1
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
3
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Guerra-Cantera S, Frago LM, Espinoza-Chavarria Y, Collado-Pérez R, Jiménez-Hernaiz M, Torrecilla-Parra M, Barrios V, Belsham DD, Laursen LS, Oxvig C, Argente J, Chowen JA. Palmitic Acid Modulation of the Insulin-Like Growth Factor System in Hypothalamic Astrocytes and Neurons. Neuroendocrinology 2024; 114:958-974. [PMID: 39043147 DOI: 10.1159/000540442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Yesenia Espinoza-Chavarria
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrecilla-Parra
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
7
|
Bimonte VM, Catanzaro G, Spinello Z, Massari MC, Curreli M, Terrana G, Defeudis G, Halupczok-Żyła J, Mantovani G, Ferretti E, Migliaccio S. Hypocalcemia in combination with hyperphosphatemia impairs muscle cell differentiation in vitro. J Endocrinol Invest 2024; 47:947-957. [PMID: 37819413 DOI: 10.1007/s40618-023-02212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Hypoparathyroidism is a rare endocrine disorder characterized by low or absent secretion of parathyroid hormone (PTH), which leads to decreased calcium and increased phosphorus levels in the serum. The diagnosis of hypoparathyroidism is based on the identification of the aforementioned biochemical abnormalities, which may be accompanied by clinical manifestations. Symptoms of hypoparathyroidism, primarily attributed to hypocalcemia, include muscle cramps or spasms, facial, leg, and foot pain, seizures, and tingling in the lips or fingers. The treatment of hypoparathyroidism depends on the severity of symptoms and the underlying pathology. Over the long term, calcium supplements, active vitamin D analogs, and thiazide diuretics may be needed. In fact, in patient cohorts in which optimal disease control still remains elusive, replacement therapy with recombinant parathyroid hormone analogs may be contemplated. Despite the predominantly neuromuscular symptoms of hypoparathyroidism, further effects of parathyroid hormone deficiency at the muscle cell level remain poorly understood. Thus, the aim of our study was to evaluate the effects of hypocalcemia in combination with hyperphosphatemia on muscle cells differentiation in vitro. METHODS C2C12 cells, an in vitro model of muscle cells, were differentiated for 2 or 6 days in the presence of hypocalcemia (CaCl2 0.9 mmol/l) and moderate (PO4 1.4 mmol/l) or severe (PO4 2.9 mmol/l) hyperphosphatemia, or combinations of both conditions. Cell differentiation and expression of genes linked to muscle differentiation were evaluated. RESULTS The combination of hypocalcemia with hyperphosphatemia induced a significant reduction (50%) in differentiation marker levels, such as MyoD (protein 1 for myoblast determination) and myogenin on the 1st day of differentiation, and MHC (myosin heavy chains) after 6 days of differentiation compared to control. Furthermore, this condition induced a statistically significant reduction of insulin-like growth factor-1 (IGF-1) mRNA expression and inhibition of IGF signaling and decrease in ERK phosphorylation compared to control cells. CONCLUSIONS Our results showed that a condition of hypocalcemia with hyperphosphatemia induced an alteration of muscle cell differentiation in vitro. In particular, we observed the reduction of myogenic differentiation markers, IGF-1 signaling pathway, and ERK phosphorylation in differentiated skeletal myoblasts. These data suggest that this altered extracellular condition might contribute to the mechanisms causing persistence of symptoms in patients affected by hypoparathyroidism.
Collapse
Affiliation(s)
- V M Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - G Catanzaro
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - Z Spinello
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - M C Massari
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - M Curreli
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - G Terrana
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - G Defeudis
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy
| | - J Halupczok-Żyła
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50004, Wrocław, Poland
| | - G Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - E Ferretti
- Department of Experimental Medicine, University "Sapienza" of Rome, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, University of Foro Italico, Largo Lauro De Bosis 6, 00195, Rome, Italy.
| |
Collapse
|
8
|
Sinigaglia B, Escudero J, Biagini SA, Garcia-Calleja J, Moreno J, Dobon B, Acosta S, Mondal M, Walsh S, Aguileta G, Vallès M, Forrow S, Martin-Caballero J, Migliano AB, Bertranpetit J, Muñoz FJ, Bosch E. Exploring Adaptive Phenotypes for the Human Calcium-Sensing Receptor Polymorphism R990G. Mol Biol Evol 2024; 41:msae015. [PMID: 38285634 PMCID: PMC10859840 DOI: 10.1093/molbev/msae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.
Collapse
Affiliation(s)
- Barbara Sinigaglia
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Escudero
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Jorge Garcia-Calleja
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Josep Moreno
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
- UB Institute of Neuroscience, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, Barcelona 08007, Spain
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Gabriela Aguileta
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Mònica Vallès
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Stephen Forrow
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB), Barcelona 08028, Spain
| | - Juan Martin-Caballero
- PCB-PRBB Animal Facility Alliance, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Department of Evolutionary Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| |
Collapse
|
9
|
Ding M, Li B, Chen H, Liang D, Ross RP, Stanton C, Zhao J, Chen W, Yang B. Human breastmilk-derived Bifidobacterium longum subsp. infantis CCFM1269 regulates bone formation by the GH/IGF axis through PI3K/AKT pathway. Gut Microbes 2024; 16:2290344. [PMID: 38116652 PMCID: PMC10761167 DOI: 10.1080/19490976.2023.2290344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent member of the gut microbiota of breastfed infants. In this study, the effects of human breastmilk-derived B.longum subsp. infantis CCFM1269 on bone formation in developing BALB/c mice were investigated. Newborn female and male mice were assigned to control group (administered saline), CCFM11269 group (administered B. longum subsp. infantis CCFM1269, 1 × 109 CFU/mouse/day) and I5TI group (administered B. longum subsp. infantis I5TI, 1 × 109 CFU/mouse/day) from 1-week-old to 3-, 4- and 5-week old. B. longum subsp. infantis I5TI served as a negative control in this study. The results demonstrated that B. longum subsp. infantis CCFM1269 promoted bone formation in growing mice by modulating the composition of the gut microbiota and metabolites. The expression of genes and proteins in the PI3K/AKT pathway was stimulated by B. longum subsp. infantis CCFM1269 through the GH/IGF-1 axis in growing mice. This finding suggests B. longum subsp. infantis CCFM1269 may be useful for modulating bone metabolism during growth.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dong Liang
- Department of Applied Nutrition I, China National Center for Food Safety Risk Assessment, Beijing, China
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Xing W, Kesavan C, Pourteymoor S, Mohan S. Global and Conditional Disruption of the Igf-I Gene in Osteoblasts and/or Chondrocytes Unveils Epiphyseal and Metaphyseal Bone-Specific Effects of IGF-I in Bone. BIOLOGY 2023; 12:1228. [PMID: 37759627 PMCID: PMC10525837 DOI: 10.3390/biology12091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
To evaluate the relative importance of IGF-I expression in various cell types for endochondral ossification, we quantified the trabecular bone at the secondary spongiosa and epiphysis of the distal femur in 8-12-week-old male mice with a global knockout of the Igf-I gene, as well as the conditional deletion of Igf-I in osteoblasts, chondrocytes, and osteoblasts/chondrocytes and their corresponding wild-type control littermates. The osteoblast-, chondrocyte-, and osteoblast/chondrocyte-specific Igf-I conditional knockout mice were generated by crossing Igf-I floxed mice with Cre transgenic mice in which Cre expression is under the control of either the Col1α2 or Col2α1 promoter. We found that the global disruption of Igf-I resulted in 80% and 70% reductions in bone size, defined as total volume, at the secondary spongiosa and epiphysis of the distal femur, respectively. The abrogation of Igf-I in Col1α2-producing osteoblasts but not Col2α1-producing chondrocytes decreased bone size by 25% at both the secondary spongiosa and epiphysis. In comparison, the deletion of the Igf-I globally or specifically in osteoblasts or chondrocytes reduced trabecular bone mass by 25%. In contrast, the universal deletion of Igf-I in all cells, but not the conditional disruption of Igf-I in osteoblasts and/or chondrocytes reduced trabecular bone mass in the epiphysis. The reduced trabecular bone mass at the secondary spongiosa in osteoblast- and/or chondrocyte-specific Igf-I conditional knockout mice is caused by the reduced trabecular number and increased trabecular separation. Immunohistochemistry studies found that the expression levels of chondrocyte (COL10, MMP13) and osteoblast (BSP) markers were less in the secondary spongiosa and the epiphyses in the global Igf-I deletion mice. Our data indicate that local and endocrine Igf-I act pleiotropically and in a cell type- and bone compartment-dependent manner in bone.
Collapse
Affiliation(s)
- Weirong Xing
- VA Loma Linda Healthcare Systems, Musculoskeletal Disease Center, Loma Linda, CA 92357, USA; (W.X.); (C.K.); (S.P.)
- Departments of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare Systems, Musculoskeletal Disease Center, Loma Linda, CA 92357, USA; (W.X.); (C.K.); (S.P.)
- Departments of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Sheila Pourteymoor
- VA Loma Linda Healthcare Systems, Musculoskeletal Disease Center, Loma Linda, CA 92357, USA; (W.X.); (C.K.); (S.P.)
| | - Subburaman Mohan
- VA Loma Linda Healthcare Systems, Musculoskeletal Disease Center, Loma Linda, CA 92357, USA; (W.X.); (C.K.); (S.P.)
- Departments of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Departments of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Departments of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
11
|
Ma L, Zhao W, Huang S, Xu F, Wang Y, Deng D, Zhang T, Shu S, Chen X. IGF/IGF-1R signal pathway in pain: a promising therapeutic target. Int J Biol Sci 2023; 19:3472-3482. [PMID: 37497005 PMCID: PMC10367553 DOI: 10.7150/ijbs.84353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Pain, one of the most important problems in the field of medicine and public health, has great research significance. Opioids are still the main drugs to relieve pain now. However, its application is limited due to its obvious side effects. Therefore, it is urgent to develop new drugs to relieve pain. Multiple studies have found that IGF/IGF-1R pathway plays an important role in the occurrence and development of pain. The regulation of IGF/IGF-1R pathway has obvious effect on pain. This review summarized and discussed the therapeutic potential of IGF/IGF-1R signal pathway for pain. It also summarized that IGF/IGF-1R regulates pain by acting on neuronal excitability, neuroinflammation, glial cells, apoptosis, etc. However, its mechanisms of occurrence and development in pain still need further study in the future. In conclusion, although more deep researches are needed, these studies indicate that IGF/IGF-1R signal pathway is a promising therapeutic target for pain.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| |
Collapse
|
12
|
Glińska M, Walczak M, Wikiera B, Pyrżak B, Majcher A, Paluchowska M, Gawlik A, Antosz A, Kusz M, Bossowski A, Stożek K, Wędrychowicz A, Starzyk J, Petriczko E. Difficulties in Interpreting IGF-1 Levels in Short Stature Children Born Small for Gestational Age (SGA) Treated with Recombinant Human Growth Hormone (rhGH) Based on Data from Six Clinical Centers in Poland. J Clin Med 2023; 12:4392. [PMID: 37445427 DOI: 10.3390/jcm12134392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The assessment of IGF-1 concentrations is one of the parameters used for evaluating response to rhGH treatment. An increase in IGF-1 concentration positively correlates with growth improvement, whereas IGF-1 concentrations significantly above the reference range may increase the risk of possible side effects. The aim of this study was to evaluate the IGF-1 local reference ranges for the rhGH treatment centers concerned and to compare these values with the population reference ranges. A retrospective analysis was conducted on auxological data from 229 SGA patients who received rhGH treatment between 2016 and 2020 at six university clinical centers in Poland. The IGF-1 levels were assessed at baseline, after 12 and 24 months, and compared to the reference ranges provided by the local laboratory and to the population reference ranges. After 12 months, 56 patients (24%) presented IGF-1 values > 97th percentile for the local reference range, whereas only 8 (3.5%) did so using the population reference ranges; p < 0.001. After 24 months of treatment, the values were: 47 (33%) > 97th percentile by local vs. 6 (4.2%) by population standards; p < 0.001. Thirty-nine patients had rhGH dose reduced after 12 months, of whom twelve (25%) had IGF-1 > 97th percentile according to the local reference ranges and five (13%) > 97th percentile for the population. Our data suggest that different methods used to determine IGF-1 concentration and the different IGF-1 reference ranges result in a significant proportion of rhGH-treated children with elevated IGF-1 concentration and experiencing dose reductions, which may negatively affect growth rate.
Collapse
Affiliation(s)
- Marta Glińska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Mieczysław Walczak
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Beata Wikiera
- Department of Endocrinology and Diabetology of Children and Adolescents, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Beata Pyrżak
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Majcher
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Paluchowska
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Aneta Gawlik
- Department of Paediatrics and Paediatric Endocrinology with Division of Sex Development Disorders, Upper Silesia Children's Health Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Antosz
- Department of Paediatrics and Paediatric Endocrinology with Division of Sex Development Disorders, Upper Silesia Children's Health Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcin Kusz
- Department of Paediatrics and Paediatric Endocrinology with Division of Sex Development Disorders, Upper Silesia Children's Health Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Artur Bossowski
- Department of Paediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Karolina Stożek
- Department of Paediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Anna Wędrychowicz
- Department of Endocrinology of Children and Young Adults, Collegium Medicum, Jagiellonian University, 31-008 Krakow, Poland
| | - Jerzy Starzyk
- Department of Endocrinology of Children and Young Adults, Collegium Medicum, Jagiellonian University, 31-008 Krakow, Poland
| | - Elżbieta Petriczko
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of the Developmental Age, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
13
|
Fang J, Zhang X, Chen X, Wang Z, Zheng S, Cheng Y, Liu S, Hao L. The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol 2023; 238:124125. [PMID: 36948334 DOI: 10.1016/j.ijbiomac.2023.124125] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a polypeptide hormone with vital biological functions in bone cells. The abnormal expression of IGF-1 has a serious effect on bone growth, particularly bone remodeling. Evidence from animal models and human disease suggested that both IGF-1 deficiency and excess cause changes in bone remodeling equilibrium, resulting in profound alterations in bone mass and development. Here, we first introduced the functions and mechanisms of the members of IGFs in bone. Subsequently, the critical role of IGF-1 in the process of bone remodeling were emphasized from the aspects of bone resorption and bone formation respectively. This review explains the mechanism of IGF-1 in maintaining bone mass and bone homeostasis to a certain extent and provides a theoretical basis for further research.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun 130061, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Yan R, Ding J, Yang Q, Zhang X, Han J, Jin T, Shi S, Wang X, Zheng Y, Li H, Zhang H, An Y. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114666. [PMID: 36812871 DOI: 10.1016/j.ecoenv.2023.114666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Skeletal system toxicity due to lead exposure has attracted extensive attention in recent years, but few studies focus on the skeletal toxicity of lead in the early life stages of zebrafish. The endocrine system, especially the GH/IGF-1 axis, plays an important role in bone development and bone health of zebrafish in the early life. In the present study, we investigated whether lead acetate (PbAc) affected the GH/IGF-1 axis, thereby causing skeletal toxicity in zebrafish embryos. Zebrafish embryos were exposed to lead PbAc between 2 and 120 h post fertilization (hpf). At 120 hpf, we measured developmental indices, such as survival, deformity, heart rate, and body length, and assessed skeletal development by Alcian Blue and Alizarin Red staining and the expression levels of bone-related genes. The levels of GH and IGF-1 and the expression levels of GH/IGF-1 axis-related genes were also detected. Our data showed that the LC50 of PbAc for 120 h was 41 mg/L. Compared with the control group (0 mg/L PbAc), after PbAc exposure, the deformity rate increased, the heart rate decreased, and the body length was shortened at various time periods, in the 20-mg/L group at 120 hpf, the deformity rate increased by 50 fold, the heart rate decreased by 34%, and the body length shortened by 17%. PbAc altered cartilage structures and exacerbated bone loss in zebrafish embryos; in addition, PbAc exposure down-regulated the expression of chondrocyte (sox9a, sox9b), osteoblast (bmp2, runx2) and bone mineralization-related genes (sparc, bglap), and up-regulated the expression of osteoclast marker genes (rankl, mcsf). The GH level increased and the IGF-1 level declined significantly. The GH/IGF-1 axis related genes (ghra, ghrb, igf1ra, igf1rb, igf2r, igfbp2a, igfbp3, igfbp5b) were all decreased. These results suggested that PbAc inhibited the differentiation and maturation of osteoblasts and cartilage matrix, promoted the formation of osteoclasts, and ultimately induced cartilage defects and bone loss by disrupting the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Jie Ding
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Junyu Han
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Shudi Shi
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xirui Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Yu Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Heran Li
- Microwants International LTD, 999077, Hong Kong, China.
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Preventive Medicine Association, Nanjing 210009, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
16
|
Bi R, Luo X, Li Q, Li P, Li H, Fan Y, Ying B, Zhu S. Igf1 Regulates Fibrocartilage Stem Cells, Cartilage Growth, and Homeostasis in the Temporomandibular Joint of Mice. J Bone Miner Res 2023; 38:556-567. [PMID: 36722289 DOI: 10.1002/jbmr.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Temporomandibular joint (TMJ) growth requires orchestrated interactions between various cell types. Recent studies revealed that fibrocartilage stem cells (FCSCs) in the TMJ cartilage play critical roles as cell resources for joint development and repair. However, the detailed molecular network that influences FCSC fate during TMJ cartilage development remains to be elucidated. Here, we investigate the functional role of Igf1 in FCSCs for TMJ cartilage growth and homeostasis by lineage tracing using Gli1-CreER+ ; Tmflfl mice and conditional Igf1 deletion using Gli1-/Col2-CreER+ ; Igf1fl/fl mice. In Gli1-CreER+ ; Tmflfl mice, red fluorescence+ (RFP+ ) FCSCs show a favorable proliferative capacity. Igf1 deletion in Gli1+ /Col2+ cell lineages leads to distinct pathological changes in TMJ cartilage. More serious cartilage thickness and cell density reductions are found in the superficial layers in Gli1-CreER+ ; Igf1fl/fl mice. After long-term Igf1 deletion, a severe disordered cell arrangement is found in both groups. When Igf1 is conditionally deleted in vivo, the red fluorescent protein-labeled Gli1+ FCSC shows a significant disruption of chondrogenic differentiation, cell proliferation, and apoptosis leading to TMJ cartilage disarrangement and subchondral bone loss. Immunostaining shows that pAkt signaling is blocked in all cartilage layers after the Gli1+ -specific deletion of Igf1. In vitro, Igf1 deletion disrupts FCSC capacities, including proliferation and chondrogenesis. Moreover, the deletion of Igf1 in FCSCs significantly aggravates the joint osteoarthritis phenotype in the unilateral anterior crossbite mouse model, characterized by decreased cartilage thickness and cell numbers as well as a loss of extracellular matrix secretions. These findings uncover Igf1 as a regulator of TMJ cartilage growth and repair. The deletion of Igf1 disrupts the progenitor capacity of FCSCs, leading to a disordered cell distribution and exaggerating TMJ cartilage dysfunction. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueting Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haohan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binbin Ying
- Department of Stomatology, Ningbo First Hospital, Ningbo, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
18
|
Hulen J, Kenny D, Black R, Hallgren J, Hammond KG, Bredahl EC, Wickramasekara RN, Abel PW, Stessman HAF. KMT5B is required for early motor development. Front Genet 2022; 13:901228. [PMID: 36035149 PMCID: PMC9411648 DOI: 10.3389/fgene.2022.901228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Disruptive variants in lysine methyl transferase 5B (KMT5B/SUV4-20H1) have been identified as likely-pathogenic among humans with neurodevelopmental phenotypes including motor deficits (i.e., hypotonia and motor delay). However, the role that this enzyme plays in early motor development is largely unknown. Using a Kmt5b gene trap mouse model, we assessed neuromuscular strength, skeletal muscle weight (i.e., muscle mass), neuromuscular junction (NMJ) structure, and myofiber type, size, and distribution. Tests were performed over developmental time (postnatal days 17 and 44) to represent postnatal versus adult structures in slow- and fast-twitch muscle types. Prior to the onset of puberty, slow-twitch muscle weight was significantly reduced in heterozygous compared to wild-type males but not females. At the young adult stage, we identified decreased neuromuscular strength, decreased skeletal muscle weights (both slow- and fast-twitch), increased NMJ fragmentation (in slow-twitch muscle), and smaller myofibers in both sexes. We conclude that Kmt5b haploinsufficiency results in a skeletal muscle developmental deficit causing reduced muscle mass and body weight.
Collapse
Affiliation(s)
- Jason Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Dorothy Kenny
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Rebecca Black
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jodi Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Kelley G. Hammond
- Department of Exercise Science, College of Arts and Sciences, Creighton University, Omaha, NE, United States
| | - Eric C. Bredahl
- Department of Exercise Science, College of Arts and Sciences, Creighton University, Omaha, NE, United States
| | - Rochelle N. Wickramasekara
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
- Molecular Diagnostic Laboratory, Boys Town National Research Hospital, Omaha, NE, United States
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
19
|
Zhang C, Wu S, Chen E, Yu L, Wang J, Wu M. ALX1-transcribed LncRNA AC132217.4 promotes osteogenesis and bone healing via IGF-AKT signaling in mesenchymal stem cells. Cell Mol Life Sci 2022; 79:328. [PMID: 35639207 PMCID: PMC11073114 DOI: 10.1007/s00018-022-04338-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) is critical for bone formation and regeneration. A high non-/delayed-union rate of fracture healing still occurs in specific populations, implying an urgent need to discover novel targets for promoting osteogenesis and bone regeneration. Long non-coding (lnc)RNAs are emerging regulators of multiple physiological processes, including osteogenesis. Based on differential expression analysis of RNA sequencing data, we found that lncRNA AC132217.4, a 3'UTR-overlapping lncRNA of insulin growth factor 2 (IGF2), was highly induced during osteogenic differentiation of BMSCs. Afterward, both gain-of-function and loss-of-function experiments proved that AC132217.4 promotes osteoblast development from BMSCs. As for its molecular mechanism, we found that AC132217.4 binds with IGF2 mRNA to regulate its expression and downstream AKT activation to control osteoblast maturation and function. Furthermore, we identified two splicing factors, splicing component 35 KDa (SC35) and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), which regulate the biogenesis of AC132217.4 at the post-transcriptional level. We also identified a transcription factor, ALX1, which regulates AC132217.7 expression at the transcriptional level to promote osteogenesis. Importantly, in-vivo over-expression of AC132217.4 essentially promotes the bone healing process in a murine tibial drill-hole model. Our study demonstrates that lncRNA AC132217.4 is a novel anabolic regulator of BMSC osteogenesis and could be a plausible therapeutic target for improving bone regeneration.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luyang Yu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jinfu Wang
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Ghosh S, Leng W, Wilsch-Bräuninger M, Barrera-Velázquez M, Léopold P, Eaton S. A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Curr Biol 2022; 32:1788-1797.e5. [PMID: 35316653 DOI: 10.1016/j.cub.2022.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.
Collapse
Affiliation(s)
- Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mariana Barrera-Velázquez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, Inserm U934, 26 Rue d'Ulm, 75005 Paris, France.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
21
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
22
|
Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis. Front Cell Infect Microbiol 2021; 11:752708. [PMID: 34869062 PMCID: PMC8637199 DOI: 10.3389/fcimb.2021.752708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a polymicrobial infectious disease characterized by alveolar bone loss. Systemic diseases or local infections, such as diabetes, postmenopausal osteoporosis, obesity, and inflammatory bowel disease, promote the development and progression of periodontitis. Accumulating evidences have revealed the pivotal effects of gut microbiota on bone health via gut-alveolar-bone axis. Gut pathogens or metabolites may translocate to distant alveolar bone via circulation and regulate bone homeostasis. In addition, gut pathogens can induce aberrant gut immune responses and subsequent homing of immunocytes to distant organs, contributing to pathological bone loss. Gut microbial translocation also enhances systemic inflammation and induces trained myelopoiesis in the bone marrow, which potentially aggravates periodontitis. Furthermore, gut microbiota possibly affects bone health via regulating the production of hormone or hormone-like substances. In this review, we discussed the links between gut microbiota and periodontitis, with a particular focus on the underlying mechanisms of gut-bone axis by which systemic diseases or local infections contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xiaoyue Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhang M, Wang W, Wang H, Liu Y, Li Z, Yi C, Shi Y, Ma T, Chen J. Downregulation of Insulin-Like Growth Factor-1 Receptor Mediates Chondrocyte Death and Matrix Degradation in Kashin-Beck Disease. Cartilage 2021; 13:809S-817S. [PMID: 34130517 PMCID: PMC8808940 DOI: 10.1177/19476035211021890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To explore the relationship between insulin-like growth factor (IGF)-1R expression and the pathological progression of Kashin-Beck disease (KBD). DESIGN KBD cartilage samples were collected from 5 patients. Additionally, T-2 toxin was administered to rats fed a selenium (Se)-deficient diet, and their knee joints were collected. Human C28/I2 chondrocytes and mouse hypertrophic ATDC5 chondrocytes were cultured in vitro and treated with T-2 toxin and Se supplementation. Subsequently, the cultured human and mouse chondrocytes were treated with the IGF-1R inhibitor, picropodophyllin. Chondrocyte death and caspase-3 activity were analyzed using flow cytometry and a specific kit, respectively. Protein and mRNA expression levels of IGF-1R and matrix molecules were measured using immunohistochemistry, western blotting, and quantitative real-time reverse transcription-polymerase chain reaction analyses. RESULTS The cartilages from patients with KBD and T-2 toxin-treated rats on a Se-deficient diet showed significantly decreased expression of IGF-1R compared to cartilages from controls. T-2 toxin decreased IGF-1R mRNA and protein levels in both C28/I2 and hypertrophic ATDC5 chondrocytes in a dose-dependent manner; however, Se supplementation reduced the decrease of IGF-1R induced by T-2 toxin. Furthermore, inhibition of IGF-1R resulted in chondrocyte death of C28/I2 and hypertrophic ATDC5 chondrocytes, as well as decreased type II collagen expression and increased MMP-13 expression at the mRNA and protein levels. CONCLUSION Downregulation of IGF-1R was associated with KBD cartilage destruction. Therefore, inhibition of IGF-1R may mediate chondrocyte death and extracellular matrix degeneration related to the pathological progression of KBD.
Collapse
Affiliation(s)
- Meng Zhang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Wenjun Wang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China,Department of Biomedical Engineering, Chinese
PLA General Hospital, Beijing, People’s Republic of China
| | - Hui Wang
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Yinan Liu
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Zhengzheng Li
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Chengfen Yi
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Yawen Shi
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Tianyou Ma
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China
| | - Jinghong Chen
- School of Public Health, Health Science
Center of Xi’an Jiaotong University, Key Laboratory of Environment and Genes Related to
Diseases in the Education Ministry, Key Laboratory of Trace Elements and Endemic Diseases in
Ministry of Health, Xi’an, Shaanxi, People’s Republic of China,Jinghong Chen, The Institute of Endemic Disease,
Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, People’s Republic
of China. Emails:
| |
Collapse
|
24
|
Czernik PJ, Golonka RM, Chakraborty S, Yeoh BS, Abokor AA, Saha P, Yeo JY, Mell B, Cheng X, Baroi S, Tian Y, Patterson AD, Joe B, Vijay-Kumar M, Lecka-Czernik B. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content. Physiol Genomics 2021; 53:518-533. [PMID: 34714176 PMCID: PMC8714805 DOI: 10.1152/physiolgenomics.00017.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Integration of microbiota in a host begins at birth and progresses during adolescence, forming a multidirectional system of physiological interactions. Here, we present an instantaneous effect of natural, bacterial gut colonization on the acceleration of longitudinal and radial bone growth in germ-free born, 7-wk-old male rats. Changes in bone mass and structure were analyzed after 10 days following the onset of colonization through cohousing with conventional rats and revealed unprecedented acceleration of bone accrual in cortical and trabecular compartments, increased bone tissue mineral density, improved proliferation and hypertrophy of growth plate chondrocytes, bone lengthening, and preferential deposition of periosteal bone in the tibia diaphysis. In addition, the number of small in size adipocytes increased, whereas the number of megakaryocytes decreased, in the bone marrow of conventionalized germ-free rats indicating that not only bone mass but also bone marrow environment is under control of gut microbiota signaling. The changes in bone status paralleled with a positive shift in microbiota composition toward short-chain fatty acids (SCFA)-producing microbes and a considerable increase in cecal SCFA concentrations, specifically butyrate. Furthermore, reconstitution of the host holobiont increased hepatic expression of IGF-1 and its circulating levels. Elevated serum levels of 25-hydroxy vitamin D and alkaline phosphatase pointed toward an active process of bone formation. The acute stimulatory effect on bone growth occurred independently of body mass increase. Overall, the presented model of conventionalized germ-free rats could be used to study microbiota-based therapeutics for combatting dysbiosis-related bone disorders.
Collapse
Affiliation(s)
- Piotr J Czernik
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M Golonka
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Saroj Chakraborty
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ahmed A Abokor
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ji-Youn Yeo
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sudipta Baroi
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beata Lecka-Czernik
- Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Orthopedic Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
25
|
Al-Samerria S, Radovick S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells 2021; 10:cells10102664. [PMID: 34685644 PMCID: PMC8534318 DOI: 10.3390/cells10102664] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
In mammals, the neuroendocrine system, which includes the communication between the hypothalamus and the pituitary, plays a major role in controlling body growth and cellular metabolism. GH produced from the pituitary somatotroph is considered the master regulator of somatic development and involved, directly and indirectly, in carbohydrate and lipid metabolism via complex, yet well-defined, signaling pathways. GH production from the pituitary gland is primarily regulated by the counter-regulatory effects of the hypothalamic GHRH and SST hormones. The role of IGF-1 feedback regulation in GH production has been demonstrated by pharmacologic interventions and in genetically modified mouse models. In the present review, we discuss the role of IGF-1 in the regulation of the GH-axis as it controls somatic growth and metabolic homeostasis. We present genetically modified mouse models that maintain the integrity of the GH/GHRH-axis with the single exception of IGF-1 receptor (IGF-1R) deficiency in the hypothalamic GHRH neurons and somatotroph that reveals a novel mechanism controlling adipose tissues physiology and energy expenditure.
Collapse
|
26
|
Zhong L, Yao L, Seale P, Qin L. Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35:101518. [PMID: 33812853 PMCID: PMC8440665 DOI: 10.1016/j.beem.2021.101518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow mesenchymal stromal cells are a highly heterogenic cell population containing mesenchymal stem cells as well as other cell types. With the advance of single cell transcriptome analysis, several recent reports identified a prominent subpopulation of mesenchymal stromal cells that specifically express adipocyte markers but do not contain lipid droplets. We name this cell type marrow adipogenic lineage precursor, MALP, and consider it as a major cellular component of marrow adipose tissue. Here, we review the discovery of MALPs and summarize their unique features and regulatory roles in bone. We further discuss how these findings advance our understanding of bone remodeling, mesenchymal niche regulation of hematopoiesis, and marrow vasculature maintenance.
Collapse
Affiliation(s)
- Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
28
|
Rojas-Rodriguez R, Ziegler R, DeSouza T, Majid S, Madore AS, Amir N, Pace VA, Nachreiner D, Alfego D, Mathew J, Leung K, Moore Simas TA, Corvera S. PAPPA-mediated adipose tissue remodeling mitigates insulin resistance and protects against gestational diabetes in mice and humans. Sci Transl Med 2020; 12:eaay4145. [PMID: 33239385 PMCID: PMC8375243 DOI: 10.1126/scitranslmed.aay4145] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/25/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Pregnancy is a physiological state of continuous adaptation to changing maternal and fetal nutritional needs, including a reduction of maternal insulin sensitivity allowing for appropriately enhanced glucose availability to the fetus. However, excessive insulin resistance in conjunction with insufficient insulin secretion results in gestational diabetes mellitus (GDM), greatly increasing the risk for pregnancy complications and predisposing both mothers and offspring to future metabolic disease. Here, we report a signaling pathway connecting pregnancy-associated plasma protein A (PAPPA) with adipose tissue expansion in pregnancy. Adipose tissue plays a central role in the regulation of insulin sensitivity, and we show that, in both mice and humans, pregnancy caused remodeling of adipose tissue evidenced by altered adipocyte size, vascularization, and in vitro expansion capacity. PAPPA is known to be a metalloprotease secreted by human placenta that modulates insulin-like growth factor (IGF) bioavailability through prolteolysis of IGF binding proteins (IGFBPs) 2, 4, and 5. We demonstrate that recombinant PAPPA can stimulate ex vivo human adipose tissue expansion in an IGFBP-5- and IGF-1-dependent manner. Moreover, mice lacking PAPPA displayed impaired adipose tissue remodeling, pregnancy-induced insulin resistance, and hepatic steatosis, recapitulating multiple aspects of human GDM. In a cohort of 6361 pregnant women, concentrations of circulating PAPPA are inversely correlated with glycemia and odds of developing GDM. These data identify PAPPA and the IGF signaling pathway as necessary for the regulation of maternal adipose tissue physiology and systemic glucose homeostasis, with consequences for long-term metabolic risk and potential for therapeutic use.
Collapse
Affiliation(s)
- Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sana Majid
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aylin S Madore
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Nili Amir
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Veronica A Pace
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Nachreiner
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David Alfego
- Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jomol Mathew
- Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine Leung
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Tiffany A Moore Simas
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
29
|
Haythorn A, Young M, Stanton J, Zhang J, Mueller POE, Halper J. Differential gene expression in skin RNA of horses affected with degenerative suspensory ligament desmitis. J Orthop Surg Res 2020; 15:460. [PMID: 33028365 PMCID: PMC7541307 DOI: 10.1186/s13018-020-01994-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Equine degenerative suspensory ligament desmitis (DSLD) is a systemic connective tissue disorder first identified in Peruvian Paso horses but afflicting other horse breeds as well. Inappropriate accumulation of proteoglycans in connective tissues, most prominently in tendons and ligaments, leads to progressive and debilitating lameness and pain. It is largely unknown what drives the overproduction of proteoglycans, but our previous studies suggest involvement of bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-β (TGFβ) family, impacting synthesis of proteoglycans. To identify potential players in pathogenesis of DSLD a new approach utilizing next generation sequencing was undertaken. METHODS Next generation sequencing was performed using RNA extracted from skin biopsies of six control Peruvian Pasos and six horses with DSLD (4 Peruvian Pasos and 2 warmbloods). The CuffDiff result sets were validated with algorithms used to run them. This was based on the determined false discovery rates derived from the P values adjusted for multiple testing for any given result. RESULTS Bioinformatics analysis of transcriptomes revealed differential expression of over 1500 genes, including increased expression of genes for several growth factors (most prominently BMP2, FGF5, CTGF, many members of the EGF family), and mediators of signaling (Fos, Myc, MAPK system), and keratins. Two genes encoding for enzymes involved in synthesis of hyaluronan were also overexpressed. Gene expression was decreased for protein cores of many proteoglycans, several growth factors, most collagens, and many peptides with immune function. CONCLUSIONS The overexpression of BMP2 correlates well with our previous data. However, the decrease in expression of numerous proteoglycans was unexpected. A mutation in a gene of a less characterized proteoglycan and/or glycosyltransferase with subsequent increased production of hyaluronan and/or a proteoglycan(s) undetected in our study could account for the systemic proteoglycan deposition. Decreased collagen gene expression indicates abnormal connective tissue metabolism. The increased expression of keratin genes and FGF5 supports reports of skin abnormalities in DSLD. Underexpression of immune function genes corresponds with lack of inflammation in DSLD tissues. Finally, though the proteoglycan and/or glycosaminoglycan abundant in DSLD has not been identified, we validated our previous data, including overexpression of BMP2, and systemic nature of DSLD due to disturbed metabolism of the extracellular matrix.
Collapse
Affiliation(s)
- Abigail Haythorn
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Madeline Young
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - James Stanton
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Jian Zhang
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - P. O. E. Mueller
- Department of Large Animal Medicine, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
- AU/UGA Medical Partnership, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
30
|
Lednev EM, Kravchenko IV, Furalyov VA, Lysenko EA, Lemesheva IS, Grushin AA, Dubrov VE, Vinogradova OL, Popov DV. Effect of amino acids on IGF1 gene expression in human myotubes and skeletal muscle. Growth Horm IGF Res 2020; 53-54:101323. [PMID: 32408253 DOI: 10.1016/j.ghir.2020.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Insulin-like growth factor I (IGF1) is an important regulator of collagen and extracellular matrix protein expression. We aimed to evaluate the effect of amino acids (AAs) on expression of IGF1 and IGF1-dependent genes in human myotubes and skeletal muscle and supposed that AAs administration increases IGF1 levels in blood and expression of IGF1 and IGF1-dependent genes in trained skeletal muscle, thereby reducing training-induced muscle damage. DESIGN Human myotubes were incubated with Arg and Leu for 24 h. Then, the effects of long-term branched chain AAs administration (10 weeks, 0.1 g/kg body mass/day) to volunteers (six subjects per AAs and placebo groups) performing large training volumes regularly (cross country skiers, training twice a day) were examined. RESULTS Incubating the myotubes with AAs increases expression of IGF1 mRNA isoforms and IGF1 secretion by 2-3 times. In athletes, long-term AAs administration increased basal blood levels of IGF1 (~50%) and expression of IGF1Ea mRNA slightly in skeletal muscle. There is no marked increase in expression of COL1A1, COL3A1, COL5A1, and LOX genes in skeletal muscle after AAs administration. However, expression of these genes in the combined group (placebo + AAs; n = 12) significantly correlated with the expression of IGF1Ea mRNA in muscle and did not correlate with IGF1 levels in the blood. CONCLUSIONS AAs administration increases IGF1 expression in vitro and in vivo. To obtain more pronounced changes in expression of IGF1 and IGF1-dependent genes in skeletal muscle, it may be necessary to increase the dose and/or duration of AAs administration.
Collapse
Affiliation(s)
- Egor M Lednev
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation.
| | - Irina V Kravchenko
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 33 build 2, Leninsky prospect, Moscow 119071, Russian Federation
| | - Vladimir A Furalyov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, 33 build 2, Leninsky prospect, Moscow 119071, Russian Federation
| | - Evgeny A Lysenko
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Iulia S Lemesheva
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Alexandr A Grushin
- Russian Olympic Committee, Luzhnetskaya Embankment 8, Russia, Moscow 119991, Russian Federation
| | - Vadim E Dubrov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, 27 build. 1, Lomonosovsky Prospekt, Moscow 119991, Russian Federation
| | - Olga L Vinogradova
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| | - Daniil V Popov
- Institute of Biomedical Problems of the RAS, 76A Khoroshevskoye Shosse, Moscow 123007, Russian Federation
| |
Collapse
|
31
|
Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernandez C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines. Animals (Basel) 2020; 10:E800. [PMID: 32380764 PMCID: PMC7277336 DOI: 10.3390/ani10050800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFβ3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFβ3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Katerina Vernerova
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Rene Kizek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Riccardo Bozzi
- Food, Environment and Forestry, Animal Science Section, Department of Agriculture, University of Florence, Via delle Cascine, 5, 50144 Firenze, Italy;
| | - Jaromir Kadlec
- Department of Agricultural Products’ Quality, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Frantisek Kouba
- State Veterinary Administration, Regional Veterinary Administration of the South Bohemian Region, Severní 9, 370 10 České Budějovice, Czech Republic;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Vlastislav Machander
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| | - Hana Horna
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| |
Collapse
|
32
|
Montjean R, Escaich S, Paolini R, Carelli C, Pirson S, Neutelings T, Henrotin Y, Vêtu C. REG-O3 chimeric peptide combining growth hormone and somatostatin sequences improves joint function and prevents cartilage degradation in rat model of traumatic knee osteoarthritis. PLoS One 2020; 15:e0231240. [PMID: 32287299 PMCID: PMC7156079 DOI: 10.1371/journal.pone.0231240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective REG-O3 is a 24-aminoacid chimeric peptide combining a sequence derived from growth hormone (GH) and an analog of somatostatin (SST), molecules displaying cartilage repair and anti-inflammatory properties, respectively. This study aimed to investigate the disease-modifying osteoarthritis drug (DMOAD) potential of REG-O3 by analyzing its effect on pain, joint function and structure, upon injection into osteoarthritic rat knee joint. Design Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Treatments were administered intra-articularly from fourteen days after surgery through three consecutive injections one week apart. The effect of REG-O3, solubilized in a liposomal solution and injected at either 5, 25 or 50 μg/50 μL, was compared to liposomal (LIP), dexamethasone and hyaluronic acid (HA) solutions. The study endpoints were the pain/function measured once a week throughout the entire study, and the joint structure evaluated eight weeks after surgery using OARSI score. Results ACLT/pMMx surgery induced a significant modification of weight bearing in all groups. When compared to liposomal solution, REG-O3 was able to significantly improve weight bearing as efficiently as dexamethasone and HA. REG-O3 (25 μg) was also able to significantly decrease OARSI histological global score as well as degeneration of both cartilage and matrix while the other treatments did not. Conclusion This study provides evidence of a remarkable protecting effect of REG-O3 on pain/knee joint function and cartilage/matrix degradation in ACLT/pMMx model of rat osteoarthritis. REG-O3 thus displays an interesting profile as a DMOAD.
Collapse
Affiliation(s)
| | - Sonia Escaich
- Regulaxis SAS, Romainville, France
- ESE Conseil, Saint-Cloud, France
| | | | | | | | | | - Yves Henrotin
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Bone and Cartilage Research Unit, Arthropôle Liège, University of Liège, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
- * E-mail:
| | | |
Collapse
|
33
|
Griffiths R, Woods S, Cheng A, Wang P, Griffiths-Jones S, Ronshaugen M, Kimber SJ. The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis. Sci Rep 2020; 10:4744. [PMID: 32179818 PMCID: PMC7075910 DOI: 10.1038/s41598-020-61734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.
Collapse
Affiliation(s)
- Rosie Griffiths
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Steven Woods
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Aixin Cheng
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Salford Royal NHS Foundation Trust, Department of Trauma and Orthopaedic, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Ping Wang
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Developmental Biology and Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
34
|
Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC, Wang DL. Gut microbiota: an overlooked factor that plays a significant role in osteoporosis. J Int Med Res 2019; 47:4095-4103. [PMID: 31436117 PMCID: PMC6753565 DOI: 10.1177/0300060519860027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut microbes are known as the body’s second gene pool. Symbiotic intestinal
bacteria play a major role in maintaining balance in humans. Bad eating habits,
antibiotic abuse, diseases, and a poor living environment have a negative effect
on intestinal flora. Abnormal intestinal microbes are prone to cause a variety
of diseases, affecting life expectancy and long-term quality of life, especially
in older people. Several recent studies have found a close association between
intestinal microorganisms and osteoporosis. The potential mechanism of
intestinal flora affecting bone formation or destruction by mediating nitric
oxide, the immune and endocrine systems, and other factors is briefly described
in this review. All of these factors may be responsible for the intestinal flora
that causes osteoporosis. Studying the relationship between intestinal flora and
bone health not only provides new ideas for studying the role of intestinal
microorganism in osteoporosis, but also provides a new therapeutic direction for
clinically refractory osteoporosis. Study of the relationship between intestinal
microbiota and osteoporosis is important for maintaining bone health and
minimizing osteoporosis.
Collapse
Affiliation(s)
- Meng-Lei Hao
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, Qinghai Province, P.R. China
| | - Guang-Yao Wang
- Juxian Hospital of Traditional Chinese Medicine, Juxian, Shandong Provence, P.R. China
| | - Xiao-Qin Zuo
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, Qinghai Province, P.R. China
| | - Chan-Juan Qu
- Department of Radiology, Peking Union Medical Hospital, Beijing, P.R. China
| | - Bo-Chen Yao
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, P. R. China
| | - Dong-Lai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Provence, P.R. China
| |
Collapse
|
35
|
Boushell MK, Mosher CZ, Suri GK, Doty SB, Strauss EJ, Hunziker EB, Lu HH. Polymeric mesh and insulin-like growth factor 1 delivery enhance cell homing and graft-cartilage integration. Ann N Y Acad Sci 2019; 1442:138-152. [PMID: 30985969 PMCID: PMC7596880 DOI: 10.1111/nyas.14054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Margaret K. Boushell
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | | | - Gurbani K. Suri
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Stephen B. Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, New York
| | - Eric J. Strauss
- Department of Orthopaedic Surgery, NYU Langone Medical Center, New York, New York
| | - Ernst B. Hunziker
- Department of BioMedical Research, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
36
|
Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Cole JB, Liu GE, Ma L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun Biol 2019; 2:100. [PMID: 30886909 PMCID: PMC6418173 DOI: 10.1038/s42003-019-0341-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
The length of gestation can affect offspring health and performance. Both maternal and fetal effects contribute to gestation length; however, paternal contributions to gestation length remain elusive. Using genome-wide association study (GWAS) in 27,214 Holstein bulls with millions of gestation records, here we identify nine paternal genomic loci associated with cattle gestation length. We demonstrate that these GWAS signals are enriched in pathways relevant to embryonic development, and in differentially methylated regions between sperm samples with long and short gestation length. We reveal that gestation length shares genetic and epigenetic architecture in sperm with calving ability, body depth, and conception rate. While several candidate genes are detected in our fine-mapping analysis, we provide evidence indicating ZNF613 as a promising candidate for cattle gestation length. Collectively, our findings support that the paternal genome and epigenome can impact gestation length potentially through regulation of the embryonic development. Lingzhao Fang et al. studied the paternal genetic variants that affect gestational length in cattle. They found that paternal genes from pathways involved in embryonic development were associated with gestation length, and that these were often found in differentially methylated regions of the genome.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ellen Freebern
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Vanraden
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
37
|
Shen CL, Smith BJ, Li J, Cao JJ, Song X, Newhardt MF, Corry KA, Tomison MD, Tang L, Wang JS, Chyu MC. Effect of Long-Term Green Tea Polyphenol Supplementation on Bone Architecture, Turnover, and Mechanical Properties in Middle-Aged Ovariectomized Rats. Calcif Tissue Int 2019; 104:285-300. [PMID: 30413854 DOI: 10.1007/s00223-018-0489-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
We investigated the effects of 6-month green tea polyphenols (GTP) supplementation on bone architecture, turnover, and mechanical properties in middle-aged ovariectomized (OVX) rats. Female rats were sham-operated (n = 39, 13/group) or OVX (n = 143, 13/group). Sham-control and OVX-control rats (n = 39) receiving no GTP were assigned for sample collection at baseline, 3, or 6 months. The remaining OVX rats (n = 104) were randomized to 0.15%, 0.5%, 1%, and 1.5% (g/dL) GTP for 3 or 6 months. Blood and bone samples were collected. Relative to the OVX-control group, GTP (1% and 1.5%) lowered serum procollagen type 1 N-terminal propeptide at 3 and 6 months, C-terminal telopeptides of type I collagen at 3 months, and insulin-like growth factor-I at 6 months. GTP did not affect bone mineral content and density. At 6 months, no dose of GTP positively affected trabecular bone volume based on microCT, but a higher cortical thickness and improved biomechanical properties of the femur mid-diaphysis was observed in the 1.5% GTP-treated group. At 3 and 6 months, GTP (0.5%, 1%, and 1.5%) had lower rates of trabecular bone formation and resorption than the OVX-control group, but the inhibitory effects of GTP on periosteal and endocortical bone mineralization and formation at the tibial midshaft were only evident at 3 months. GTP at higher doses suppressed bone turnover in the trabecular and cortical bone of OVX rats and resulted in improved cortical bone structural and biomechanical properties, although it was not effective in preventing the ovariectomy-induced dramatic cancellous bone loss.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jay J Cao
- USDA ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Xiao Song
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Maria F Newhardt
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kylie A Corry
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael D Tomison
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Ming-Chien Chyu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
- Graduate Healthcare Engineering Option, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
38
|
Liu J, Chanumolu SK, Krei Z, Albahrani M, Akhtam A, Jia Z, Wang X, Wang D, Otu HH, Reinhardt RA, Nawshad A. Identification of Genes Differentially Expressed in Simvastatin-Induced Alveolar Bone Formation. JBMR Plus 2019; 3:e10122. [PMID: 31131344 DOI: 10.1002/jbm4.10122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022] Open
Abstract
Local delivery of simvastatin (SIM) has exhibited potential in preventing inflammation and limiting bone loss associated with experimental periodontitis. The primary aim of this study was to analyze transcriptome changes that may contribute to SIM's reduction of periodontal inflammation and bone loss. We evaluate the global genetic profile and signaling mechanisms induced by SIM on experimental periodontitis bone loss and inflammation. Twenty mature female Sprague Dawley rats were subjected to ligature-induced experimental periodontitis around maxillary second molars (M2) either unilaterally (one side untreated, n = 10) or bilaterally (n = 10). After the ligature removal at day 7, sites were injected with either carrier, pyrophosphate (PPi ×3), 1.5-mg SIM-dose equivalent SIM-pyrophosphate prodrug, or no injection. Three days after ligature removal, animals were euthanized; the M1-M2 interproximal was evaluated with μCT, histology, and protein expression. M2 palatal gingiva was harvested for RNA sequencing. Although ligature alone caused upregulation of proinflammatory and bone catabolic genes and proteins, seen in human periodontitis, SIM-PPi upregulated anti-inflammatory (IL-10, IL-1 receptor-like 1) and bone anabolic (insulin-like growth factor, osteocrin, fibroblast growth factor, and Wnt/ β-catenin) genes. The PPi carrier alone did not have these effects. Genetic profile and signaling mechanism data may help identify enhanced pharmacotherapeutic approaches to limit or regenerate periodontitis bone loss. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- J Liu
- Department of Oral Biology College of Dentistry University of Nebraska Medical Center Lincoln NE USA
| | - S K Chanumolu
- Department of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln NE USA
| | - Z Krei
- Department of Surgical Specialties University of Nebraska Medical Center College of Dentistry Lincoln NE USA
| | - M Albahrani
- Department of Surgical Specialties University of Nebraska Medical Center College of Dentistry Lincoln NE USA
| | - A Akhtam
- Department of Oral Biology College of Dentistry University of Nebraska Medical Center Lincoln NE USA
| | - Z Jia
- Department of Pharmaceutical Sciences University of Nebraska Medical Center College of Pharmacy Omaha NE USA
| | - X Wang
- Department of Pharmaceutical Sciences University of Nebraska Medical Center College of Pharmacy Omaha NE USA
| | - D Wang
- Department of Pharmaceutical Sciences University of Nebraska Medical Center College of Pharmacy Omaha NE USA
| | - H H Otu
- Department of Electrical and Computer Engineering University of Nebraska-Lincoln Lincoln NE USA
| | - R A Reinhardt
- Department of Surgical Specialties University of Nebraska Medical Center College of Dentistry Lincoln NE USA
| | - A Nawshad
- Department of Oral Biology College of Dentistry University of Nebraska Medical Center Lincoln NE USA
| |
Collapse
|
39
|
Andrade-Guimarães AL, Aguiar-Oliveira MH, Salvatori R, Carvalho VO, Alvim-Pereira F, Daniel CRA, Brasileiro GAM, Santana-Ribeiro AA, Santos-Carvalho HA, Oliveira CRP, Vieira ER, Gois-Junior MB. Adult individuals with congenital, untreated, severe isolated growth hormone deficiency have satisfactory muscular function. Endocrine 2019; 63:112-119. [PMID: 30251164 DOI: 10.1007/s12020-018-1763-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE While growth hormone (GH) and the insulin-like growth factor type I (IGF-I) are known to exert synergistic actions on muscle anabolism, the consequences of prolonged GH deficiency (GHD) on muscle function have not been well defined. We have previously described a large cohort of subjects with isolated GHD (IGHD) caused by a mutation in the GH-releasing hormone receptor gene, with low serum levels of GH and IGF-I. The aim of this study was to assess muscular function in these IGHD subjects. METHODS A total of 31 GH-naïve IGHD (16 males) and 40 control (20 males) subjects, matched by age and degree of daily physical activity, were enrolled. Fat free mass was measured by bioelectrical impedance; muscle strength by dynamometry of handgrip, trunk extension, and knee extension; myoelectric activity and muscle fatigue by fractal dimension; conduction velocity in vastus medialis, rectus femoris, and vastus lateralis muscles by surface electromyography. RESULTS The IGHD group showed higher knee extension strength both when corrected for weight and fat free mass, and higher handgrip and trunk extension strength corrected by fat free mass. They also exhibit higher conduction velocity of the muscles vastus medialis, rectus femoris, and vastus lateralis, but lower free fat mass and myoelectric activity of the vastus medialis, rectus femoris and vastus lateralis. There were no differences between the two groups in fractal dimension in all studied muscles. CONCLUSION Individuals with untreated IGHD have better muscle strength parameters adjusted for weight and fat free mass than controls. They also exhibit greater peripheral resistance to fatigue, demonstrating satisfactory muscle function.
Collapse
Affiliation(s)
- Alana L Andrade-Guimarães
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (GRupo de Estudos em ATividade física), Sergipe, Brazil
| | | | - Roberto Salvatori
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine Baltimore, Baltimore, Maryland, 21287, USA.
| | - Vitor O Carvalho
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (GRupo de Estudos em ATividade física), Sergipe, Brazil
| | - Fabiano Alvim-Pereira
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
| | - Carlos R Araújo Daniel
- Department of Statistic and Actuarial Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Giulliani A Moreira Brasileiro
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (GRupo de Estudos em ATividade física), Sergipe, Brazil
| | - Ananda A Santana-Ribeiro
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
| | - Hugo A Santos-Carvalho
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
| | - Carla R P Oliveira
- Division of Endocrinology, Federal University of Sergipe, 49060-100, Aracaju, Sergipe, Brazil
| | - Edgar R Vieira
- Department of Physical Therapy and Neuroscience, Wertheims'College of Nursing and Health Science, Florida International University, Florida, USA
| | - Miburge B Gois-Junior
- Laboratory of Motor Control and Body Balance, Center for Health Science Research, Federal University of Sergipe, 49060-100, Sergipe, Brazil
- Department of Physical Therapy and Post-Graduate Program in Health Science, Federal University of Sergipe, The GREAT Group (GRupo de Estudos em ATividade física), Sergipe, Brazil
- Department of Physical Therapy and Neuroscience, Wertheims'College of Nursing and Health Science, Florida International University, Florida, USA
| |
Collapse
|
40
|
Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities. Molecules 2018; 23:molecules23071517. [PMID: 29937485 PMCID: PMC6100304 DOI: 10.3390/molecules23071517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin, which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II, and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1. In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.
Collapse
|
41
|
Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. Proc Natl Acad Sci U S A 2018; 115:E6135-E6144. [PMID: 29915064 DOI: 10.1073/pnas.1805159115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In adult bone injuries, periosteum-derived mesenchymal stem/stromal cells (MSCs) form bone via endochondral ossification (EO), whereas those from bone marrow (BM)/endosteum form bone primarily through intramembranous ossification (IMO). We hypothesized that this phenomenon is influenced by the proximity of MSCs residing in the BM to the trabecular bone microenvironment. Herein, we investigated the impact of the bone mineral phase on human BM-derived MSCs' choice of ossification pathway, using a biomimetic bone-like hydroxyapatite (BBHAp) interface. BBHAp induced hyperstimulation of extracellular calcium-sensing receptor (CaSR) and temporal down-regulation of parathyroid hormone 1 receptor (PTH1R), leading to inhibition of chondrogenic differentiation of MSCs even in the presence of chondroinductive factors, such as transforming growth factor-β1 (TGF-β1). Interestingly rescuing PTH1R expression using human PTH fragment (1-34) partially restored chondrogenesis in the BBHAp environment. In vivo studies in an ectopic site revealed that the BBHAp interface inhibits EO and strictly promotes IMO. Furthermore, CaSR knockdown (CaSR KD) disrupted the bone-forming potential of MSCs irrespective of the absence or presence of the BBHAp interface. Our findings confirm the expression of CaSR in human BM-derived MSCs and unravel a prominent role for the interplay between CaSR and PTH1R in regulating MSC fate and the choice of pathway for bone formation.
Collapse
|
42
|
Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev 2018; 38:2024-2057. [DOI: 10.1002/med.21504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Harshika Awasthi
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Dayanandan Mani
- Herbal Medicinal Products Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| | - Divya Singh
- Division of Endocrinology; CSIR-Central Drug Research Institute; Lucknow India
| | - Atul Gupta
- Medicinal Chemistry Department; CSIR-Central Institute of Medicinal and Aromatic Plants; Lucknow India
| |
Collapse
|
43
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
44
|
Abstract
In humans, dehydroepiandrosterone (DHEA), secreted mainly from the adrenal cortex, and its sulfate ester, DHEAS, are the most abundant circulating steroids. DHEA/DHEAS possess pleiotropic effects in human aging, bone, metabolic diseases, neurologic function/neurodegenerative diseases, cancer, immune system and disorders, cardiovascular diseases, diabetes, muscle function, sexual dysfunction, and other health conditions. The age-related reduced levels of DHEA and DHEAS are associated with bone mineral density measures of osteopenia and osteoporosis. Clinical, epidemiological, and experimental studies indicate that DHEA replacement therapy may be beneficial for bone health through its inhibition of skeletal catabolic IL-6 and stimulation of osteoanabolic IGF-I-mediated mechanisms. Studies with primary cultures of human bone marrow-derived mesenchymal stem cells (hMSCs) were used to show that DHEA stimulates osteoblastogenesis. The in vitro stimulation of both osteoblastogenesis and IGF-I gene expression by DHEA in hMSCs requires IGF-I receptor, PI3K, p38 MAPK, or p42/44 MAPK signaling pathways. The in vitro inhibition of IL-6 secretion in hMSCs by DHEA was more consistent and extensive than by estradiol or dihydrotestosterone. In summary, evidence from us and others indicates that DHEA may be useful for treating bone diseases through its inhibition of skeletal catabolic IL-6 and stimulation of anabolic IGF-I-mediated mechanisms.
Collapse
|
45
|
Liu R, Chen Y, Liu L, Gong Y, Wang M, Li S, Chen C, Yu B. Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 2018; 6:3085-3095. [PMID: 32254343 DOI: 10.1039/c8tb00324f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor (IGF-1) has encouraged researchers to investigate its various potential therapeutic uses such as in the treatment of osteoporosis and repair of articular cartilage.
Collapse
Affiliation(s)
- Rui Liu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Yan Chen
- Department of Ultrasonic Diagnosis
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Yong Gong
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Mingbo Wang
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Songjian Li
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Bo Yu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| |
Collapse
|
46
|
Shi S, Kelly BJ, Wang C, Klingler K, Chan A, Eckert GJ, Trippel SB. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding. Biochim Biophys Acta Gen Subj 2017; 1862:567-575. [PMID: 29174671 DOI: 10.1016/j.bbagen.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. METHODS Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. RESULTS Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. CONCLUSION The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. GENERAL SIGNIFICANCE These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis.
Collapse
Affiliation(s)
- Shuiliang Shi
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Brian J Kelly
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Congrong Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ken Klingler
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Albert Chan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - George J Eckert
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Stephen B Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Orthopaedic Surgery Service, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|
47
|
Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, Zhou X. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res 2017; 5:17046. [PMID: 28983411 PMCID: PMC5627629 DOI: 10.1038/boneres.2017.46] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a prevalent metabolic bone disease characterized by bone loss and structural destruction, which increases the risk of fracture in postmenopausal women. Owing to the high morbidity and serious complications of PMO, many efforts have been devoted to its prophylaxis and treatment. The intestinal microbiota is the complex community of microorganisms colonizing the gastrointestinal tract. Probiotics, which are dietary or medical supplements consisting of beneficial intestinal bacteria, work in concert with endogenous intestinal microorganisms to maintain host health. Recent studies have revealed that bone loss in PMO is closely related to host immunity, which is influenced by the intestinal microbiota. The curative effects of probiotics on metabolic bone diseases have also been demonstrated. The effects of the intestinal microbiota on bone metabolism suggest a promising target for PMO management. This review seeks to summarize the critical effects of the intestinal microbiota and probiotics on PMO, with a focus on the molecular mechanisms underlying the pathogenic relationship between bacteria and host, and to define the possible treatment options.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Jia
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Dental Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Sobacchi C, Palagano E, Villa A, Menale C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front Bioeng Biotechnol 2017; 5:32. [PMID: 28567372 PMCID: PMC5434159 DOI: 10.3389/fbioe.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eleonora Palagano
- Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Ciro Menale
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|
49
|
Improda N, Capalbo D, Esposito A, Salerno M. Muscle and skeletal health in children and adolescents with GH deficiency. Best Pract Res Clin Endocrinol Metab 2016; 30:771-783. [PMID: 27974190 DOI: 10.1016/j.beem.2016.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In addition to promoting linear growth, GH plays a key role in the regulation of bone and muscle development and metabolism. Although GH deficiency is frequently listed among the causes of secondary osteoporosis in children, its impact on bone and muscle health and on fracture risk is still not completely established. Current data suggest that childhood-onset GH deficiency can affect bone and muscle mass and strength, with GH replacement therapy exerting beneficial effects. Moreover, GH withdrawal at final height can result in reduced peak bone and muscle mass, potentially leading to increased fracture risk in adulthood. Thus, the muscle-bone unit in GH deficient subjects should be monitored during childhood and adolescence in order to prevent osteoporosis and increased fracture risk and GH replacement should be tailored to ensure an optimal bone and muscle health.
Collapse
Affiliation(s)
- Nicola Improda
- Department of Medical Translational Sciences, Paediatric Endocrinology Section, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
| | - Donatella Capalbo
- Department of Paediatrics, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
| | - Andrea Esposito
- Department of Medical Translational Sciences, Paediatric Endocrinology Section, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
| | - Mariacarolina Salerno
- Department of Medical Translational Sciences, Paediatric Endocrinology Section, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
50
|
Abstract
Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.
Collapse
|