1
|
Yang Y, Shao Y, Gao X, Hu Z, Wang Y, Ma C, Jin G, Zhu F, Dong G, Zhou G. RGS10 Deficiency Alleviated Intestinal Mucosal Inflammation Through Suppression of Th1/Th17 Cell Immune Responses in Ulcerative Colitis. Immunology 2025; 174:139-152. [PMID: 39428350 DOI: 10.1111/imm.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Regulator of G-protein signalling (RGS) 10 plays critical roles in several immune related diseases. However, whether RGS10 is involved in colonic inflammation of ulcerative colitis (UC) is still obscure. This study aimed to investigate the role of RGS10 in UC. In this study, RGS10 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and immunofluorescent analysis. Single-cell RNA sequencing of intestinal mucosa was performed to identify key immune cells with differentially expressed RGS10. RGS10 knockout mice were generated and established dextran sulphate sodium (DSS)-induced colitis. Expression of inflammatory cytokines on mRNA and protein levels was detected by qRT-PCR, enzyme-linked immunosorbent assay, and flow cytometry. We found that RGS10 expression was significantly elevated in UC patients, especially in CD4+ T cells, compared with healthy subjects. Intriguingly, RGS10 deficiency markedly alleviated DSS-induced colitis and decreased the proportion of Th1 and Th17 cells in lamina propria mononuclear cells (LPMCs), peripheral blood (PB), spleens, and mesenteric lymph nodes (mLNs). Mechanistically, RGS10 deficiency blocked the differentiation of Th1 and Th17 cells by inhibiting the phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3. The co-immunoprecipitation analysis further showed that RGS10 could interact with protein tyrosine phosphatase non-receptor type 2 (PTPN2), and further regulated Th1 and Th17 cells differentiation of CD4+ T cells. In conclusion, RGS10 deficiency alleviated intestinal mucosal inflammation through inhibition of Th1/Th17 cell-mediated immune responses via interaction with PTPN2 in CD4+ T cells. Therefore, targeting RGS10 may represent a novel therapeutic approach for UC treatment.
Collapse
Affiliation(s)
- Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Zongjing Hu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
2
|
Li Y, Yang Y, Niu Y, Li Y, Hu Z, Sun S, Chen Y, Hu B, Huang Y, Deng X. The role of WTAP in regulating macrophage-mediated osteoimmune responses and tissue regeneration in periodontitis. Front Immunol 2024; 15:1423378. [PMID: 39081311 PMCID: PMC11286459 DOI: 10.3389/fimmu.2024.1423378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Periodontitis, delineated by the destruction of structures that support teeth, is predominantly propelled by intricate immune responses. Immunomodulatory treatments offer considerable promise for the management of this ailment; however, the modulation of the periodontal immune microenvironment to facilitate tissue regeneration presents a substantial biomedical challenge. Herein, our study investigates the role of Wilms' tumor 1-associating protein (WTAP), a critical m6A methyltransferase, in the immunomodulation of periodontitis and assesses its viability as a therapeutic target. We observed heightened expression of WTAP in macrophages extracted from gingival tissues impacted by periodontitis, with a strong association with M1 polarization. Via loss-of-function experiments, we demonstrated that diminishing WTAP expression precipitates a transition from M1 to M2 macrophage phenotypes amidst inflammatory conditions, thus improving the periodontal immune landscape. Further, RNA sequencing and indirect co-culture assays indicated that suppressing of WTAP expression modulates osteoimmune responses and enhances the osteogenic differentiation of bone marrow stromal cells. The local deployment of adeno-associated virus-shWTAP in murine models of periodontitis robustly validated the therapeutic promise of targeting WTAP in this disease. Collectively, our findings highlight the crucial role of WTAP in orchestrating macrophage-mediated osteoimmune responses and tissue regeneration in periodontitis, proposing novel avenues for immunotherapeutic interventions in its treatment.
Collapse
Affiliation(s)
- Yuman Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuting Niu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yao Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhewen Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shiyu Sun
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Bo Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
3
|
Chen W, Lu Y, Zhang Y, Wu J, McVicar A, Chen Y, Zhu S, Zhu G, Lu Y, Zhang J, McConnell M, Li YP. Cbfβ regulates Wnt/β-catenin, Hippo/Yap, and Tgfβ signaling pathways in articular cartilage homeostasis and protects from ACLT surgery-induced osteoarthritis. eLife 2024; 13:e95640. [PMID: 38805545 PMCID: PMC11132684 DOI: 10.7554/elife.95640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfβ/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfβ deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfβ signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfβ and Yap expression and increased active β-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active β-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfβ on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfβ may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/β-catenin signaling, and increasing Hippo/Yap signaling and Tgfβ/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.
Collapse
Affiliation(s)
- Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Yun Lu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Yan Zhang
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| | - You Lu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Jiayang Zhang
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane UniversityNew OrleansUnited States
- Department of Pathology, School of Medicine, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
4
|
Chen W, Lu Y, Zhang Y, Wu J, McVicar A, Chen Y, Zhu S, Zhu G, Lu Y, Zhang J, McConnell M, Li YP. Cbfβ regulates Wnt/β-catenin, Hippo/Yap, and TGFβ signaling pathways in articular cartilage homeostasis and protects from ACLT surgery-induced osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575763. [PMID: 38293189 PMCID: PMC10827176 DOI: 10.1101/2024.01.15.575763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that Cbfβ, (subunit of a heterodimeric Cbfβ/Runx1,Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfβ in tamoxifen-induced Cbfβf/fCol2α1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfβ deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/YAP signaling and TGF-β signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfβ and Yap expression and increased active β-catenin expression in articular cartilage, while local AAV-mediated Cbfβ overexpression promoted Yap expression and diminished active β-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfβ overexpression in knee joints of mice with OA showed the significant protective effect of Cbfβ on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfβ may be the cause of OA. Moreover, Local admission of Cbfβ may rescue and protect OA through decreasing Wnt/β-catenin signaling, and increasing Hippo/Yap signaling and TGFβ/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfβ overexpression could be an effective strategy for treatment of OA.
Collapse
Affiliation(s)
- Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Yun Lu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yan Zhang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Guochun Zhu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - You Lu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jiayang Zhang
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Hu S, Zhang Y, Qiu C, Li Y. RGS10 inhibits proliferation and migration of pulmonary arterial smooth muscle cell in pulmonary hypertension via AKT/mTORC1 signaling. Clin Exp Hypertens 2023; 45:2271186. [PMID: 37879890 DOI: 10.1080/10641963.2023.2271186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Objective: Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.Methods: PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.Results: RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.Conclusion: Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH."
Collapse
Affiliation(s)
- Sheng Hu
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yijie Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, China
| | - Ying Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
6
|
Wei W, Li J, Liu X, Pan W, Wang M, Li J, Yue Y, Hao L. Inhibition of RGS10 Aggravates Periapical Periodontitis via Upregulation of the NF-κB Pathway. J Endod 2022; 48:1308-1318.e5. [PMID: 36041584 DOI: 10.1016/j.joen.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Periapical periodontitis develops due to the interplay between root canal microorganisms and host defenses. The mechanism underlying the pathogenesis of periapical periodontitis remains unclear. Regulator of G protein signaling protein 10 (RGS10) has been suggested to play a role in regulating inflammation. This study explored the potential regulatory effects of RGS10 on periapical periodontitis and the pro-inflammatory pathway of NF-κB. METHODS Disease models of periapical inflammation in mice were established, and adenovirus-associated virus (AAV) was used to inhibit RGS10 expression. Periapical lesions were detected using microcomputed tomography. Quantitative real-time PCR (qRT-PCR), western blotting (WB), enzyme-linked immunosorbent assay (ELISA), enzyme activity staining of tartrate-resistant acid phosphatase, and immunohistochemistry were conducted to assess the role of RGS10 expression on NF-κB pro-inflammatory signaling, OPG, RANKL, and osteoclasts in the periapical regions of each group. TNFα was used to stimulate L929 cells alone or with small interfering RNA (siRNA). To assess the expression of associated molecules, WB, immunofluorescence, qRT-PCR, and ELISA were performed. RESULTS RGS10 inhibition increased alveolar bone destruction in periapical periodontitis lesions and substantially enhanced the NF-κB pro-inflammatory signaling pathway activation level. Furthermore, RGS10 inhibition upregulated the ratio of OPG/RANKL and the maturation of osteoclasts during alveolar bone resorption. L929 cell TNFα stimulation and siRNA transfection confirmed these in vivo results. CONCLUSION RGS10 negatively regulates NF-κB pro-inflammatory signaling in periapical periodontitis and participates in bone remodeling. Therefore, RGS10 is a promising treatment option for long-term chronic periapical inflammation and may be a new target for the artificial regulation of inflammation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiaxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Xinran Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jinle Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| | - Liang Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Yuan G, Yang S. Effect of Regulator of G Protein Signaling Proteins on Bone. Front Endocrinol (Lausanne) 2022; 13:842421. [PMID: 35573989 PMCID: PMC9098968 DOI: 10.3389/fendo.2022.842421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Regulator of G protein signaling (RGS) proteins are critical negative molecules of G protein-coupled receptor (GPCR) signaling, which mediates a variety of biological processes in bone homeostasis and diseases. The RGS proteins are divided into nine subfamilies with a conserved RGS domain which plays an important role in regulating the GTPase activity. Mutations of some RGS proteins change bone development and/or metabolism, causing osteopathy. In this review, we summarize the recent findings of RGS proteins in regulating osteoblasts, chondrocytes, and osteoclasts. We also highlight the impacts of RGS on bone development, bone remodeling, and bone-related diseases. Those studies demonstrate that RGS proteins might be potential drug targets for bone diseases.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shuying Yang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Penn Center for Musculoskeletal Disorders, Penn Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation and Precision Dentistry, Penn Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Chan WC, Tan L, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L, Man Y. Inhibition of Rgs10 aggravates periodontitis with collagen-induced arthritis via the NF-κB pathway. Oral Dis 2022; 29:1802-1811. [PMID: 35122384 DOI: 10.1111/odi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the role of the Rgs10-associated nuclear factor (NF)-κB signalling pathway in periodontitis with rheumatoid arthritis. METHODS Porphyromonas gingivalis and collagen were locally applied to mice to establish in vivo periodontitis and rheumatoid arthritis models, respectively. Both agents were administered together to establish the comorbid group. All models were treated with adeno-associated virus-green fluorescent protein (AAV-GFP) or adeno-associated virus small hairpin Rgs10 (AAV-sh-Rgs10). In vivo expression of Rgs10 and inflammatory cytokines was analysed, along with exploration of the NF-κB signalling pathway in lipopolysaccharide (LPS)-stimulated mouse-derived RAW264.7 cells, with and without treatment of small interfering RNA (siRNA; Rgs10-Mus-MSS245072). RESULTS In the comorbidity mouse group (mice with both periodontitis and rheumatoid arthritis), inhibition of Rgs10 exacerbated periodontitis, along with upregulation of phospho-RelA (pP65), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression in the NF-κB signalling pathway. Similarly, treatment of LPS-stimulated RAW264.7 cells with siRNA resulted in the inhibition of Rgs10, along with upregulation of pP65, TNF-α, and IL-6 expression in vitro. CONCLUSION Inhibition of Rgs10 in mice with periodontitis and rheumatoid arthritis can promote the progression of periodontitis, indicating the potential therapeutic role of Rgs10 in this condition.
Collapse
Affiliation(s)
- Wei-Cheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yi Man
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Almutairi F, Tucker SL, Sarr D, Rada B. PI3K/ NF-κB-dependent TNF-α and HDAC activities facilitate LPS-induced RGS10 suppression in pulmonary macrophages. Cell Signal 2021; 86:110099. [PMID: 34339853 PMCID: PMC8406451 DOI: 10.1016/j.cellsig.2021.110099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Regulator of G-protein signaling 10 (RGS10) is a member of the superfamily of RGS proteins that canonically act as GTPase activating proteins (GAPs). RGS proteins accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. Beyond its GAP function, RGS10 has emerged as an anti-inflammatory protein by inhibiting LPS-mediated NF-κB activation and expression of inflammatory cytokines, in particular TNF-α. Although RGS10 is abundantly expressed in resting macrophages, previous studies have shown that RGS10 expression is suppressed in macrophages following Toll-like receptor 4 (TLR4) activation by LPS. However, the molecular mechanism by which LPS induces Rgs10 silencing has not been clearly defined. The goal of the current study was to determine whether LPS silences Rgs10 expression through an NF-κB-mediated proinflammatory mechanism in pulmonary macrophages, a unique type of innate immune cells. We demonstrate that Rgs10 transcript and RGS10 protein levels are suppressed upon LPS treatment in the murine MH-S alveolar macrophage cell line. We show that pharmacological inhibition of PI3K/ NF-κB/p300 (NF-κB co-activator)/TNF-α signaling cascade and the activities of HDAC (1-3) enzymes block LPS-induced silencing of Rgs10 in MH-S cells as well as microglial BV2 cells and BMDMs. Further, loss of RGS10 generated by using CRISPR/Cas9 amplifies NF-κB phosphorylation and inflammatory gene expression following LPS treatment in MH-S cells. Together, our findings strongly provide critical insight into the molecular mechanism underlying RGS10 suppression by LPS in pulmonary macrophages.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Wendimu MY, Alqinyah M, Vella S, Dean P, Almutairi F, Davila-Rivera R, Rayatpisheh S, Wohlschlegel J, Moreno S, Hooks SB. RGS10 physically and functionally interacts with STIM2 and requires store-operated calcium entry to regulate pro-inflammatory gene expression in microglia. Cell Signal 2021; 83:109974. [PMID: 33705894 DOI: 10.1016/j.cellsig.2021.109974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
Chronic activation of microglia is a driving factor in the progression of neuroinflammatory diseases, and mechanisms that regulate microglial inflammatory signaling are potential targets for novel therapeutics. Regulator of G protein Signaling 10 is the most abundant RGS protein in microglia, where it suppresses inflammatory gene expression and reduces microglia-mediated neurotoxicity. In particular, microglial RGS10 downregulates the expression of pro-inflammatory mediators including cyclooxygenase 2 (COX-2) following stimulation with lipopolysaccharide (LPS). However, the mechanism by which RGS10 affects inflammatory signaling is unknown and is independent of its canonical G protein targeted mechanism. Here, we sought to identify non-canonical RGS10 interacting partners that mediate its anti-inflammatory mechanism. Through RGS10 co-immunoprecipitation coupled with mass spectrometry, we identified STIM2, an endoplasmic reticulum (ER) localized calcium sensor and a component of the store-operated calcium entry (SOCE) machinery, as a novel RGS10 interacting protein in microglia. Direct immunoprecipitation experiments confirmed RGS10-STIM2 interaction in multiple microglia and macrophage cell lines, as well as in primary cells, with no interaction observed with the homologue STIM1. We further determined that STIM2, Orai channels, and the calcium-dependent phosphatase calcineurin are essential for LPS-induced COX-2 production in microglia, and this pathway is required for the inhibitory effect of RGS10 on COX-2. Additionally, our data demonstrated that RGS10 suppresses SOCE triggered by ER calcium depletion and that ER calcium depletion, which induces SOCE, amplifies pro-inflammatory genes. In addition to COX-2, we also show that RGS10 suppresses the expression of pro-inflammatory cytokines in microglia in response to thrombin and LPS stimulation, and all of these effects require SOCE. Collectively, the physical and functional links between RGS10 and STIM2 suggest a complex regulatory network connecting RGS10, SOCE, and pro-inflammatory gene expression in microglia, with broad implications in the pathogenesis and treatment of chronic neuroinflammation.
Collapse
Affiliation(s)
- Menbere Y Wendimu
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America
| | - Mohammed Alqinyah
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America
| | - Stephen Vella
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, United States of America
| | - Phillip Dean
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America
| | - Faris Almutairi
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America
| | - Roseanne Davila-Rivera
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America
| | - Shima Rayatpisheh
- Department of Biological Chemistry, University of California, Los Angeles 90095, United States of America
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles 90095, United States of America
| | - Silvia Moreno
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, United States of America
| | - Shelley B Hooks
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America.
| |
Collapse
|
12
|
Silencing of Ac45 Simultaneously Inhibits Osteoclast-Mediated Bone Resorption and Attenuates Dendritic Cell-Mediated Inflammation through Impairing Acidification and Cathepsin K Secretion. Infect Immun 2020; 89:IAI.00436-20. [PMID: 33077625 DOI: 10.1128/iai.00436-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Endodontic disease is characterized by inflammation and destruction of periapical tissues, leading to severe bone resorption and tooth loss. ATP6AP1 (Ac45) has been implicated in human immune diseases, yet the mechanism underlying how Ac45 regulates immune response and reaction in inflammatory diseases remains unknown. We generated endodontic disease mice through bacterial infection as an inflammatory disease model and used adeno-associated virus (AAV)-mediated Ac45 RNA interference knockdown to study the function of Ac45 in periapical inflammation and bone resorption. We demonstrated that the AAV small hairpin RNA targeting Ac45 (AAV-sh-Ac45) impaired cellular acidification, extracellular acidification, and bone resorption. Our results showed that local delivery of AAV-sh-Ac45 in periapical tissues in bacterium-induced inflammatory lesions largely reduced bone destruction, inhibited inflammation, and dramatically reduced mononuclear immune cells. T-cell, macrophage, and dendritic cell infiltration in the periapical lesion was dramatically reduced, and the periodontal ligament was protected from inflammation-induced destruction. Furthermore, AAV-sh-Ac45 significantly reduced osteoclast formation and the expression of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-10 (IL-10), IL-12, IL-1α, IL-6, and IL-17. Interestingly, AAV-sh-Ac45 impaired mature cathepsin K secretion more significantly than that by AAV-sh-C1 and AAV-sh-CtsK Unbiased genome-wide transcriptome sequencing analysis of Ctsk -/- dendritic cells stimulated with lipopolysaccharide demonstrated that the ablation of Ctsk dramatically reduced dendritic cell-mediated inflammatory signaling. Taken together, our results indicated that AAV-sh-Ac45 simultaneously inhibits osteoclast-mediated bone resorption and attenuates dendritic cell-mediated inflammation through impairing acidification and cathepsin K secretion. Thus, Ac45 may be a novel target for therapeutic approaches to attenuate inflammation and bone erosion in endodontic disease and other inflammation-related osteolytic diseases.
Collapse
|
13
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
15
|
Wang C, Sun W, Ling S, Wang Y, Wang X, Meng H, Li Y, Yuan X, Li J, Liu R, Zhao D, Lu Q, Wang A, Guo Q, Lu S, Tian H, Li Y, Peng J. AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:841-850. [PMID: 31739209 PMCID: PMC6861671 DOI: 10.1016/j.omtn.2019.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 02/07/2023]
Abstract
Osteonecrosis of the femoral head, an intractable but common disease that eventually triggers collapse of the femoral head, is characterized by increased osteoclast activity and markedly decreased osteoblast activity in the necrotic region of the femoral head. MicroRNA (miRNA)-214 (miR-214) may play important roles in vertebrate skeletal development by inhibiting osteoblast function by targeting activating transcription factor 4 (ATF4) and promoting osteoclast function via phosphatase and tensin homolog (PTEN). This study revealed significantly increased levels of miR-214 in necrotic regions, with commensurate changes in the numbers of its target cells (both osteoblasts and osteoclasts). To investigate whether targeting miR-214 could prevent femoral head collapse, we constructed an adeno-associated virus (AAV)-associated anti-miR-214 (AAV-anti-miR-214) and evaluated its function in vivo. AAV-anti-miR-214 promoted osteoblast activity and diminished osteoclast activity, effectively preventing collapse of the femoral head in a rat model of osteonecrosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China; Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Haoye Meng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xueling Yuan
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruoxi Liu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qiang Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Jiang Peng
- Institute of Orthopedics, Peking Key Lab of Regenerative Medicine in Orthopaedics, Key Lab of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Wang Y, Chen W, Hao L, McVicar A, Wu J, Gao N, Liu Y, Li YP. C1 Silencing Attenuates Inflammation and Alveolar Bone Resorption in Endodontic Disease. J Endod 2019; 45:898-906. [PMID: 31104818 DOI: 10.1016/j.joen.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/23/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Endodontic disease, 1 of the most prevalent chronic infectious diseases worldwide, occurs when the dental pulp becomes infected and inflamed, leading to bone destruction around the tooth root, severe pain, and tooth loss. Although many studies have tried to develop therapies to alleviate the bone erosion and inflammation associated with endodontic disease, there is an urgent need for an effective treatment. METHODS In this study, we used a gene-based therapy approach by administering recombinant adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown to target both periapical bone resorption and inflammation in the mouse model of endodontic disease. RESULTS The results showed that Atp6v1c1 knockdown is simultaneously capable of reducing bone resorption by 70% through impaired osteoclast activation, inhibiting inflammation by decreasing T-cell infiltration in the periapical lesion by 75%, and protecting the periodontal ligament from destruction caused by inflammation. Notably, AAV-mediated gene therapy of Atp6v1c1 knockdown significantly reduced proinflammatory cytokine expression, including tumor necrosis factor α, interleukin 1α, interleukin 17, interleukin 12, and interleukin 6 levels in periapical tissues caused by bacterial infection. Quantitative real-time polymerase chain reaction revealed that Atp6v1c1 knockdown reduced osteoclast-specific functional genes (ie, Ctsk) in periapical tissues. CONCLUSIONS Our results showed that AAV-mediated Atp6v1c1 knockdown in periapical tissues slowed endodontic disease progression, prevented bone erosion, and alleviated inflammation in the periapical tissues and periodontal ligament potentially through regulation of toll-like receptor signaling, indicating that targeting Atp6v1c1 may facilitate the design of novel therapeutic approaches to reduce inflammation and bone erosion in endodontic disease.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liang Hao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abigail McVicar
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jinjin Wu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ning Gao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuehua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
17
|
Alqinyah M, Almutairi F, Wendimu MY, Hooks SB. RGS10 Regulates the Expression of Cyclooxygenase-2 and Tumor Necrosis Factor Alpha through a G Protein-Independent Mechanism. Mol Pharmacol 2018; 94:1103-1113. [PMID: 30049816 DOI: 10.1124/mol.118.111674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/11/2018] [Indexed: 01/18/2023] Open
Abstract
The small regulator of G protein signaling protein RGS10 is a key regulator of neuroinflammation and ovarian cancer cell survival; however, the mechanism for RGS10 function in these cells is unknown and has not been linked to specific G protein pathways. RGS10 is highly enriched in microglia, and loss of RGS10 expression in microglia amplifies production of the inflammatory cytokine tumor necrosis factor α (TNFα) and enhances microglia-induced neurotoxicity. RGS10 also regulates cell survival and chemoresistance of ovarian cancer cells. Cyclooxygenase-2 (COX-2)-mediated production of prostaglandins such as prostaglandin E2 (PGE2) is a key factor in both neuroinflammation and cancer chemoresistance, suggesting it may be involved in RGS10 function in both cell types, but a connection between RGS10 and COX-2 has not been reported. To address these questions, we completed a mechanistic study to characterize RGS10 regulation of TNFα and COX-2 and to determine if these effects are mediated through a G protein-dependent mechanism. Our data show for the first time that loss of RGS10 expression significantly elevates stimulated COX-2 expression and PGE2 production in microglia. Furthermore, the elevated inflammatory signaling resulting from RGS10 loss was not affected by Gαi inhibition, and a RGS10 mutant that is unable to bind activated G proteins was as effective as wild type in inhibiting TNFα expression. Similarly, suppression of RGS10 in ovarian cancer cells enhanced TNFα and COX-2 expression, and this effect did not require Gi activity. Together, our data strongly indicate that RGS10 inhibits COX-2 expression by a G protein-independent mechanism to regulate inflammatory signaling in microglia and ovarian cancer cells.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Faris Almutairi
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Menbere Y Wendimu
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Shelley B Hooks
- Hooks Laboratory, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| |
Collapse
|
18
|
Liu H, Zhang N, Liu Y, Liu L, Yin G, En L. Effect of Human Wnt10b Transgene Overexpression on Peri-Implant Osteogenesis in Ovariectomized Rats. Hum Gene Ther 2018; 29:1416-1427. [PMID: 29790378 DOI: 10.1089/hum.2018.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the efficacy of human Wnt10b (hWnt10b) transgene expression in ovariectomized (OVX) rats to accelerate osseointegration around titanium implants, and to provide a new strategy for treating osteoporosis with implants. An in vivo osteoporosis model was generated via bilateral ovariectomy in rats, and changes in expression of Wnt pathway-related genes were investigated. In OVX rats with a femur defect, hWnt10b expressed from an adenovirus vector was locally delivered to the defect site prior to implant placement. Surrounding femur tissues were collected 1 and 3 weeks after implantation for imaging, biomechanical testing, and molecular and histological analyses. In an in vitro model, bone-marrow stromal cells (BMSCs) transfected with adenovirus containing hWnt10b (Ad-hWnt10b) were cultured for 2 weeks in adipogenic medium followed by 2 weeks in osteogenic induction medium. Alizarin Red staining and Oil Red O staining, as well as reverse transcription polymerase chain reaction and Western blot analyses, were performed to assess the effect of hWnt10b expression on BMSC differentiation. Expression of Wnt pathway genes was significantly downregulated in OVX rats. OVX rats treated with Ad-hWnt10b prior to induction of a femur defect showed markedly increased ALP, Runx-2, and osteocalcin expression and decreased cathepsin K expression. Histological and imaging analysis showed increases in the number of osteocalcin-positive cells and the density of newly formed bone surrounding the implant in the Ad-hWnt10b group relative to the untreated control. Meanwhile, Ad-hWnt10b-BMSCs showed significantly increased osteogenesis and decreased adipogenesis. hWnt10b may accelerate osseointegration around implants and subsequently enhance bone regeneration and implant stabilization under OVX conditions.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Nian Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Li Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, P.R. China
| | - Luo En
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
19
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
20
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
21
|
Jules J, Chen W, Feng X, Li YP. C/EBPα transcription factor is regulated by the RANK cytoplasmic 535IVVY 538 motif and stimulates osteoclastogenesis more strongly than c-Fos. J Biol Chem 2018; 293:1480-1492. [PMID: 29122885 PMCID: PMC5787821 DOI: 10.1074/jbc.m116.736009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2017] [Indexed: 01/18/2023] Open
Abstract
Binding of receptor activator of NF-κB ligand (RANKL) to its receptor RANK on osteoclast (OC) precursors up-regulates c-Fos and CCAAT/enhancer-binding protein-α (C/EBPα), two critical OC transcription factors. However, the effects of c-Fos and C/EBPα on osteoclastogenesis have not been compared. Herein, we demonstrate that overexpression of c-Fos or C/EBPα in OC precursors up-regulates OC genes and initiates osteoclastogenesis independently of RANKL. However, although C/EBPα up-regulated c-Fos, c-Fos failed to up-regulate C/EBPα in OC precursors. Consistently, C/EBPα overexpression more strongly promoted OC differentiation than did c-Fos overexpression. RANK has a cytoplasmic 535IVVY538 (IVVY) motif that is essential for osteoclastogenesis, and we found that mutation of the IVVY motif blocked OC differentiation by partly inhibiting expression of C/EBPα but not expression of c-Fos. We therefore hypothesized that C/EBPα overexpression might rescue osteoclastogenesis in cells expressing the mutated IVVY motif. However, overexpression of C/EBPα or c-Fos failed to stimulate osteoclastogenesis in the mutant cells. Notably, the IVVY motif mutation abrogated OC gene expression compared with a vector control, suggesting that the IVVY motif might counteract OC inhibitors during osteoclastogenesis. Consistently, the IVVY motif mutant triggered up-regulation of recombinant recognition sequence-binding protein at the Jκ site (RBP-J) protein, a potent OC inhibitor. Mechanistically, C/EBPα or c-Fos overexpression in the mutant cells failed to control the up-regulated RBP-J expression, leading to suppression of OC genes. Accordingly, RBP-J silencing in the mutant cells rescued osteoclastogenesis with C/EBPα or c-Fos overexpression with C/EBPα exhibiting a stronger osteoclastogenic effect. Collectively, our findings indicate that C/EBPα is a stronger inducer of OC differentiation than c-Fos, partly via C/EBPα regulation by the RANK 535IVVY538 motif.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
22
|
Wang Y, Zhang X, Shao J, Liu H, Liu X, Luo E. Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β-catenin pathway. Sci Rep 2017. [PMID: 28623357 PMCID: PMC5473871 DOI: 10.1038/s41598-017-03899-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated the stimulatory effects of adiponectin on bone formation, but the mechanism underlying these effects remains unclear. The Wnt/β-catenin pathway, one of the most important pathways in osteogenesis, has rarely been associated with the osteogenic effects of adiponectin in previous studies. The present study was designed to investigate the effects of adiponectin on bone mesenchymal stem cell (BMSC) osteogenic differentiation and bone formation through the Wnt/β-catenin pathway. We detected adiponectin receptor expression in BMSCs, constructed a recombinant adenovirus containing the human adiponectin gene, and then used the adenovirus to transfect BMSCs in vitro or injected the adenovirus into bone defect areas in animal models. Wnt/β-catenin pathway and osteogenesis were detected by real-time PCR, western blotting, immunofluorescence, HE staining and micro-CT. In both our in vivo and in vitro experiments, we detected higher gene and protein expression levels of the Wnt/β-catenin pathway-related factors β-catenin and cyclinD1 in adiponectin transgenic BMSCs and rats. Similar results were noted regarding the gene and protein expression levels of osteogenesis-related genes. In addition, more new bone formation was observed in the adiponectin-treated groups. Our results indicate that adiponectin could facilitate BMSC osteogenic differentiation and osteogenesis, and the Wnt/β-catenin pathway was involved in the osteogenic effect of adiponectin.
Collapse
Affiliation(s)
- Yiyao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Shao
- Department of Stomatology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, People's Republic of China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
23
|
Pan J, Wang J, Hao L, Zhu G, Nguyen DN, Li Q, Liu Y, Zhao Z, Li YP, Chen W. The Triple Functions of D2 Silencing in Treatment of Periapical Disease. J Endod 2017; 43:272-278. [DOI: 10.1016/j.joen.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/20/2022]
|
24
|
Chen W, Gao B, Hao L, Zhu G, Jules J, Macdougall MJ, Han X, Zhou X, Li YP. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation. J Periodontal Res 2016; 51:647-60. [PMID: 26754272 PMCID: PMC5482270 DOI: 10.1111/jre.12345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. MATERIAL AND METHODS We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. RESULTS AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. CONCLUSION AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Bo Gao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| | - Mary J. Macdougall
- Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, SDB Room 702, 1919 7 Avenue South, Birmingham AL 35233, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Xuedong Zhou
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham AL 35294-2182, USA
| |
Collapse
|
25
|
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291:16390-403. [PMID: 27129246 DOI: 10.1074/jbc.m115.674598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBPα) can appoint mouse bone marrow (MBM) cells to the osteoclast (OC) lineage for osteoclastogenesis. However, whether C/EBPα is also involved in OC differentiation and activity is unknown. Here we demonstrated that C/EBPα overexpression in MBM cells can promote OC differentiation and strongly induce the expression of the OC genes encoding the nuclear factor of activated T-cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with receptor activator of NF-κB ligand-evoked OC lineage priming. Furthermore, while investigating the specific stage of OC differentiation that is regulated by C/EBPα, our gene overexpression studies revealed that, although C/EBPα plays a stronger role in the early stage of OC differentiation, it is also involved in the later stage. Accordingly, C/EBPα knockdown drastically inhibits osteoclastogenesis and markedly abrogates the expression of NFATc1, Cstk, and TRAP during OC differentiation. Consistently, C/EBPα silencing revealed that, although lack of C/EBPα affects all stages of OC differentiation, it has more impact on the early stage. Importantly, we showed that ectopic expression of rat C/EBPα restores osteoclastogenesis in C/EBPα-depleted MBM cells. Furthermore, our subsequent functional assays showed that C/EBPα exhibits a dispensable role on actin ring formation by mature OCs but is critically involved in bone resorption by stimulating extracellular acidification and regulating cell survival. We revealed that C/EBPα is important for receptor activator of NF-κB ligand-induced Akt activation, which is crucial for OC survival. Collectively, these results indicate that C/EBPα functions throughout osteoclastogenesis as well as in OC function. This study provides additional understanding of the roles of C/EBPα in OC biology.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
26
|
Li S, Hao L, Wang L, Lu Y, Li Q, Zhu Z, Shao JZ, Chen W. Targeting Atp6v1c1 Prevents Inflammation and Bone Erosion Caused by Periodontitis and Reveals Its Critical Function in Osteoimmunology. PLoS One 2015; 10:e0134903. [PMID: 26274612 PMCID: PMC4537256 DOI: 10.1371/journal.pone.0134903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Lin Wang
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
| | - Qian Li
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- College of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jian-Zhong Shao
- Life Science College, Zhejiang University, 388 Yuhang Road, Hangzhou, 310058, People's Republic of China
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhu Z, Chen W, Hao L, Zhu G, Lu Y, Li S, Wang L, Li YP. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis. J Clin Periodontol 2015; 42:599-608. [PMID: 25952706 DOI: 10.1111/jcpe.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis induced by oral pathogens leads to severe periodontal tissue damage and osteoclast-mediated bone resorption caused by inflammation. On the basis of the importance of Ac45 in osteoclast formation and function, we performed this study to evaluate the therapeutic potential of periodontitis by local adeno-associated virus (AAV)-mediated Ac45 gene knockdown. MATERIAL AND METHODS We used AAV-mediated short hairpin RNAi knockdown of Ac45 gene expression (AAV-sh-Ac45) to inhibit bone erosion and gingival inflammation simultaneously in a well-established periodontitis mouse model induced by Porphyromonas gingivalis W50. Histological studies were performed to evaluate the bone protection of AAV-sh-Ac45. Immunochemistry, ELISA and qRT-PCR were performed to reveal the role of Ac45 knockdown on inflammation, immune response and expression of cytokine. RESULTS We found that Ac45 knockdown impaired osteoclast-mediated extracellular acidification and bone resorption in vitro and in vivo. Furthermore, local administration of AAV-sh-Ac45 protected mice from bone erosion by >85% and attenuated inflammation and decreased infiltration of T cells, dendritic cells and macrophages in the periodontal lesion. Notably, the expression of pro-inflammatory cytokines was also reduced. CONCLUSIONS Local AAV-sh-Ac45 gene therapy efficiently protects against periodontal tissue damage and bone erosion through both inhibition of osteoclast function and attenuating inflammation, and may represent a powerful new treatment strategy for periodontitis.
Collapse
Affiliation(s)
- Zheng Zhu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sheng Li
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Deficiency of cathepsin K prevents inflammation and bone erosion in rheumatoid arthritis and periodontitis and reveals its shared osteoimmune role. FEBS Lett 2015; 589:1331-1339. [PMID: 25896020 DOI: 10.1016/j.febslet.2015.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Using rheumatoid arthritis (RA) and periodontitis mouse models, we demonstrate that RA and periodontitis share many pathological features, such as deregulated cytokine production, increased immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast activity and bone erosion. We reveal that genetic deletion of cathepsin K (Ctsk) caused a radical reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages, dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role.
Collapse
|
29
|
Hao L, Chen J, Zhu Z, Reddy MS, Mountz JD, Chen W, Li YP. Odanacatib, A Cathepsin K-Specific Inhibitor, Inhibits Inflammation and Bone Loss Caused by Periodontal Diseases. J Periodontol 2015; 86:972-83. [PMID: 25879791 DOI: 10.1902/jop.2015.140643] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Periodontitis is a bacteria-induced inflammatory disease mainly affecting periodontal tissues, leading to periodontal inflammation, bone breakdown, and loss of the tooth. The main obstacle for treating periodontitis effectively is the difficulty in finding a target that can inhibit bone loss and inflammation simultaneously. Recent studies showed that cathepsin K (CTSK) might have functions in the immune system besides its role in osteoclasts. Thus, targeting CTSK would have a potential therapeutic effect in both the bone system and the immune system during the progression of periodontitis. METHODS In the current study, a small molecular inhibitor (odanacatib [ODN]) is explored to inhibit the function of CTSK in a bacteria-induced periodontitis mouse model. RESULTS The application of ODN decreased the number of osteoclasts, macrophages, and T cells, as well as the expression of Toll-like receptors (TLRs) in the periodontitis lesion area. Furthermore, lack of CTSK inhibited the expression of TLR4, TLR5, and TLR9 and their downstream cytokine signaling in the gingival epithelial cells in periodontitis lesions, demonstrating that the innate immune response was inhibited in periodontitis. CONCLUSION The present results show that inhibition of CTSK can prevent bone loss and the immune response during the progression of periodontitis, indicating that CTSK is a promising target for treating inflammatory diseases such as periodontitis by affecting both osteoclasts and the immune system.
Collapse
Affiliation(s)
- Liang Hao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jianwei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Zheng Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael S Reddy
- Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| | - John D Mountz
- Department of Medicine, University of Alabama at Birmingham
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.,Department of Periodontology, University of Alabama at Birmingham School of Dentistry, Birmingham, AL
| |
Collapse
|
30
|
A small molecule, odanacatib, inhibits inflammation and bone loss caused by endodontic disease. Infect Immun 2015; 83:1235-45. [PMID: 25583522 DOI: 10.1128/iai.01713-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Periapical disease, an inflammatory disease mainly caused by dental caries, is one of the most prevalent infectious diseases of humans, affecting both children and adults. The infection travels through the root, leading to inflammation, bone destruction, and severe pain for the patient. Therefore, the development of a new class of anti-periapical disease therapies is necessary and critical for treatment and prevention. A small molecule, odanacatib (ODN), which is a cathepsin K (Ctsk) inhibitor, was investigated to determine its ability to treat this disease in a mouse model of periapical disease. While Ctsk was originally found in osteoclasts as an osteoclast-specific lysosomal protease, we were surprised to find that ODN can suppress the bacterium-induced immune response as well as bone destruction in the lesion area. X rays and microcomputed tomography (micro-CT) showed that ODN treatment had significant bone protection effects at different time points. Immunohistochemical and immunofluorescent staining show that ODN treatment dramatically decreased F4/80+ macrophages and CD3+ T cells in the lesion areas 42 days after infection. Consistent with these findings, quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) analysis showed low levels of proinflammatory mRNAs (for tumor necrosis factor alpha, interleukin 6, and interleukin 23α) and corresponding cytokine expression in the ODN-treated disease group. The levels of mRNA for Toll-like receptors 4, 5, and 9 also largely decreased in the ODN-treated disease group. Our results demonstrated that ODN can inhibit endodontic disease development, bone erosion, and immune response. These results indicate that application of this small molecule offers a new opportunity to design effective therapies that could prevent periapical inflammation and revolutionize current treatment options.
Collapse
|
31
|
Physiology of RGS10 in Neurons and Immune Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:153-67. [DOI: 10.1016/bs.pmbts.2015.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Wu M, Li C, Zhu G, Wang Y, Jules J, Lu Y, McConnell M, Wang YJ, Shao JZ, Li YP, Chen W. Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone 2014; 65:49-59. [PMID: 24798493 PMCID: PMC4644668 DOI: 10.1016/j.bone.2014.04.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
Core-binding factor β (Cbfβ) is a subunit of the Cbf family of heterodimeric transcription factors, which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfβ regulates cartilage and bone development remains unclear. Existing Cbfβ-deficient mouse models cannot specify the role of Cbfβ in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfβ in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfβ CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfβ in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage, causing alveolus defects that led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfβ was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfβ deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfβ, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wild-type mice, indicating that Cbfβ/Runx1 complex and Cbfβ/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfβ deletion in the mesenchymal progenitors affected bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx) but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfβ mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfβ in cartilage and bone development but also facilitate the design of novel therapeutic approaches for skeletal diseases.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chenguan Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Institute of Spine, Longhua Hospital, ShangHai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yiping Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Joel Jules
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yun Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew McConnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong-Jun Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jian-Zhong Shao
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| | - Wei Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
33
|
Wu M, Li YP, Zhu G, Lu Y, Wang Y, Jules J, McConnell M, Serra R, Shao JZ, Chen W. Chondrocyte-specific knockout of Cbfβ reveals the indispensable function of Cbfβ in chondrocyte maturation, growth plate development and trabecular bone formation in mice. Int J Biol Sci 2014; 10:861-72. [PMID: 25170300 PMCID: PMC4147220 DOI: 10.7150/ijbs.8521] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022] Open
Abstract
Despite years of research into bone formation, the mechanisms by which transcription factors specify growth plate development and trabecular bone formation remain unclear and the role of hypertrophic chondrocytes in trabeculae morphogenesis is controversial. To study the role of Core binding factor beta (Cbfβ) in postnatal cartilage development and endochondral bone formation, we generated chondrocyte-specific Cbfβ-deficient mice (Cbfβf/fCol2α1-Cre mice) using floxed alleles of Cbfβ (Cbfβf/f) and Cre driven by the Collagen 2α1 promoter (Col2α1-Cre). Cbfβf/fCol2α1-Cre mice evaded developmental and newborn lethality to survive to adulthood and displayed severe skeletal malformation. Cbfβf/fCol2α1-Cre mice had dwarfism, hypoplastic skeletons, defective bone mineralization, shortened limbs, shortened sternum bodies, and un-calcified occipital bones and hyoid bones. In the long bone cartilage, the resting zone was elongated, and chondrocyte proliferation and hypertrophy were impaired in Cbfβf/fCol2α1-Cre mice, which led to deformation of the growth plates. Primary spongiosa formation was delayed, diaphysis was shortened and trabecular bone formation was almost absent in the mutant mice. In addition, lamellar bone formation in the secondary spongiosa was also impaired. However, osteoclast formation in the trabecular bone was not affected. Cbfβ deficiency led to down-regulation of chondrocyte-regulating genes [i.e, patched (Ptc1), Cyclin D1 and Indian hedgehog (Ihh)] in the cartilage. Interestingly, the expression of Runx2 and Runx3 was not changed in the cartilage of the mutants. Collectively, the results revealed that Cbfβ is crucial for postnatal skeletal development and endochondral bone formation through its function in growth plate development and chondrocyte proliferation and differentiation. This study also revealed that chondrocyte maturation, mediated by Cbfβ, was critical to trabecular bone morphogenesis. Significantly, these findings provide insight into the role of Cbfβ in postnatal skeletogenesis, which may assist in the development of new therapies for osteoporosis.
Collapse
Affiliation(s)
- Mengrui Wu
- 1. Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. ; 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yi-Ping Li
- 1. Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. ; 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guochun Zhu
- 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yun Lu
- 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yiping Wang
- 1. Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. ; 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joel Jules
- 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew McConnell
- 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rosa Serra
- 3. Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jian-Zhong Shao
- 1. Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Wei Chen
- 2. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|