1
|
Benchimol GDC, Santos JB, Lopes ASDC, Oliveira KG, Okada EST, de Alcantara BN, Pereira WLA, Leão DL, Martins ACC, Carneiro LA, Imbeloni AA, Makiama ST, de Castro LPPA, Coutinho LN, Casseb LMN, Vasconcelos PFDC, Domingues SFS, Medeiros DBDA, Scalercio SRRDA. Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys ( Saimiri collinsi). Viruses 2023; 15:615. [PMID: 36992324 PMCID: PMC10051343 DOI: 10.3390/v15030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 02/26/2023] Open
Abstract
During the Zika virus (ZIKV) outbreak and after evidence of its sexual transmission was obtained, concerns arose about the impact of the adverse effects of ZIKV infection on human fertility. In this study, we evaluated the clinical-laboratory aspects and testicular histopathological patterns of pubertal squirrel monkeys (Saimiri collinsi) infected with ZIKV, analyzing the effects at different stages of infection. The susceptibility of S. collinsi to ZIKV infection was confirmed by laboratory tests, which detected viremia (mean 1.63 × 106 RNA copies/µL) and IgM antibody induction. Reduced fecal testosterone levels, severe testicular atrophy and prolonged orchitis were observed throughout the experiment by ultrasound. At 21 dpi, testicular damage associated with ZIKV was confirmed by histopathological and immunohistochemical (IHC) analyses. Tubular retraction, the degeneration and necrosis of somatic and germ cells in the seminiferous tubules, the proliferation of interstitial cells and an inflammatory infiltrate were observed. ZIKV antigen was identified in the same cells where tissue injuries were observed. In conclusion, squirrel monkeys were found to be susceptible to the Asian variant of ZIKV, and this model enabled the identification of multifocal lesions in the seminiferous tubules of the infected group evaluated. These findings may suggest an impact of ZIKV infection on male fertility.
Collapse
Affiliation(s)
- Gabriela da Costa Benchimol
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | - Josye Bianca Santos
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Postgraduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
| | | | | | | | | | - Washington Luiz Assunção Pereira
- Laboratory of Animal Pathology (LABOPAT), Institute of Health and Animal Production, Federal Rural University of the Amazon, Belém 66077-830, Pará, Brazil
| | - Danuza Leite Leão
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Mamirauá Institute for Sustainable Development, Tefé 69553-225, Amazonas, Brazil
| | | | | | | | | | | | - Leandro Nassar Coutinho
- Laboratory of Animal Pathology (LABOPAT), Institute of Health and Animal Production, Federal Rural University of the Amazon, Belém 66077-830, Pará, Brazil
| | - Lívia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Department of Pathology, Center of Biologic and Health Sciences, State University of Pará, Belém 66050-540, Pará, Brazil
| | - Sheyla Farhayldes Souza Domingues
- Laboratory of Amazon Animal Biotechnology and Medicine (BIOMEDAM), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- Postgraduate Program in Animal Reproduction in the Amazon (ReproAmazon), Federal University of Pará, Castanhal 68740-970, Pará, Brazil
- School of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Pará, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
- Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ananindeua 67030-000, Pará, Brazil
| | | |
Collapse
|
2
|
Rampazzo RDCP, Zambenedetti MR, Alexandrino F, Jacomasso T, Tschá MK, de Fillipis AMB, Morello LG, Marchini FK. Development, verification, and validation of an RT-qPCR-based protocol for Yellow Fever diagnosis. Int J Infect Dis 2022; 119:34-37. [PMID: 34990800 DOI: 10.1016/j.ijid.2021.12.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Yellow fever (YF) is a public health threat with frequent outbreaks in tropical and subtropical areas, despite the existence of a safe and effective vaccine. The diagnosis of acute infection of the etiologic agent relies mainly on real-time reverse transcription-polymerase chain reaction (RT-qPCR)-based assays. OBJECTIVES The aim of this study was to evaluate and compare this novel protocol for yellow fever virus (YFV) diagnosis against assays developed in-house by reference laboratories for arboviruses. METHODS We developed a novel molecular protocol for the detection of YFV that includes an Internal Control to validate the reaction and an External Control to monitor the RNA extraction efficiency. RESULTS AND DISCUSSION Our assay detects one viral genome per reaction and displays no cross-reactions with dengue (1-4), Zika, or Chikungunya viruses. This novel assay yielded 95% of agreement with the reference method recommended by the Pan American Health Organization when analyzing 204 clinical samples and cultured viruses, these samples were analyzed in 3 different diagnosis centers for arboviruses in Brazil. The data suggest the use of the proposed multiplex assay protocol to do routine tests in a clinical laboratory. This product adds higher specificity and sensitivity in addition to reduced cost per test due to hands-on time and reagent spending.
Collapse
Affiliation(s)
- Rita de Cássia Pontello Rampazzo
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Miriam Ribas Zambenedetti
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Fabiana Alexandrino
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Thiago Jacomasso
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Marcel Kruchelski Tschá
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Ana Maria Bispo de Fillipis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Gustavo Morello
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil; Instituto Carlos Chagas (ICC), FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil
| | - Fabricio Klerynton Marchini
- Instituto de Biologia Molecular do Paraná (IBMP), Rua Professor Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil; Instituto Carlos Chagas (ICC), FIOCRUZ-PR, Rua Prof. Algacyr Munhoz Mader, 3775 CIC, 81350-010, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Queiroz ALN, Barros RS, Silva SP, Rodrigues DSG, Cruz ACR, dos Santos FB, Vasconcelos PFC, Tesh RB, Nunes BTD, Medeiros DBA. The Usefulness of a Duplex RT-qPCR during the Recent Yellow Fever Brazilian Epidemic: Surveillance of Vaccine Adverse Events, Epizootics and Vectors. Pathogens 2021; 10:693. [PMID: 34204910 PMCID: PMC8228867 DOI: 10.3390/pathogens10060693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
From 2016 to 2018, Brazil faced the biggest yellow fever (YF) outbreak in the last 80 years, representing a risk of YF reurbanization, especially in megacities. Along with this challenge, the mass administration of the fractionated YF vaccine dose in a naïve population brought another concern: the possibility to increase YF adverse events associated with viscerotropic (YEL-AVD) or neurological disease (YEL-AND). For this reason, we developed a quantitative real time RT-PCR (RT-qPCR) assay based on a duplex TaqMan protocol to distinguish broad-spectrum infections caused by wild-type yellow fever virus (YFV) strain from adverse events following immunization (AEFI) by 17DD strain during the vaccination campaign used to contain this outbreak. A rapid and more accurate RT-qPCR assay to diagnose YFV was established, being able to detect even different YFV genotypes and geographic strains that circulate in Central and South America. Moreover, after testing around 1400 samples from human cases, non-human primates and mosquitoes, we detected just two YEL-AVD cases, confirmed by sequencing, during the massive vaccination in Brazilian Southeast region, showing lower incidence than AEFI as expected.
Collapse
Affiliation(s)
- Alice L. N. Queiroz
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Rafael S. Barros
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Sandro P. Silva
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Daniela S. G. Rodrigues
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Ana C. R. Cruz
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Flávia B. dos Santos
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Robert B. Tesh
- Department of Pathology and Microbiology & Immunology, University Texas Medical Branch, Galveston, TX 77555, USA;
| | - Bruno T. D. Nunes
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| | - Daniele B. A. Medeiros
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (R.S.B.); (S.P.S.); (D.S.G.R.); (A.C.R.C.); (P.F.C.V.); (D.B.A.M.)
| |
Collapse
|
4
|
Warnes CM, Santacruz-Sanmartín E, Bustos Carrillo F, Vélez ID. Surveillance and Epidemiology of Dengue in Medellín, Colombia from 2009 to 2017. Am J Trop Med Hyg 2021; 104:1719-1728. [PMID: 33755586 PMCID: PMC8103481 DOI: 10.4269/ajtmh.19-0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2021] [Indexed: 11/07/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease in humans, primarily transmitted by the Aedes aegypti mosquito. We conducted a descriptive analysis of dengue cases from 2009 to 2017 in Medellín, Colombia, using data available from the Secretariat of Health. We analyzed the burden of outbreak years on the healthcare system, risk of cases exhibiting severe illness, potential disease surveillance problems, gender and age as risk factors, and spatiotemporal patterns of disease occurrence. Our data consisted of 50,083 cases, separated based on whether they were diagnostic test negative, diagnostic test positive (primarily IgM ELISA), clinically confirmed, epidemiologically linked, or probable. We used dengue incidence to analyze epidemiological trends between our study years, related to human movement patterns, between gender and age-groups, and spatiotemporally. We used risk to analyze the severity of dengue cases between the study years. We identified human movement could contributed to dengue spread, and male individuals (incidence rate: 0.86; 95% CI: 0.76-0.96) and individuals younger than 15 years (incidence rate: 1.24; 95% CI: 1.13-1.34) have higher incidence of dengue and located critical parts of the city where dengue incidence was high. Analysis was limited by participant diagnostic information, data concerning circulating strains, and a lack of phylogenetic information. Understanding the characteristics of dengue is a fundamental part of improving the health outcomes of at-risk populations. This analysis will be useful to support studies and initiatives to counteract dengue and provide context to the surveillance data collected by the health authorities in Medellín.
Collapse
Affiliation(s)
- Colin M. Warnes
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | - Eduardo Santacruz-Sanmartín
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| | | | - Iván Darío Vélez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
de Alcantara BN, Imbeloni AA, de Brito Simith Durans D, de Araújo MTF, do Rosário Moutinho da Cruz E, de Carvalho CAM, de Mendonça MHR, de Sousa JR, Moraes AF, Filho AJM, de Lourdes Gomes Lima M, Neto OPA, Chiang JO, de Azevedo Scalercio SRR, Carneiro LA, Quaresma JAS, da Costa Vasconcelos PF, de Almeida Medeiros DB. Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. Sci Rep 2021; 11:6099. [PMID: 33731800 PMCID: PMC7971060 DOI: 10.1038/s41598-021-85571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The absence of an adequate animal model for studies has limited the understanding of congenital Zika syndrome (CZS) in humans during the outbreak in America. In this study, we used squirrel monkeys (Saimiri collinsi), a neotropical primate (which mimics the stages of human pregnancy), as a model of Zika virus (ZIKV) infection. Seven pregnant female squirrel monkeys were experimentally infected at three different gestational stages, and we were able reproduce a broad range of clinical manifestations of ZIKV lesions observed in newborn humans. Histopathological and immunohistochemical analyses of early-infected newborns (2/4) revealed damage to various areas of the brain and ZIKV antigens in the cytoplasm of neurons and glial cells, indicative of CZS. The changes caused by ZIKV infection were intrauterine developmental delay, ventriculomegaly, simplified brain gyri, vascular impairment and neuroprogenitor cell dysfunction. Our data show that the ZIKV infection outcome in squirrel monkeys is similar to that in humans, indicating that this model can be used to help answer questions about the effect of ZIKV infection on neuroembryonic development and the morphological changes induced by CZS.
Collapse
Affiliation(s)
- Bianca Nascimento de Alcantara
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Aline Amaral Imbeloni
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | | | - Carlos Alberto Marques de Carvalho
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | | | - Jorge Rodrigues de Sousa
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Adriana Freitas Moraes
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Maria de Lourdes Gomes Lima
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Orlando Pereira Amador Neto
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil
| | | | - Liliane Almeida Carneiro
- National Primate Centre, Evandro Chagas Institute, Highway BR-316, km 7, Ananindeua, Pará, 67030-000, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.,Pará State University, 2623 Perebebuí Lane, Belém, Pará, 66095-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Programme in Virology, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil. .,Department of Arbovirology and Haemorrhagic Fevers, Evandro Chagas Institute, BR-316 Highway, km 7, Ananindeua, Pará, 67030-000, Brazil.
| |
Collapse
|
6
|
Imbeloni AA, de Alcantara BN, Coutinho LN, de Azevedo Scalercio SRR, Carneiro LA, Oliveira KG, Filho AJM, de Brito Simith Durans D, da Silva WB, Nunes BTD, Casseb LMN, Chiang JO, de Carvalho CAM, Machado MB, Quaresma JAS, de Almeida Medeiros DB, da Costa Vasconcelos PF. Prenatal disorders and congenital Zika syndrome in squirrel monkeys. Sci Rep 2021; 11:2698. [PMID: 33514824 PMCID: PMC7846595 DOI: 10.1038/s41598-021-82028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
During the Zika virus (ZIKV) outbreak in Brazil (2015–2016), the clinical manifestations associated with its infection were complex and included miscarriage and congenital malformations, not previously described. In this study, we evaluated the prenatal conditions of pregnant female squirrel monkeys (Saimiri collinsi) infected during different gestational thirds (GTs) and assessed all clinical aspects, diagnostic imaging, viremia and the immune response. In our study, 75% of the infected animals in the 1st GT group had significant clinical manifestations, such as miscarriage and prolonged viremia associated with a late immune response. Consequently, their neonates showed fetal neuropathology, such as cerebral hemorrhage, lissencephaly or malformations of the brain grooves, ventriculomegaly, and craniofacial malformations. Thus, our study demonstrated the relevance of pregnant squirrel monkeys as a model for the study of ZIKV infection in neonates due to the broad clinical manifestations presented, including the typical congenital Zika syndrome manifestations described in humans.
Collapse
Affiliation(s)
- Aline Amaral Imbeloni
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | | | | | - Liliane Almeida Carneiro
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Karol Guimarães Oliveira
- National Primate Center, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Arnaldo Jorge Martins Filho
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Darlene de Brito Simith Durans
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Livia Medeiros Neves Casseb
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | - Jannifer Oliveira Chiang
- Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil
| | | | - Mariana Borges Machado
- University Center of Para, Governador Jose Malcher Avenue, 485, Belem, Para, 66035-065, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Pathology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil.
| | - Pedro Fernando da Costa Vasconcelos
- Post-Graduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,Department of Arbovirology and Hemorrhagic Fever, Evandro Chagas Institute, Rodovia BR-316, km-07, Ananindeua, Para, 67030-000, Brazil. .,University of Pará State, Tv. Perebebuí-Marco, 2623, Belém, Para State, 66087-662, Brazil.
| |
Collapse
|
7
|
Bailey AL, Kang LI, de Assis Barros D'Elia Zanella LGF, Silveira CGT, Ho YL, Foquet L, Bial G, McCune BT, Duarte-Neto AN, Thomas A, Raué HP, Byrnes K, Kallas EG, Slifka MK, Diamond MS. Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proc Natl Acad Sci U S A 2020; 117:32648-32656. [PMID: 33268494 PMCID: PMC7768776 DOI: 10.1073/pnas.2014096117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Yellow fever (YF) is a mosquito-transmitted viral disease that causes tens of thousands of deaths each year despite the long-standing deployment of an effective vaccine. In its most severe form, YF manifests as a hemorrhagic fever that causes severe damage to visceral organs. Although coagulopathy is a defining feature of severe YF in humans, the mechanism by which it develops remains uncertain. Hepatocytes are a major target of yellow fever virus (YFV) infection, and the coagulopathy in severe YF has long been attributed to massive hepatocyte infection and destruction that results in a defect in clotting factor synthesis. However, when we analyzed blood from Brazilian patients with severe YF, we found high concentrations of plasma D-dimer, a fibrin split product, suggestive of a concurrent consumptive process. To define the relationship between coagulopathy and hepatocellular tropism, we compared infection and disease in Fah-/-, Rag2-/-, and Il2rɣ-/- mice engrafted with human hepatocytes (hFRG mice) and rhesus macaques using a highly pathogenic African YFV strain. YFV infection of macaques and hFRG mice caused substantial hepatocyte infection, liver damage, and coagulopathy as defined by virological, clinical, and pathological criteria. However, only macaques developed a consumptive coagulopathy whereas YFV-infected hFRG mice did not. Thus, infection of cell types other than hepatocytes likely contributes to the consumptive coagulopathy associated with severe YF in primates and humans. These findings expand our understanding of viral hemorrhagic disease and associated coagulopathy and suggest directions for clinical management of severe YF cases.
Collapse
Affiliation(s)
- Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Cássia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Yeh-Li Ho
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR 97062
| | - Broc T McCune
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amaro Nunes Duarte-Neto
- Department of Pathology, Clinical Hospital, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Kathleen Byrnes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Esper G Kallas
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, Sao Paulo, Brazil 01246 903
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
8
|
Waggoner JJ, Stittleburg V, Pond R, Saklawi Y, Sahoo MK, Babiker A, Hussaini L, Kraft CS, Pinsky BA, Anderson EJ, Rouphael N. Triplex Real-Time RT-PCR for Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis 2020; 26:1633-1635. [PMID: 32294051 PMCID: PMC7323516 DOI: 10.3201/eid2607.201285] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Most reverse transcription PCR protocols for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include 2-3 targets for detection. We developed a triplex, real-time reverse transcription PCR for SARS-CoV-2 that maintained clinical performance compared with singleplex assays. This protocol could streamline detection and decrease reagent use during current high SARS-CoV-2 testing demands.
Collapse
|
9
|
Stittleburg V, Rojas A, Cardozo F, Muñoz FM, Asturias EJ, Olson D, Paniaga-Avila A, Abeynayake J, Anderson EJ, Waggoner JJ. Dengue Virus and Yellow Fever Virus Detection Using Reverse Transcription-Insulated Isothermal PCR and Comparison with Real-Time RT-PCR. Am J Trop Med Hyg 2020; 103:157-159. [PMID: 32458782 DOI: 10.4269/ajtmh.19-0892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Real-time reverse transcriptase PCR (rRT-PCR) is the most accurate method for the detection of dengue virus (DENV) and yellow fever virus (YFV) in acute illness. However, performing rRT-PCR is not feasible for many laboratories in regions of endemicity. The current study compared new reverse transcription-insulated isothermal PCRs (the POCKIT DENV and YFV reagent sets) with laboratory-developed rRT-PCRs for both viruses using clinical samples and viral strains from different endemic regions. Sensitivity and specificity of the POCKIT DENV Reagent Set were 87.2% (68/78 samples) and 98.2% of samples (54/55), respectively. The YFV reagent set demonstrated sensitive detection of YFV RNA from six viral strains down to an estimated concentration of 2.5 log10 copies/mL and proved to be specific for YFV. Although the POCKIT assays require RNA extraction, they may provide accurate and less-complex options for molecular testing in laboratory settings where rRT-PCR is not practical.
Collapse
Affiliation(s)
- Victoria Stittleburg
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Flor M Muñoz
- Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Edwin J Asturias
- Fundación para la Salud Integral de los Guatemaltecos, FUNSALUD, Quetzaltenango, Guatemala.,Division of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado
| | - Daniel Olson
- Division of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado at Denver, Aurora, Colorado
| | | | | | - Evan J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University, Atlanta, Georgia.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jesse J Waggoner
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Tsai JJ, Liu WL, Lin PC, Huang BY, Tsai CY, Lee PYA, Tsai YL, Chou PH, Chung S, Liu LT, Chen CH. A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos. PLoS One 2019; 14:e0218139. [PMID: 31291289 PMCID: PMC6619671 DOI: 10.1371/journal.pone.0218139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The insulated isothermal PCR (iiPCR) technology enables consistent PCR amplification and detection in a simple heating device. A pan-dengue virus (DENV) RT-iiPCR, targeting the 5' untranslated region, was validated previously on the semi-automated POCKIT combo system (involving separate devices for nucleic acid extraction and PCR amplification/detection) to offer performance comparable to a laboratory real-time PCR. Working on the same technologies, a compact automated sample-in-answer-out system (POCKIT Central Nucleic Acid Analyser) has been available commercially for iiPCR, minimizing human error risks and allowing easy molecular bio-detection near points of need. Here, we evaluated the analytical and clinical performance of the pan-DENV RT-iiPCR on the fully automated system by comparison to those on the semi-automated system. METHODOLOGY/PRINCIPAL FINDINGS Testing sera containing serial diluted DENV-1, -2, -3, or -4 cell culture stock, the pan-DENV RT-iiPCR system had similar 100% detection endpoints on the two systems; i.e. at 1, 10, 1 and 10 PFU/ml, respectively, on the fully automated system, and at 10, 1, 10 and 10 PFU/ml, respectively, on the semi-automated system. Furthermore, both fully automated and semi-automated PCR system can detect all four DENV serotypes in mosquitos. Clinical performance of the reagent on the two systems was evaluated by testing 60 human serum samples. Both systems detected the same 40 samples (ten DENV-1, -2, -3, and -4 positive each) and did not detect the other 20; 100% agreement (κ = 1) was found between the two systems. CONCLUSIONS/SIGNIFICANCE With performance comparable to a previously validated system, the fully-automated PCR system allows applications of the pan-DENV reagent as a useful tool near points of need to facilitate easy, fast and effective detection of dengue virus and help mitigate versatile public health challenges in the control and management of dengue disease.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsing Medical University, Kaohsiung, Taiwan
- * E-mail: (JJT); (CHC)
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ping-Chang Lin
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bo-Yi Huang
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Yi Tsai
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | - Li-Teh Liu
- Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung-Hwa University of Medical Technology, Tainan City, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (JJT); (CHC)
| |
Collapse
|
11
|
Waggoner JJ, Rojas A, Pinsky BA. Yellow Fever Virus: Diagnostics for a Persistent Arboviral Threat. J Clin Microbiol 2018; 56:e00827-18. [PMID: 30021822 PMCID: PMC6156298 DOI: 10.1128/jcm.00827-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Yellow fever (YF) is the prototypical hemorrhagic fever and results from infection with yellow fever virus (YFV), which is endemic to regions of Africa and South America. Despite the availability of an effective vaccine, YFV continues to cause disease throughout regions where it is endemic, including intermittent large outbreaks among undervaccinated populations. A number of diagnostic methods and assays have been described for the detection of YFV infection, including viral culture, molecular testing, serology, and antigen detection. Commercial diagnostics are not widely available, and testing is generally performed at a small number of reference laboratories. The goal of this article, therefore, is to review available clinical diagnostics for YFV, which may not be familiar to many practitioners outside areas where it is endemic. Additionally, we identify gaps in our current knowledge about YF that pertain to diagnosis and describe interventions that may improve YFV detection.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|