1
|
Sánchez-Vela L, García-Arumí Fusté C, Castany-Aregall M, Subirà-González O, Ruiz-Casas D, de-Arriba-Palomero P, García-Arumí J. Reverse pupillary block after implantation of a sutureless scleral fixation (SFF) IOL (Carlevale, Soleko). Ophthalmol Retina 2024:S2468-6530(24)00475-5. [PMID: 39414119 DOI: 10.1016/j.oret.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE To describe the incidence, complications and management of reverse pupillary block (RPB) after implantation of Carlevale IOL. DESIGN Multicenter, retrospective, cross-sectional study. PARTICIPANTS Out of a sample of 128 patients that had undergone Carlevale IOL implantation, 19 patients were found to present RPB. METHODS Nineteen patients with RPB after Carlevale IOL implantation were evaluated and treated with laser peripheral iridotomy (LPI). MAIN OUTCOME MEASURES Demographic data (age, gender), data on preexisting medication, axial length (Zeiss IOLMaster 500 and Zeiss IOLMaster 700), presence of pseudoexfoliation material (PXF), presence of reverse pupillary block (Anterior segment swept-source SS-OCT Anterion, Heidelberg Engineering), presence of macular edema (Irvine Gass syndrome, OCT Spectralis, Heidelberg Engineering), anterior chamber depth (ACD) before and after LPI, best corrected visual acuity (BCVA) before and after LPI and intraocular pressure (IOP) before and after LPI were analyzed. RESULTS An incidence of RPB of 14.8% was found. The prevalence of pseudoexfoliation syndrome was 21.1% and 42.1% of patients presented an axial length >24.00 mm. Mean pre-LPI ACD was 4.78 ± 0.465 mm and post-LPI was 4.23 ± 0.404 mm, a statistically significant increase of 0.54 (p=0.000, IC 95% 0.26-0.83) mm of ACD was observed. There were no differences between pre- and post- LPI BCVA. Pre-LPI IOP was 17.10 (range 12-34) mmHg and post-LPI IOP was 14.47 (range 10-21) mmHg, (p= 0.391). Cystic macular oedema (Irvine Gass) was identified in 4 out of 19 patients, reporting an incidence of 21.1% in RPB cases. CONCLUSION Reverse pupillary block is a relatively common complication after Carlevale lens implantation, which may be associated with an increase of macular oedema incidence but does not clearly correlate an increase of intraocular pressure. Our hypothesis is that indentation of the sclera induces a posterior rotation of the peripheral iris, causing RPB. Our results encourage to look over the Carlevale IOL implantation technique to consider a routinely intraoperative surgical peripheral iridotomy to avoid RPB and its further complications.
Collapse
Affiliation(s)
- L Sánchez-Vela
- Ophthalmology Department, Vall Hebron University Hospital, Barcelona, Spain.
| | - C García-Arumí Fusté
- Ophthalmology Department, Vall Hebron University Hospital, Barcelona, Spain; Ophthalmology Department, Instituto de Microcirugía Ocular, Barcelona, Spain
| | - M Castany-Aregall
- Ophthalmology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - O Subirà-González
- Ophthalmology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - D Ruiz-Casas
- Ophthalmology Department, Ramon y Cajal University Hospital, Madrid, Spain
| | | | - J García-Arumí
- Ophthalmology Department, Vall Hebron University Hospital, Barcelona, Spain; Ophthalmology Department, Instituto de Microcirugía Ocular, Barcelona, Spain
| |
Collapse
|
2
|
Cui H, Li P, Su Z, Guan S, Dong H, Dong X. Preparation and Stability Study of an Injectable Hydrogel for Artificial Intraocular Lenses. Polymers (Basel) 2024; 16:2562. [PMID: 39339025 PMCID: PMC11434676 DOI: 10.3390/polym16182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Currently available intraocular lenses (IOLs) on the market often differ significantly in elastic modulus compared to the natural human lens, which impairs their ability to respond effectively to the tension of the ciliary muscles for focal adjustment after implantation. In this study, we synthesized a polyacrylamide-sodium acrylate hydrogel (PAH) through the cross-linking polymerization of acrylamide and sodium acrylate. This hydrogel possesses excellent biocompatibility and exhibits several favorable properties. Notably, the hydrogel demonstrates high transparency (94%) and a refractive index (1.41 ± 0.07) that closely matches that of the human lens (1.42). Additionally, it shows strong compressive strength (14.00 kPa), good extensibility (1400%), and an appropriate swelling ratio (50 ± 2.5%). Crucially, the tensile modulus of the hydrogel is 2.07 kPa, which closely aligns with the elastic modulus of the human lens (1.70-2.10 kPa), enabling continuous focal adjustment under the tension exerted by the ciliary muscles.
Collapse
Affiliation(s)
- Haifeng Cui
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Pengfei Li
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Zekun Su
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - Shiqiang Guan
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| | - He Dong
- Department Ophthalmology, The Third People’s Hospital of Dalian, Dalian 116033, China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (H.C.); (P.L.); (Z.S.); (S.G.)
| |
Collapse
|
3
|
Mladenovic T, Zivic F, Petrovic N, Njezic S, Pavic J, Kotorcevic N, Milenkovic S, Grujovic N. Application of Silicone in Ophthalmology: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3454. [PMID: 39063747 PMCID: PMC11278226 DOI: 10.3390/ma17143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.
Collapse
Affiliation(s)
- Tamara Mladenovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Petrovic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Sasa Njezic
- Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jelena Pavic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nikola Kotorcevic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Strahinja Milenkovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| |
Collapse
|
4
|
Wu KY, Khan S, Liao Z, Marchand M, Tran SD. Biopolymeric Innovations in Ophthalmic Surgery: Enhancing Devices and Drug Delivery Systems. Polymers (Basel) 2024; 16:1717. [PMID: 38932068 PMCID: PMC11207407 DOI: 10.3390/polym16121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The interface between material science and ophthalmic medicine is witnessing significant advances with the introduction of biopolymers in medical device fabrication. This review discusses the impact of biopolymers on the development of ophthalmic devices, such as intraocular lenses, stents, and various prosthetics. Biopolymers are emerging as superior alternatives due to their biocompatibility, mechanical robustness, and biodegradability, presenting an advance over traditional materials with respect to patient comfort and environmental considerations. We explore the spectrum of biopolymers used in ophthalmic devices and evaluate their physical properties, compatibility with biological tissues, and clinical performances. Specific applications in oculoplastic and orbital surgeries, hydrogel applications in ocular therapeutics, and polymeric drug delivery systems for a range of ophthalmic conditions were reviewed. We also anticipate future directions and identify challenges in the field, advocating for a collaborative approach between material science and ophthalmic practice to foster innovative, patient-focused treatments. This synthesis aims to reinforce the potential of biopolymers to improve ophthalmic device technology and enhance clinical outcomes.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Sameer Khan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zhuoying Liao
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Wang Y, Wen C, Jing R, Yang Y, Qin Y, Qi T, Hu C, Bai X, Wu C, Pei C. Self-assembled coating with a metal-polyphenolic network for intraocular lens modification to prevent posterior capsule opacification. Biomed Mater 2024; 19:025011. [PMID: 38194710 DOI: 10.1088/1748-605x/ad1c9e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Posterior capsule opacification (PCO) is a main complication after cataract surgery and intraocular lens (IOLs) implantation and is attributed to residual lens epithelial cells (LECs) migrating to the IOL surface and posterior capsules. IOL surface modification has been a newly-developing research filed in recent years; however, the applicability and economical acquisition of modified materials remain unsolved. In this study, we first applied a metal-polyphenolic network coating with a self-assembly technique on the IOL surface by using tannic acid (TA) combined with AlCl3, which are easily acquire and applying on the IOL surface to solve the IOL transmittance affair. Using wound healing and Transwell assay to verify AZD0364 inhibits cell migration (P< 0.05), the lipopolysaccharide-induced macrophage inflammation model to verify pterostilbene (PTE) inhibits the inflammatory reaction (P< 0.01). By optimizes its self-assembly coating parameters and calculating its drug release kinetics, we successfully loaded these two drugs on the coating, named TA (AZD0364/PTE) IOL. Its surface morphology characteristics were analyzed by scanning electron microscope, x-ray photoelectron spectrometer and water contact angle. The optical performance was carefully investigated by optical instruments and equipment (n= 3). Thein vitroresults showed that TA (AZD0364/PTE) IOL can significantly inhibit cell adhesion and acute inflammation (n= 3,P< 0.0001). Importantly, afterin vivoimplantation for 28 d with eight rabbits PCO models in two groups, the TA (AZD0364/PTE) IOL group maintained clear refracting media and decreased the inflammatory reaction compared with the original IOL group (P< 0.05). This study provides a new applicable and economical strategy for preventing PCO and offers a reference for the next generation of IOLs that benefit cataract patients.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Chan Wen
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Ruihua Jing
- Department of Ophthalmology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yunfei Yang
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yazhou Qin
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Tiantian Qi
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Conghui Hu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xinshan Bai
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Changrui Wu
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Cheng Pei
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
7
|
Al-Zyoud W, Haddadin D, Hasan SA, Jaradat H, Kanoun O. Biocompatibility Testing for Implants: A Novel Tool for Selection and Characterization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6881. [PMID: 37959478 PMCID: PMC10647244 DOI: 10.3390/ma16216881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
This review article dives into the complex world of biocompatibility testing: chemical, mechanical, and biological characterization, including many elements of biocompatibility, such as definitions, descriptive examples, and the practical settings. The focus extends to evaluating standard documents obtained from reliable organizations; with a particular focus on open-source information, including FDA-USA, ISO 10933 series, and TÜV SÜD. We found a significant gap in this field: biomaterial scientists and those involved in the realm of medical device development in general, and implants in particular, lack access to a tool that reorganizes the process of selecting the appropriate biocompatibility test for the implant being examined. This work progressed through two key phases that aimed to provide a solution to this gap. A straightforward "yes or no" flowchart was initially developed to guide biocompatibility testing decisions based on the previously accumulated information. Subsequently, the Python code was employed, generating a framework through targeted questions. This work reshapes biocompatibility evaluation, bridging theory and practical implementation. An integrated approach via a flowchart and the Python code empowers stakeholders to navigate biocompatibility testing effortlessly. To conclude, researchers are now better equipped for a safer, more effective implant development, propelling the field towards improved patient care and innovative progress.
Collapse
Affiliation(s)
- Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Dana Haddadin
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Sameer Ahmad Hasan
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan; (D.H.); (S.A.H.)
| | - Hussamaldeen Jaradat
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| | - Olfa Kanoun
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| |
Collapse
|
8
|
Borkenstein AF, Borkenstein EM. Clinical Performance of New Enhanced Monofocal Intraocular Lenses: Comparison of Hydrophobic C-loop and Hydrophilic Plate-Haptic Platform. Adv Ther 2023; 40:4561-4573. [PMID: 37584899 PMCID: PMC10499736 DOI: 10.1007/s12325-023-02635-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Enhanced monofocal intraocular lenses (IOLs) represent a new type of lens, which should lead to a very good distance vision similar to monofocal IOLs and an improved intermediate vision without increasing the risk for photic phenomena. METHODS The aim of this clinical observation/registry study was to directly compare two different IOL platforms (hydrophilic acrylic L-333 (group A) vs hydrophobic acrylic AN6Q (group B)) with the same enhanced monofocal optic principle but different material and haptic design in clinical routine. A total of 102 cataract cases (51:51) were included in the study. Groups A and B were similar regarding demographics, age (71.6 ± 9 years for L-333 and 73.6 ± 8 years for AN6Q) and their calculated IOL power (20.9 ± 2.0 D for L-333 and 21.5 ± 3.4 D for AN6Q). Spherical equivalent (SE), (un)corrected distance, intermediate visual acuity, the surgeons' experience and patient feedback were assessed postoperatively. RESULTS SE improved significantly in the AN6Q group, while the L-333 group showed a slightly smaller standard deviation postoperatively. In group A the uncorrected distance visual acuity (UDVA) improved from pre-op (0.43 ± 0.16 logMAR) to 1 month post-op (0.06 ± 0.04 logMAR) significantly and in group B from pre-op (0.54 ± 0.19 logMAR) to (0.05 ± 0.06 logMAR) postoperatively. Both groups showed excellent outcomes for distance without negative side effects. On testing uncorrected intermediate vision (80 cm) with Radner charts, 80% reached line 5 (0.0 logRAD) with fewer than one mistake and 10% reached line 4 (- 0.1 logRAD) in group A; 74% reached line 5 with fewer than one mistake and 4% reached line 4 in group B. CONCLUSION Both IOL models (groups A and B) provided satisfying results regarding implantation behaviour, refractive error, visual acuity and overall patient satisfaction. The haptic design might influence the outcome of refractive error. Long-term follow-up data should be considered in multicentre studies to further characterize both platforms and to optimize IOL power calculation (constants, surgeon factor). It was shown that the enhanced monofocal optic can provide good visual acuity for far distance and improve intermediate distance. This type of new monofocal optic design, which however must be strictly separated from typical refractive/diffractive multifocal, presbyopia-correcting lenses, could be a good option in standard cataract care.
Collapse
Affiliation(s)
- Andreas F Borkenstein
- Borkenstein & Borkenstein Private Practice, Privatklinik Der Kreuzschwestern Graz, Kreuzgasse 35, 8010, Graz, Austria.
| | - Eva-Maria Borkenstein
- Borkenstein & Borkenstein Private Practice, Privatklinik Der Kreuzschwestern Graz, Kreuzgasse 35, 8010, Graz, Austria
| |
Collapse
|
9
|
Vacalebre M, Frison R, Corsaro C, Neri F, Santoro A, Conoci S, Anastasi E, Curatolo MC, Fazio E. Current State of the Art and Next Generation of Materials for a Customized IntraOcular Lens according to a Patient-Specific Eye Power. Polymers (Basel) 2023; 15:polym15061590. [PMID: 36987370 PMCID: PMC10054364 DOI: 10.3390/polym15061590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.
Collapse
Affiliation(s)
- Martina Vacalebre
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Renato Frison
- Optical Consultant SIFI SpA, 95025 Aci Sant'Antonio (CT), Italy
| | - Carmelo Corsaro
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fortunato Neri
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche, Biologiche, Farmacologiche ed Ambientali (CHIBIOFARAM), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmacologiche ed Ambientali (CHIBIOFARAM), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Elena Anastasi
- Innovation and Medical Science, SIFI SpA, 95025 Aci Sant'Antonio (CT), Italy
| | | | - Enza Fazio
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra (MIFT), Università di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
10
|
Zhang Y, Jiang J. Advances in interdisciplinary medical and engineering research of intraocular lens surface modifications to prevent posterior capsule opacification. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1754-1762. [PMID: 36748388 PMCID: PMC10930271 DOI: 10.11817/j.issn.1672-7347.2022.220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Posterior capsule opacification (PCO), a common complication after cataract surgery, impacts a patient's long-term visual quality to various degrees. Although a neodymium:yttrium aluminum garnet (Nd:YAG) laser posterior capsulotomy is a very effective treatment, it may lead to a serial of complications. Accordingly, the search for simple, safe, and effective methods to prevent PCO has received widespread attention. Various researchers are committed to the interdisciplinary collaboration between medicine and engineering fields, such as functionalizing the surface of the intraocular lens (IOL) via supercritical fluid impregnation, coating the surface of the IOL, high-concentration drug immersion, and application of a drug delivery system, to effectively reduce the incidence and severity of PCO.
Collapse
Affiliation(s)
- Yue Zhang
- Eye Center of Xiangya Hospital, Central South University; Hunan Key Laboratory of Ophthalmology, Changsha 410008, China.
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University; Hunan Key Laboratory of Ophthalmology, Changsha 410008, China.
| |
Collapse
|
11
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
12
|
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification. Pharmaceutics 2022; 14:1343. [PMID: 35890240 PMCID: PMC9318653 DOI: 10.3390/pharmaceutics14071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs.
Collapse
Affiliation(s)
- Yidong Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Silong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Jianghua Hu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
- Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lifang Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| |
Collapse
|
13
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
In vitro assessment of the biocompatibility of chemically treated silicone materials with human lens epithelial cells. Sci Rep 2022; 12:4649. [PMID: 35301374 PMCID: PMC8931081 DOI: 10.1038/s41598-022-08443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxicity testing is a regulatory requirement for safety testing of new ocular implants. In vitro toxicity tests determine whether toxic chemicals are present on a material surface or leach out of the material matrix. A method of evaluating the cytotoxicity of ocular implants was developed using fluorescent viability dyes. To assess the assay’s sensitivity in detecting toxic substances on biomaterials, zinc diethydithiocarbamate (ZDEC) and benzalkonium chloride (BAK) were deposited on silicone surfaces at different concentrations. Human lens epithelial cells (HLEC) were added to the surface of these treated silicone surfaces and were assessed for viability. The viability of both the adherent and non-adherent cells was determined using confocal microscopy with, annexin V, ethidium homodimer, and calcein. Cell metabolism was also evaluated using resazurin and the release of inflammatory cytokines was quantified using a multiplex Mesoscale Discovery platform. Confocal microscopy was shown to be a sensitive assay for evaluating material toxicity, as significant toxicity (p < 0.05) from ZDEC and BAK-treated surfaces compared to the untreated silicone control was detected. Patterns of cytokine release from cells varied depending on the toxin evaluated and the toxin concentration and did not directly correlate with the reduction in cell metabolic activity measured by alamarBlue.
Collapse
|
15
|
The Influence of Inflammation in Posterior Capsule Opacification Development. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cataract represents the reduction of the transparency of the crystalline lens. Cataract surgery is the most commonly performed surgical procedure worldwide. One of the most common postoperative complication of successfully performed cataract surgery is a development of posterior capsule opacification (PCO). In the postoperative period, lens epithelial cells (LECs) undergo proliferation, migration and differentiation, which is clinically manifested by the development of PCO. Inflammation has a central role in these processes. Cytokines, such as transforming growth factor β, fibroblast growth factor, interleukin 1, interleukin 6, matrix metalloproteinases have a huge effect on the activity of LECs. Understanding these processes can find a great usage in clinical practice. By prescribing anti-inflammatory therapy in the early postoperative period, the incidence of PCO can be significantly reduced.
Collapse
|
16
|
Intraoperative and Postoperative Intraocular Lens Opacifications: Analysis of 42545 Cases. J Ophthalmol 2021; 2021:1285947. [PMID: 34912573 PMCID: PMC8668301 DOI: 10.1155/2021/1285947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/26/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To assess the types and causes of intraocular lens (IOL) turbidity in a tertiary eye center. Setting. Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China. Design Retrospective case series. Methods Patients who underwent uncomplicated phacoemulsification and IOL implantation for cataract between January 2015 and December 2019 were included. Medical records were reviewed of participants with intraoperative or postoperative IOL opacification for clinical data, artificial crystal materials, and causes of the opacification. Results A total of 42545 IOLs were implanted in the five years, comprising 25471 (66.0%) hydrophilic IOLs, 11881 (27.9%) hydrophobic IOLs, and 2601 (6.1%) hydrophilic-hydrophobic acrylic IOLs. Among the operated eyes, 14 eyes (13 patients) experienced IOL opacification, which was permanent for 10 IOLs, including 7 (0.6%) hydrophilic IOLs (860UV) and 3 (0.2%) hydrophilic-hydrophobic acrylic IOLs (L-312). The mean interval between surgery and diagnosis of permanent opacification was 34.4 ± 18.4 (SD) months (range, 12 to 59 months). Permanent IOL clouding led to a statistically significant reduction in best corrected visual acuity (mean, 0.64 ± 0.4 logMAR; P < 0.004). Acute IOL clouding occurred in four eyes during the implantation of a hydrophilic-hydrophobic acrylic IOL of L-312, 809M, or 839M and returned to transparency several hours later. All four procedures were performed in winter, with the mean outside temperature being −5.75°C. Conclusions The rate of IOL opacification was 0.03%. Both delayed postoperative and acute intraoperative opacifications occurred with various characteristics in IOLs made of different materials and designs. Clinicians should be aware of this risk for cataract surgery.
Collapse
|
17
|
Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics 2021; 13:pharmaceutics13060860. [PMID: 34200928 PMCID: PMC8230425 DOI: 10.3390/pharmaceutics13060860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO. The aim of this review is firstly to collate the known biochemical pathways that lead to PCO development, providing an up-to-date chronological overview from surgery to established PCO formation. Secondly, the risk factors of PCO are evaluated, focussing on the impact of IOLs’ properties. Finally, the latest experimental model designs used in PCO research are discussed to demonstrate the ongoing development of clinical PCO models, the efficacy of newly developed IOL technology, and potential therapeutic interventions. This review will contribute to current PCO literature by presenting an updated overview of the known developmental pathways of PCO, an evaluation of the impact of the risk factors underlying its development, and the latest experimental models used to investigate PCO. Furthermore, the review should provide developmental routes for research into the investigation of potential therapeutic interventions and improvements in IOL design in the aid of preventing PCO for new and existing patients.
Collapse
|
18
|
Bhattacharjee H, Buragohain S, Javeri H, Das D, Bhattacharjee K. Delayed postoperative opacification of three hydrophobic acrylic intraocular lens: A scanning electron microscopic and energy dispersive spectroscopic study. Indian J Ophthalmol 2021; 69:1103-1107. [PMID: 33913842 PMCID: PMC8186658 DOI: 10.4103/ijo.ijo_2749_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aim of this study was to report scanning electron microscopic (SEM) and energy dispersive spectroscopic (EDS) findings of three specimens of opaque hydrophobic acrylic intraocular lens (IOL) explanted in delayed postoperative period for visual indications. Methods: Clinical data and photographs from each subject were obtained. Explanted IOLs were examined under gross and light microscopy followed by SEM coupled with EDS. Results: All three subjects underwent IOL implantation following senile cataract extraction at an average age of 64.3 ± 0.3 years, and the IOLs were in situ for a duration of 11.3 ± 4.04 years. The IOL explantation and exchange were done due to late postoperative opacification of the IOL and significant visual deterioration. The milky iridescent opacity affected the full thickness of IOL optics in the first two specimens and in the third only two surfaces were involved. SEM detected surface cracks in the first specimen, typical conglumated surface, pores and accumulation of crystals with surface deposit of nano-particles on the second specimen and uneven surface erosion in the third specimen. SEM detected mainly sodium (Na) and chloride (Cl) spikes. All patients recovered normal vision following IOL exchange. Conclusion: SEM features of the IOL optics and absence of calcium and phosphate spikes in EDS and other findings were consistent and suggestive of hydrolytic biodegradation of hydrophobic acrylic IOL polymer in ocular media and was responsible for delayed postoperative opacification of the hydrophobic IOLs and visual loss.
Collapse
Affiliation(s)
| | | | - Henal Javeri
- Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Dipankar Das
- Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | | |
Collapse
|
19
|
Grzybowski A, Markeviciute A, Zemaitiene R. A narrative review of intraocular lens opacifications: update 2020. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1547. [PMID: 33313292 PMCID: PMC7729367 DOI: 10.21037/atm-20-4207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The opacifications of intraocular lenses (IOLs) can significantly impact patients visual quality. Despite the identification of specific risk factors, manufacturing changes, opacifications are not eliminated. Likewise, more attention in recent studies was paid to possible new risk factors, however one of the most important purposes of the studies remains opacifications effect on visual performance, which could be disturbed in different aspects. The aim of this review is to discuss the main risk factors of IOLs opacification in particular IOL types, and its impact on vision quality. Different risk factors were discussed in the study, including the material of IOLs, the impact of the breakdown of blood-aqueous barrier (BAB), and certain surgeries that can be associated with opacification formation. Glistenings occur more often in a hydrophobic material, however, the changes in water content of the IOLs can significantly reduce the formation of glistenings. The studies showed a significant effect of intraocular injection of exogenous air or gas during Descemet-stripping endothelial keratoplasty, Descemet-stripping automated endothelial keratoplasty, Descemet membrane endothelial keratoplasty, and pars plana vitrectomy on calcification formation. It raises a concern, as the incidence of these surgeries is increasing. Visual acuity decreases significantly after the calcification in IOLs occurs, and it usually causes IOLs exchange. However, disability glare seems to be more affected in patients with IOLs, which were affected by glistenings than visual acuity. Disability glare is associated with increased levels of straylight, which was widely evaluated in recent studies and it was reported to be a susceptible measurement to detect the presence of IOLs pathology. For future researches, it should be noticed that disability glare and straylight are more appropriate in evaluating IOLs opacification effect on visual quality than visual acuity. While reviewing the main risk factors of IOLs opacifications particular attention must be paid on calcification occurrence in hydrophilic acrylic IOLs after surgeries with intraocular injection of exogenous air or gas.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland.,Institute for Research in Ophthalmology, Poznan, Poland
| | - Agne Markeviciute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Trans-scleral plugs fixated IOL: a new paradigm for sutureless scleral fixation. J Cataract Refract Surg 2020; 46:716-720. [DOI: 10.1097/j.jcrs.0000000000000135] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Koch CR, Santhiago MR, Jorge PA, Sena P, Kara-Júnior N. Posterior Capsule Opacification after Cataract Surgery in Children Over Five Years of Age with Square-edge Hydrophobic versus Hydrophilic Acrylic Intraocular Lenses: A Prospective Randomized Study. Clinics (Sao Paulo) 2020; 75:e1604. [PMID: 32401967 PMCID: PMC7196726 DOI: 10.6061/clinics/2020/e1604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To compare the effects of hydrophobic and hydrophilic materials in square-edged acrylic intraocular lenses (IOLs) on the development of posterior capsule opacification (PCO) after pediatric cataract surgery. METHODS Patients were randomly assigned to group 1 (hydrophobic acrylic square-edged IOLs; 13 eyes) or group 2 (hydrophilic acrylic square-edged IOLs; 13 eyes). The study evaluated PCO rates using Evaluation of Posterior Capsule Opacification (EPCO) 2000 software at one, three, six and 12 months postoperatively. Postoperative measurements also included corrected distance visual acuity (CDVA), neodymium:yttrium-aluminum-garnet (Nd:YAG) capsulotomy and postoperative complications other than PCO. RESULTS Both groups had significant increases in PCO rates after one year. Comparison of the groups showed no significant differences in the EPCO scores at three (group 1, 0.007±0.016 vs group 2, 0.008±0.014; p=0.830), six (group 1, 0.062±0.103 vs group 2, 0.021±0.023; p=0.184), or twelve months postoperatively (group 1, 0.200±0.193 vs group 2, 0.192±0.138; p=0.902). We also found no significant group differences regarding the change (delta, Δ) in EPCO scores between three and six months (group 1, 0.055±0.09 vs group 2, 0.013±0.02; p=0.113) or between six and twelve months postoperatively (group 1, 0.139±0.14 vs group 2, 0.171±0.14; p=0.567). Twenty-three percent of patients required Nd:YAG capsulotomy at the twelve-month visit. CONCLUSIONS No differences in PCO rates were found between hydrophobic and hydrophilic acrylic square-edged IOLs in children between five and twelve years of age at one year of follow-up.
Collapse
Affiliation(s)
- Camila Ribeiro Koch
- Departamento de Oftalmologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Hospital Humberto Castro Lima, Salvador, BA, BR
- Corresponding author. E-mail:
| | - Marcony R Santhiago
- Departamento de Oftalmologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- University of Southern California Roski Eye Institute, Los Angeles, CA, USA
- Departamento de Oftalmologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscilla A Jorge
- Departamento de Oftalmologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Sena
- Hospital Humberto Castro Lima, Salvador, BA, BR
| | - Newton Kara-Júnior
- Departamento de Oftalmologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
22
|
Maxwell A, Suryakumar R. Long-term effectiveness and safety of a three-piece acrylic hydrophobic intraocular lens modified with hydroxyethyl-methacrylate: an open-label, 3-year follow-up study. Clin Ophthalmol 2018; 12:2031-2037. [PMID: 30349186 PMCID: PMC6188169 DOI: 10.2147/opth.s175060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Clareon® is a new hydrophobic acrylic optic biomaterial designed for enhanced clarity and greater resistance to glistening. The present study evaluated the effectiveness and safety of a three-piece hydrophobic, monofocal intraocular lens (IOL) Model MA60NM, made of this new optic material. Methods In this prospective, multicenter, open-label study, eligible patients aged ≥60 years, underwent a unilateral implantation with IOL Model MA60NM following phacoemulsification. Patients were followed-up for up to 3 years after implantation. Visual outcome and serious adverse events (SAEs, cumulative and persistent) were compared to ISO grid rates (BS EN ISO 11979-7:2006). The primary effectiveness variable was Best Spectacle-Corrected Visual Acuity (BSCVA) at 1-year postoperative follow-up. In addition, posterior capsular opacification (PCO) was assessed qualitatively and graded by slit lamp exam on a 5-point scale at all visits. Results Overall, 179 and 138 patients completed the 1-year and 3-year postoperative follow-up, respectively. The BSCVA outcomes were better with IOL Model MA60NM than the ISO grid rates with 95.5% of patients at 1 year and 94.2% of patients at 3 years having achieved a BSCVA of 20/40 or better vs 92.5% in ISO grid. The incidence of cumulative or persistent SAEs was lower after Model MA60NM implantation than the ISO grid reference. The incidence of clinically significant PCO was 1.1% at the 1-year and 2.2% at the 3-year visit. Posterior capsulotomy rate was 1.1% at 1 year and 1.4% at 3 years. Conclusion The three-piece hydrophobic, monofocal IOL Model MA60NM was effective for the visual correction of aphakia and successfully met all the safety parameters as defined by the ISO criteria. PCO and posterior capsulotomy rates were low over the 3-year follow-up period. This study provides evidence and supports the long-term safety and effectiveness of the new optic biomaterial Clareon®.
Collapse
|
23
|
Xie YB, Ren MY, Wang Q, Wang LH. Intraocular lens optic capture in pediatric cataract surgery. Int J Ophthalmol 2018; 11:1403-1410. [PMID: 30140648 DOI: 10.18240/ijo.2018.08.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
Posterior capsule opacification (PCO) remains the most common complication of pediatric cataract surgery despite continuous efforts to reduce its incidence. For this reason, pediatric cataract surgeons have expended considerable effort into preventing and mitigating PCO. The intraocular lens (IOL) optic capture technique has been used for the prevention of PCO after pediatric cataract surgery for more than 20y, but there is still no professional consensus. However, recent research has shown encouraging results. The IOL optic capture technique can be performed without anterior vitrectomy to prevent PCO, even in younger children. The type and characteristics of IOLs used for optic capture technique, the location of IOL and the complications of IOL optic capture in children are here reviewed.
Collapse
Affiliation(s)
- Ying-Bin Xie
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Mei-Yu Ren
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Qi Wang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| | - Li-Hua Wang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
24
|
Zvorničanin J, Zvorničanin E. Premium intraocular lenses: The past, present and future. J Curr Ophthalmol 2018; 30:287-296. [PMID: 30555960 PMCID: PMC6276729 DOI: 10.1016/j.joco.2018.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose To present potential benefits as well as limitations of premium intraocular lens (IOL) use, and provide insight in future of premium cataract surgery. Methods Bibliographic research was performed in PubMed/Medline database, and the most recently updated papers were evaluated. Keywords used were: premium intraocular lens, multifocal intraocular lens, toric intraocular lens, toric multifocal intraocular lens, accommodative intraocular lens, and the respective brand names. Results Multifocal IOLs provide uncorrected distance visual acuity (UDVA) of 0.03 logMAR in 82.3%–95.7% of patients and overall spectacle independence in 81%–85% of patients. Toric IOLs provide UDVA of 0.3 logMAR in 70%–95% of patients, residual astigmatism of 1 D or less is noted in 67%–88% of patients, and spectacle independence is reported in 60%–85% of patients. Toric multifocal IOLs provide UDVA of 0.3 logMAR in 92%–97% of patients, and spectacle independence is reported in 79%–90% of patients. Accommodative IOLs represent intensively developing field in ophthalmology, and the results are still variable depending on the IOL model. Conclusions Premium IOL technology and advanced surgical techniques have significantly improved postoperative visual outcomes. Future developments will potentiate development of new premium IOL designs that will provide spectacle independence and excellent visual outcomes after cataract surgery.
Collapse
Affiliation(s)
- Jasmin Zvorničanin
- Department of Ophthalmology, University Clinical Center Tuzla, Bosnia and Herzegovina
| | - Edita Zvorničanin
- Department of Ophthalmology, University Clinical Center Tuzla, Bosnia and Herzegovina
| |
Collapse
|