweet potato. BMC Genomics 2021; 22:748. [PMID: 34656106 PMCID: PMC8520649 DOI: 10.1186/s12864-021-08043-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato. Results Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results. Conclusions This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08043-w.
Collapse
Affiliation(s)
- Shutao He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaomeng Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuli He
- Jining College Affiliated Senior High School, Jining, 272004, China
| | - Xiaoge Hao
- Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
14
|
Riaz MW, Lu J, Shah L, Yang L, Chen C, Mei XD, Xue L, Manzoor MA, Abdullah M, Rehman S, Si H, Ma C. Expansion and Molecular Characterization of AP2/ERF Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2021; 12:632155. [PMID: 33868370 PMCID: PMC8044323 DOI: 10.3389/fgene.2021.632155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
The AP2/ERF is a large protein family of transcription factors, playing an important role in signal transduction, plant growth, development, and response to various stresses. AP2/ERF super-family is identified and functionalized in a different plant but no comprehensive and systematic analysis in wheat (Triticum aestivum L.) has been reported. However, a genome-wide and functional analysis was performed and identified 322 TaAP2/ERF putative genes from the wheat genome. According to the phylogenetic and structural analysis, TaAP2/ERF genes were divided into 12 subfamilies (Ia, Ib, Ic, IIa, IIb, IIc, IIIa, IIIb, IIIc, IVa, IVb, and IVc). Furthermore, conserved motifs and introns/exons analysis revealed may lead to functional divergence within clades. Cis-Acting analysis indicated that many elements were involved in stress-related and plant development. Chromosomal location showed that 320 AP2/ERF genes were distributed among 21 chromosomes and 2 genes were present in a scaffold. Interspecies microsynteny analysis revealed that maximum orthologous between Arabidopsis, rice followed by wheat. Segment duplication events have contributed to the expansion of the AP2/ERF family and made this family larger than rice and Arabidopsis. Additionally, AP2/ERF genes were differentially expressed in wheat seedlings under the stress treatments of heat, salt, and drought, and expression profiles were verified by qRT-PCR. Remarkably, the RNA-seq data exposed that AP2/ERF gene family might play a vital role in stress-related. Taken together, our findings provided useful and helpful information to understand the molecular mechanism and evolution of the AP2/ERF gene family in wheat.
Collapse
Affiliation(s)
- Muhammad Waheed Riaz
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liaqat Shah
- Department of Botany, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Liu Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xu Dong Mei
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liu Xue
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | | | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shamsur Rehman
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, China.,Anhui Key Laboratory of Crop Biology, Hefei, China
| |
Collapse
|
15
|
Li W, Geng Z, Zhang C, Wang K, Jiang X. Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis. BMC Genomics 2021; 22:90. [PMID: 33509074 PMCID: PMC7844920 DOI: 10.1186/s12864-021-07396-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants. RESULTS Our investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants. CONCLUSIONS The results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Ziwen Geng
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266000, China.
| |
Collapse
|
16
|
Zhang Q, Zhou W, Li B, Li L, Fu M, Zhou L, Yu X, Wang D, Wang Z. Genome-Wide Analysis and the Expression Pattern of the ERF Gene Family in Hypericum perforatum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010133. [PMID: 33440756 PMCID: PMC7827068 DOI: 10.3390/plants10010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Hypericum perforatum is a well-known medicinal herb currently used as a remedy for depression as it contains many high levels of secondary metabolites. The ethylene response factor (ERF) family encodes transcriptional regulators with multiple functions that play a vital role in the diverse developmental and physiological processes of plants, which can protect plants from various stresses by regulating the expression of genes. Although the function of several ERF genes from other plants has been further confirmed, H. perforatum is the first sequenced species in Malpighiales, and no information regarding the ERFs has been reported thus far. In this study, a total of 101 ERF genes were identified from H. perforatum. A systematic and thorough bioinformatic analysis of the ERF family was performed using the genomic database of H. perforatum. According to the phylogenetic tree analysis, HpERFs were further classified into 11 subfamilies. Gene ontology (GO) analysis suggested that most of the HpERFs likely participate in the biological processes of plants. The cis-elements were mainly divided into five categories, associated with the regulation of gene transcription, response to various stresses, and plant development. Further analysis of the expression patterns showed that the stress-responsive HpERFs responded to different treatments. This work systematically analyzed HpERFs using the genome sequences of H. perforatum. Our results provide a theoretical basis for further investigation of the function of stress-related ERFs in H. perforatum.
Collapse
|
17
|
Ahmed S, Rashid MAR, Zafar SA, Azhar MT, Waqas M, Uzair M, Rana IA, Azeem F, Chung G, Ali Z, Atif RM. Genome-wide investigation and expression analysis of APETALA-2 transcription factor subfamily reveals its evolution, expansion and regulatory role in abiotic stress responses in Indica Rice (Oryza sativa L. ssp. indica). Genomics 2020; 113:1029-1043. [PMID: 33157261 DOI: 10.1016/j.ygeno.2020.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Rice is an important cereal crop that serves as staple food for more than half of the world population. Abiotic stresses resulting from changing climatic conditions are continuously threating its yield and production. Genes in APETALA-2 (AP2) family encode transcriptional regulators implicated during regulation of developmental processes and abiotic stress responses but their identification and characterization in indica rice was still missing. In this context, twenty-six genes distributed among eleven chromosomes in Indica rice encoding AP2 transcription-factor subfamily were identified and their diverse haplotypes were studied. Phylogenetic analysis of OsAP2 TF family-members grouped them into three clades indicating conservation of clades among cereals. Segmental duplications were observed to be principal route of evolution, supporting the higher positive selection-pressure, which were estimated to be originated about 10.57 to 56.72 million years ago (MYA). Conserved domain analysis and intron-exon distribution pattern of identified OsAP2s revealed their exclusive distribution among the specific clades of the phylogenetic tree. Moreover, the members of osa-miR172 family were also identified potentially targeting four OsAP2 genes. The real-time quantitative expression profiling of OsAP2s under heat stress conditions in contrasting indica rice genotypes revealed the differential expression pattern of OsAP2s (6 genes up-regulated and 4 genes down-regulated) in stress- and genotype-dependent manner. These findings unveiled the evolutionary pathways of AP2-TF in rice, and can help the functional characterization under developmental and stress responses.
Collapse
Affiliation(s)
- Sohaib Ahmed
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abdul Rehman Rashid
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center of Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Syed Adeel Zafar
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Agriculture Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Uzair
- National key facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Iqrar Ahmad Rana
- Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Republic of Korea.
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad-38040 Pakistan.
| |
Collapse
|
18
|
Gao Y, Han D, Jia W, Ma X, Yang Y, Xu Z. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:420-435. [PMID: 33011644 DOI: 10.1016/j.plaphy.2020.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) superfamily play crucial roles in plant growth and development as well as biotic and abiotic stresses response. Here, we systematically characterized 375 AP2/ERF TFs in the Nicotiana tabacum genome. Phylogenetic tree topology and conserved domain number allowed TF classifications into three families of 29 AP2, 341 ERF, and 5 RAV genes, which were unevenly distributed throughout 24 tobacco chromosomes. Gene family expansions were retained from whole genome or segmental duplications followed by tandem duplication. Gene structure and motif analysis revealed intra-group conservation. MicroRNA target site prediction identified nine miR172 family members targeting six NtAP2-family genes; 41 NtAP2/ERFs participated in protein co-regulatory networks. NtAP2/ERF gene global expression profiles ascertained by RNA-seq displayed diverse expression patterns across tissues and under different abiotic and biotic stresses (including drought, cold, and Phytopthora parasitica inoculation). As determined by qRT-PCR, the expression of NtAP2/ERF were induced by five hormone and four abiotic stress. RNA interference of NtRAV-4 in tobacco accelerates seed germination, enhance root development and leaf photosynthetic ability. Suppression of NtRAV-4 increases drought tolerance by improving antioxidant defense ability and reduced relative electrolyte leakage under drought stress. These results enhance understanding of NtAP2/ERF gene function and will facilitate genetic improvement of tobacco stress tolerance.
Collapse
Affiliation(s)
- Yun Gao
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Han
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wei Jia
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiaohan Ma
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zicheng Xu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Huang Y, Liu Y, Zhang M, Chai M, He Q, Jakada BH, Chen F, Chen H, Jin X, Cai H, Qin Y. Genome-wide identification and expression analysis of the ERF transcription factor family in pineapple ( Ananas comosus (L.) Merr.). PeerJ 2020; 8:e10014. [PMID: 33024641 PMCID: PMC7518161 DOI: 10.7717/peerj.10014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/01/2020] [Indexed: 01/27/2023] Open
Abstract
Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value. The quality and yield of pineapple will be affected by various environmental conditions. Under adverse conditions, plants can produce a complex reaction mechanism to enhance their resistance. It has been reported that the member of ethylene responsive transcription factors (ERFs) plays a crucial role in plant developmental process and stress response. However, the function of these proteins in pineapple remains limited. In this study, a total of 74 ERF genes (AcoERFs) were identified in pineapple genome, named from AcoERF1 to AcoERF74, and divided into 13 groups based on phylogenetic analysis. We also analyzed gene structure, conserved motif and chromosomal location of AcoERFs, and the AcoERFs within the same group possess similar gene structures and motif compositions. Three genes (AcoERF71, AcoERF73 and AcoERF74) were present on unanchored scaffolds, so they could not be conclusively mapped on chromosome. Synteny and cis-elements analysis of ERF genes provided deep insight into the evolution and function of pineapple ERF genes. Furthermore, we analyzed the expression profiling of AcoERF in different tissues and developmental stages, and 22 AcoERF genes were expressed in all examined tissues, in which five genes (AcoERF13, AcoERF16, AcoERF31, AcoERF42, and AcoERF65) had high expression levels. Additionally, nine AcoERF genes were selected for functional verification by qRT-PCR. These results provide useful information for further investigating the evolution and functions of ERF family in pineapple.
Collapse
Affiliation(s)
- Youmei Huang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yanhui Liu
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Man Zhang
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Mengnan Chai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Qing He
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Bello Hassan Jakada
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Fangqian Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Huihuang Chen
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Xingyue Jin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Hanyang Cai
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yuan Qin
- State Key Lab of Ecological Pest Control for Fujian and Taiwan Crops; Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education; Fujian Provincial Key Lab of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi Province, China
| |
Collapse
|
20
|
Identification of EIL and ERF Genes Related to Fruit Ripening in Peach. Int J Mol Sci 2020; 21:ijms21082846. [PMID: 32325835 PMCID: PMC7216043 DOI: 10.3390/ijms21082846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/30/2022] Open
Abstract
Peach (Prunus persica) is a climacteric fruit with a relatively short shelf life due to its fast ripening or softening process. Here, we report the association of gene families encoding ethylene insensitive-3 like (EIL) and ethylene response factor (ERF) with fruit ripening in peach. In total, 3 PpEILs and 12 PpERFs were highly expressed in fruit, with the majority showing a peak of expression at different stages. All three EILs could activate ethylene biosynthesis genes PpACS1 and PpACO1. One out of the 12 PpERFs, termed PpERF.E2, is a homolog of ripening-associated ERFs in tomato, with a consistently high expression throughout fruit development and an ability to activate PpACS1 and PpACO1. Additionally, four subgroup F PpERFs harboring the EAR repressive motif were able to repress the PpACO1 promoter but could also activate the PpACS1 promoter. Promoter deletion assay revealed that PpEILs and PpERFs could participate in transcriptional regulation of PpACS1 through either direct or indirect interaction with various cis-elements. Taken together, these results suggested that all three PpEILs and PpERF.E2 are candidates involved in ethylene biosynthesis, and EAR motif-containing PpERFs may function as activator or repressor of ethylene biosynthesis genes in peach. Our study provides an insight into the roles of EILs and ERFs in the fruit ripening process.
Collapse
|
21
|
Zhang S, Zhu C, Lyu Y, Chen Y, Zhang Z, Lai Z, Lin Y. Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus longan Lour. BMC Genomics 2020; 21:62. [PMID: 31959122 PMCID: PMC6971931 DOI: 10.1186/s12864-020-6469-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors that regulate diverse developmental processes and stress responses in plants. They have been identified in many plants. However, little is known about the AP2/ERF superfamily in longan (Dimocarpus longan Lour.), which is an important tropical/subtropical evergreen fruit tree that produces a variety of bioactive compounds with rich nutritional and medicinal value. We conducted a genome-wide analysis of the AP2/ERF superfamily and its roles in somatic embryogenesis (SE) and developmental processes in longan. Results A genome-wide survey of the AP2/ERF superfamily was carried out to discover its evolution and function in longan. We identified 125 longan AP2/ERF genes and classified them into the ERF (101 members), AP2 (19 members), RAV (four members) families, and one Soloist. The AP2 and Soloist genes contained one to ten introns, whereas 87 genes in the ERF and RAV families had no introns. Hormone signaling molecules such as methyl jasmonate (MeJA), abscisic acid (ABA), gibberellin, auxin, and salicylic acid (SA), and stress response cis-acting element low-temperature (55) and defense (49) boxes also were identified. We detected diverse single nucleotide polymorphisms (SNPs) between the ‘Hong He Zi’ (HHZ) and ‘SI JI MI’ (SJM) cultivars. The number of insertions and deletions (InDels) was far fewer than SNPs. The AP2 family members exhibited more alternative splicing (AS) events in different developmental processes of longan than members of the other families. Expression pattern analysis revealed that some AP2/ERF members regulated early SE and developmental processes in longan seed, root, and flower, and responded to exogenous hormones such as MeJA, SA, and ABA, and 2,4-D, a synthetic auxin. Protein interaction predictions indicated that the Baby Boom (BBM) transcription factor, which was up-regulated at the transcriptional level in early SE, may interact with the LALF/AGL15 network. Conclusions The comprehensive analysis of molecular evolution and expression patterns suggested that the AP2/ERF superfamily may plays an important role in longan, especially in early SE, and in seed, root, flower, and young fruit. This systematic analysis provides a foundation for further functional characterization of the AP2/ERF superfamily with the aim of longan improvement.
Collapse
Affiliation(s)
- Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yumeng Lyu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
22
|
Solomon CU, Drea S. Besides and Beyond Flowering: Other roles of EuAP2 Genes in Plant Development. Genes (Basel) 2019; 10:genes10120994. [PMID: 31805740 PMCID: PMC6947164 DOI: 10.3390/genes10120994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
EuAP2 genes are well-known for their role in flower development, a legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu 441107, Nigeria
- Correspondence:
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
23
|
Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics 2019; 18:240-254. [PMID: 30783669 DOI: 10.1093/bfgp/elz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding the molecular basis of the gene-regulatory networks underlying agronomic traits or plant responses to abiotic/biotic stresses is very important for crop improvement. In this context, transcription factors, which either singularly or in conjugation directly control the expression of many target genes, are suitable candidates for improving agronomic traits via genetic engineering. In this regard, members of one of the largest class of plant-specific APETALA2/Ethylene Response Factor (AP2/ERF) superfamily, which is implicated in various aspects of development and plant stress adaptation responses, are considered high-value targets for crop improvement. Besides their long-known regulatory roles in mediating plant responses to abiotic stresses such as drought and submergence, the novel roles of AP2/ERFs during fruit ripening or secondary metabolites production have also recently emerged. The astounding functional plasticity of AP2/ERF members is considered to be achieved by their interplay with other regulatory networks and signalling pathways. In this review, we have integrated the recently accumulated evidence from functional genomics studies and described their newly emerged functions in plants. The key structural features of AP2/ERF proteins and the modes of their action are briefly summarized. The importance of AP2/ERFs in plant development and stress responses and a summary of the event of their successful applications in crop improvement programs are also provided. Altogether, we envisage that the synthesized information presented in this review will be useful to design effective strategies for improving agronomic traits in crop plants.
Collapse
Affiliation(s)
- Rajat Srivastava
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
24
|
Farcuh M, Toubiana D, Sade N, Rivero RM, Doron-Faigenboim A, Nambara E, Sadka A, Blumwald E. Hormone balance in a climacteric plum fruit and its non-climacteric bud mutant during ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:51-65. [PMID: 30824029 DOI: 10.1016/j.plantsci.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 05/14/2023]
Abstract
Hormone balance plays a crucial role in the control of fruit ripening. We characterized and compared hormone balance in two Japanese plum cultivars (Prunus salicina Lindl.), namely Santa Rosa, a climacteric type, and Sweet Miriam, its non-climacteric bud-sport mutant. We assessed hormonal changes in gene expression associated with hormone biosynthesis, perception and signaling during ripening on-the tree and throughout postharvest storage and in response to ethylene treatments. Non-climacteric fruit displayed lower ethylene levels than climacteric fruit at all stages and lower auxin levels during the initiation of ripening on-the-tree and during most of post-harvest storage. Moreover, 1-MCP-induced ethylene decrease also resulted in low auxin contents in Santa Rosa, supporting the role of auxin in climacteric fruit ripening. The differences in auxin contents between Santa Rosa and Sweet Miriam fruit could be the consequence of different routed auxin biosynthesis pathways as indicated by the significant negative correlations between clusters of auxin metabolism-associated genes. Ethylene induced increased ABA levels throughout postharvest storage in both ripening types. Overall, ripening of Santa Rosa and Sweet Miriam fruit are characterized by distinct hormone accumulation pathways and interactions.
Collapse
Affiliation(s)
- Macarena Farcuh
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - David Toubiana
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - Nir Sade
- Department of Plant Sciences, University of California, Davis CA 95616, USA; Department of Molecular Biology & Ecology of Plants, Tel Aviv University, Tel Aviv, 69978 Israel
| | | | - Adi Doron-Faigenboim
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Avi Sadka
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis CA 95616, USA.
| |
Collapse
|
25
|
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 2018; 8:15612. [PMID: 30353116 PMCID: PMC6199273 DOI: 10.1038/s41598-018-33744-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Najafi S, Sorkheh K, Nasernakhaei F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci Rep 2018; 8:11576. [PMID: 30068961 PMCID: PMC6070487 DOI: 10.1038/s41598-018-29526-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
One of the most prominent families of genes in plants is the AP2/ERF which play an important role in regulating plant growth and responses to various stresses. In this research, a genome-wide survey was conducted to recognize the AP2/ERF genes in sunflower (Helianthus annuus L.), and a total of 288 HaAP2/ERF was obtained. Phylogenetic analysis divided them into four sub-families, including 248 ERF, 4 RAV and 35 AP2, and one subgroup of the Soloist family. Localization of chromosome, gene structure, the conserved motif, gene ontology, interaction networks, homology modeling, the modeling of cis-regulatory elements and the analysis of events in the duplication of genes were carried out for HaAP2/ERF genes. Finally, 9AP2/ERF genes were chosen to confirm the gene expression of the selected genes in leaf and root tissues in various abiotic stress conditions by qPCR. The results confirmed that AP2/ERFs genes could effectively resist abiotic stress. Also, proline content was studied under drought, salinity, cold and heat stress. The results indicated that proline was increased under abiotic stress. This research has been done for the first time to determine the HaAP2/ERF family, which prepared valuable data for the evolutionary and practical research regarding AP2/ERF in sunflower.
Collapse
Affiliation(s)
- Somayeh Najafi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran
| | - Karim Sorkheh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran.
| | - Fatemeh Nasernakhaei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P. O. Box 61355/144, Ahvaz, Iran
| |
Collapse
|
27
|
Zhang C, Feng R, Ma R, Shen Z, Cai Z, Song Z, Peng B, Yu M. Genome-wide analysis of basic helix-loop-helix superfamily members in peach. PLoS One 2018; 13:e0195974. [PMID: 29659634 PMCID: PMC5901983 DOI: 10.1371/journal.pone.0195974] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is a superfamily found in all eukaryotes that plays important roles in regulating growth and development. Over the past several decades, many bHLH superfamily genes have been identified and characterized in herbaceous and woody plants. However, the genes belonging to the bHLH superfamily in peach (Prunus persica) have not yet been comprehensively identified and characterized. Here, we identified 95 members of the bHLH superfamily in the peach genome, and these genes were classified into 19 subfamilies based on a phylogenetic comparison with bHLH proteins from Arabidopsis. The members within each subfamily were highly conserved according to the analysis of motif compositions and exon/intron organizations. The 95 bHLH genes were unevenly distributed on chromosomes 1 to 8 of the peach genome. We identified 57 pairs of bHLH members that were orthologous between peach and Arabidopsis. Additionally, 48 pairs of paralogous bHLH genes were identified on the eight chromosomes of the peach genome. Coupled with relative expression analysis of bHLH genes in red-fleshed peach fruit at five developmental stages, we identified several bHLH genes that might be involved in fruit development and anthocyanin biosynthesis. This study provides insight into the molecular mechanisms through which these genes are involved in the regulation of biological and biochemical processes in peach and lays the foundation for further studies on these genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Ruchao Feng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Zhizhong Song
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Bin Peng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
28
|
Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res 2018; 64. [PMID: 29151275 DOI: 10.1111/jpi.12454] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| |
Collapse
|
29
|
Li H, Wang Y, Wu M, Li L, Li C, Han Z, Yuan J, Chen C, Song W, Wang C. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:946. [PMID: 28642765 PMCID: PMC5462956 DOI: 10.3389/fpls.2017.00946] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Cong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhanpin Han
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Jiye Yuan
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chunguo Wang
| |
Collapse
|
30
|
Wang P, Cheng T, Lu M, Liu G, Li M, Shi J, Lu Y, Laux T, Chen J. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. FRONTIERS IN PLANT SCIENCE 2016; 7:1383. [PMID: 27703459 PMCID: PMC5029118 DOI: 10.3389/fpls.2016.01383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/30/2016] [Indexed: 05/20/2023]
Abstract
The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.
Collapse
Affiliation(s)
- Pengkai Wang
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
- Suzhou Polytechnic Institute of AgricultureSuzhou, China
| | - Tielong Cheng
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Mengzhu Lu
- Laboratory of Biotechnology, Chinese Academy of ForestryBeijing, China
| | - Guangxin Liu
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Meiping Li
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Ye Lu
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| | - Thomas Laux
- Institute of Biology III, University of FreiburgFreiburg, Germany
| | - Jinhui Chen
- Ministry of Education, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry UniversityNanjing, China
| |
Collapse
|
31
|
Cui L, Feng K, Wang M, Wang M, Deng P, Song W, Nie X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics 2016; 17:636. [PMID: 27527343 PMCID: PMC4986339 DOI: 10.1186/s12864-016-2968-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Background The AP2/ERF transcription factor is one of the most important gene families in plants, which plays the vital role in regulating plant growth and development as well as in response to diverse stresses. Although AP2/ERFs have been thoroughly characterized in many plant species, little is known about this family in the model plant Brachypodium distachyon, especially those involved in the regulatory network of stress processes. Results In this study, a comprehensive genome-wide search was performed to identify AP2/ERF gene family in Brachypodium and a total of 141 BdAP2/ERFs were obtained. Phylogenetic analysis classified them into four subfamilies, of which 112 belonged to ERF, four to RAV and 24 to AP2 as well as one to soloist subfamily respectively, which was in accordance with the number of AP2 domains and gene structure analysis. Chromosomal localization, gene structure, conserved protein motif and cis-regulatory elements as well as gene duplication events analysis were further performed to systematically investigate the evolutionary features of these BdAP2/ERF genes. Furthermore, the regulatory network between BdAP2/ERF and other genes were constructed using the orthology-based method, and 39 BdAP2/ERFs were found to be involved in the regulatory network and 517 network branches were identified. The expression profiles of BdAP2/ERF during development and under diverse stresses were investigated using the available RNA-seq and microarray data and ten tissue-specific and several stress-responsive BdAP2/ERF genes were identified. Finally, 11 AP2/ERF genes were selected to validate their expressions in different tissues and under different stress treatments using RT-PCR method and results verified that these AP2/ERFs were involved in various developmental and physiological processes. Conclusions This study for the first time reported the characteristics of the BdAP2/ERF family, which will provide the invaluable information for further evolutionary and functional studies of AP2/ERF in Brachypodium, and also contribute to better understanding the molecular basis for development and stresses tolerance in this model species and beyond. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2968-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengxing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Liao W, Li Y, Yang Y, Wang G, Peng M. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics 2016; 17:538. [PMID: 27488048 PMCID: PMC4973035 DOI: 10.1186/s12864-016-2845-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cassava plants (Manihot esculenta Crantz) have obvious abscission zone (AZ) structures in their leaf pulvinus-petioles. Cassava leaf abscission can be triggered by either 17 days of water-deficit stress or 4 days of ethylene treatment. To date, little is known about cassava AP2/ERF factors, and less is known regarding their roles in regulating abscission zone development. RESULTS Here, the cassava and Arabidopsis AP2/ERF genes were compared, finding that the cassava genome contains approximately 1.54-fold more ERF subfamily than the Arabidopsis genome. Microarray analysis was used to identify the AP2/ERF genes that are expressed in cassava leaf pulvinus-petiole abscission zones by comparing the AP2/ERF gene expression profiles of ethylene- and water-deficit stress-induced leaf abscission. In total, 99 AP2/ERF genes were identified as expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters at six time points during ethylene- and water-deficit stress-induced leaf abscission demonstrated that 20 ERF subfamily genes had similar expression patterns in response to both treatments. GO (Gene Ontology) annotation confirmed that all 20 ERF subfamily genes participate in ethylene-mediated signalling. Analysis of the putative ERF promoter regions shown that the genes contained primarily ethylene- and stress-related cis-elements. Further analysis of ACC oxidase activity in AZs across six time points during abscission shown increased ethylene production in response to both ethylene and water-deficit stress; however, the difference was more dramatic for water-deficit stress. Finally, the expression ratios of 20 ERF subfamily genes were analysed in two cassava cultivars, 'KU50' and 'SC5', that exhibit different levels of leaf abscission when challenged with the same water-deficit stress. The analysis indicated that most of the ERF genes were expressed at higher levels in the precocious abscission 'KU50' cultivar than in the delayed abscission 'SC5' cultivar. CONCLUSION Ccomparative analysis of both ethylene- and water-deficit stress-induced leaf abscission shown that the ERF subfamily functions in the regulation of cassava abscission zone development.
Collapse
Affiliation(s)
- Wenbin Liao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Yayun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Yiling Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Gan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
33
|
Tang Y, Qin S, Guo Y, Chen Y, Wu P, Chen Y, Li M, Jiang H, Wu G. Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress. PLoS One 2016; 11:e0150879. [PMID: 26943337 PMCID: PMC4778941 DOI: 10.1371/journal.pone.0150879] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.
Collapse
Affiliation(s)
- Yuehui Tang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shanshan Qin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yali Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanbo Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
- * E-mail:
| |
Collapse
|
34
|
Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Sci Rep 2016; 6:18878. [PMID: 26733055 PMCID: PMC4702079 DOI: 10.1038/srep18878] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023] Open
Abstract
AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening.
Collapse
|
35
|
Wuddineh WA, Mazarei M, Turner GB, Sykes RW, Decker SR, Davis MF, Stewart CN. Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel. Front Bioeng Biotechnol 2015; 3:101. [PMID: 26258121 PMCID: PMC4507462 DOI: 10.3389/fbioe.2015.00101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels.
Collapse
Affiliation(s)
- Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Geoffrey B Turner
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Robert W Sykes
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Stephen R Decker
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Mark F Davis
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| |
Collapse
|
36
|
Wu H, Lv H, Li L, Liu J, Mu S, Li X, Gao J. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis). PLoS One 2015; 10:e0126657. [PMID: 25985202 PMCID: PMC4436012 DOI: 10.1371/journal.pone.0126657] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/06/2015] [Indexed: 11/23/2022] Open
Abstract
The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis) is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA) and the division time of AP2/ERF family genes between rice and moso bamboo was 15–23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo.
Collapse
Affiliation(s)
- Huili Wu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
| | - Hao Lv
- Hunan Forest Botanical Garden, Changsha, Hunan Province, People’s Republic of China
| | - Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
- * E-mail: (XPL); (JG)
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People’s Republic of China
- * E-mail: (XPL); (JG)
| |
Collapse
|
37
|
Wang X, Liu S, Tian H, Wang S, Chen JG. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1064. [PMID: 26635862 PMCID: PMC4659910 DOI: 10.3389/fpls.2015.01064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96's transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Shucai Wang,
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
38
|
Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis. PLoS One 2014; 9:e99367. [PMID: 24971876 PMCID: PMC4074046 DOI: 10.1371/journal.pone.0099367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.
Collapse
|
39
|
Jourda C, Cardi C, Mbéguié-A-Mbéguié D, Bocs S, Garsmeur O, D'Hont A, Yahiaoui N. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. THE NEW PHYTOLOGIST 2014; 202:986-1000. [PMID: 24716518 DOI: 10.1111/nph.12710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/25/2013] [Indexed: 05/26/2023]
Abstract
Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.
Collapse
Affiliation(s)
| | | | - Didier Mbéguié-A-Mbéguié
- CIRAD, UMR QUALISUD, F-97130, Capesterre-Belle-Eau, Guadeloupe, France
- CIRAD, UMR QUALISUD, F-34398, Montpellier, France
| | | | | | | | | |
Collapse
|
40
|
Xie XL, Shen SL, Yin XR, Xu Q, Sun CD, Grierson D, Ferguson I, Chen KS. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Mol Biol Rep 2014; 41:4261-71. [PMID: 24566692 DOI: 10.1007/s11033-014-3297-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.
Collapse
Affiliation(s)
- Xiu-lan Xie
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep 2014; 41:2937-49. [PMID: 24458826 DOI: 10.1007/s11033-014-3150-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
In this study, 10 grapevine (Vitis vinifera) SR/CAMTA (Signal Responsive/Calmodulin-binding Transcription Activators) gene models were identified from three grapevine genome protein datasets. They belong to four gene groups: VvCAMTA1, VvCAMTA3, VvCAMTA4 and VvCAMTA5, which were located on chromosome 5, 7_random, 1 and 5, respectively. Alternative splicing could explain the multiple gene models in one gene group. Subcellular localization using the WoLF tool showed that most of the VvCAMTAs were located in the nucleus, except for VvCAMTA3.1, VvCAMTA3.2 and VvCAMTA5.2, which were located in the chloroplast, chloroplast and cytosol, respectively. Subcellular localization using TargetP showed that most of the VvCAMTAs were not located in the chloroplast, mitochondrion and secretory pathway in cells. VvCAMTA1.1 and VvCAMTA1.2 were located in the mitochondria. The digital gene expression profile showed that VvCAMTAs play important roles in Ca2+ signal transduction. The gene expression patterns of VvCAMTAs were different; for example, VvCAMTA1 was expressed mainly in the bud, while VvCAMTA3 was expressed mainly in fruit and inflorescence, with low expression in the bud. The results of this study make a substantial contribution to our knowledge concerning genes, genome annotation, and cell signal transduction in grapevine.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu W, Li F, Ling L, Liu A. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC Genomics 2013; 14:785. [PMID: 24225250 PMCID: PMC4046667 DOI: 10.1186/1471-2164-14-785] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The AP2/ERF transcription factor, one of the largest gene families in plants, plays a crucial role in the regulation of growth and development, metabolism, and responses to biotic and abiotic stresses. Castor bean (Ricinus communis L., Euphobiaceae) is one of most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. The available genome provides a great chance to identify and characterize the global information on AP2/ERF transcription factors in castor bean, which might provide insights in understanding the molecular basis of the AP2/ERF family in castor bean. RESULTS A total of 114 AP2/ERF transcription factors were identified based on the genome in castor bean. According to the number of the AP2/ERF domain, the conserved amino acid residues within AP2/ERF domain, the conserved motifs and gene organization in structure, and phylogenetical analysis, the identified 114 AP2/ERF transcription factors were characterized. Global expression profiles among different tissues using high-throughput sequencing of digital gene expression profiles (DGEs) displayed diverse expression patterns that may provide basic information in understanding the function of the AP2/ERF gene family in castor bean. CONCLUSIONS The current study is the first report on identification and characterization of the AP2/ERF transcription factors based on the genome of castor bean in the family Euphobiaceae. Results obtained from this study provide valuable information in understanding the molecular basis of the AP2/ERF family in castor bean.
Collapse
Affiliation(s)
- Wei Xu
- />Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
- />Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Fei Li
- />Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| | - Lizhen Ling
- />Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| | - Aizhong Liu
- />Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| |
Collapse
|
43
|
Li A, Zhou Y, Jin C, Song W, Chen C, Wang C. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:1822-36. [PMID: 24009335 DOI: 10.1093/pcp/pct124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.
Collapse
Affiliation(s)
- Ai Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
44
|
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. THE NEW PHYTOLOGIST 2013; 199:639-49. [PMID: 24010138 DOI: 10.1111/nph.12291] [Citation(s) in RCA: 590] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription factors belonging to the APETALA2/Ethylene Responsive Factor (AP2/ERF) family are conservatively widespread in the plant kingdom. These regulatory proteins are involved in the control of primary and secondary metabolism, growth and developmental programs, as well as responses to environmental stimuli. Due to their plasticity and to the specificity of individual members of this family, AP2/ERF transcription factors represent valuable targets for genetic engineering and breeding of crops. In this review, we integrate the evidence collected from functional and structural studies to describe their different mechanisms of action and the regulatory pathways that affect their activity.
Collapse
|