1
|
Qu YT, Ding JY, Pan W, Liu FR, Dong AL. Perspectives in clinical research on Azathioprine for steroid-dependent ulcerative colitis. Front Med (Lausanne) 2025; 12:1551906. [PMID: 40201324 PMCID: PMC11975918 DOI: 10.3389/fmed.2025.1551906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
This study explores the application of Azathioprine in the treatment of ulcerative colitis (UC) and the challenges associated with its long-term use. While short-term studies demonstrate the efficacy of Azathioprine in steroid-dependent UC, long-term data on its risks, including malignancies, infections, and chronic toxicity, remain insufficient. Furthermore, the impact of Azathioprine on patients' quality of life over extended periods is still unclear. The research highlights the importance of optimizing Azathioprine dosing based on genomic data, particularly through TPMT and NUDT15 genotyping, to minimize adverse effects. However, further research is needed to develop individualized treatment strategies that can improve efficacy and reduce toxicity. The identification of predictive biomarkers, through genomics and proteomics, is likely to play a crucial role in improving treatment precision by identifying patients who are most likely to benefit from Azathioprine therapy. Additionally, combining Azathioprine with biologic therapies (such as anti-TNF agents or integrin inhibitors) and interventions targeting the gut microbiome may enhance the drug's effectiveness while reducing reliance on steroids. Overall, large-scale clinical trials are urgently needed to evaluate the benefits and risks of these emerging therapies, ultimately supporting more personalized treatment approaches for steroid-dependent UC patients.
Collapse
Affiliation(s)
- Yuan-Ting Qu
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jia-Yuan Ding
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Wei Pan
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Fang-Rui Liu
- Department of Gastroenterology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ai-Lian Dong
- Department of Gastroenterology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
2
|
Cañadas-Vidal E, Muñoz-Prieto A, Rešetar Maslov D, Rubić I, González-Sánchez JC, Garcia-Martinez JD, Ceron JJ, Mrljak V, Pardo-Marin L, Martinez-Subiela S, Tvarijonaviciute A. Changes in Serum Proteins in Cats with Obesity: A Proteomic Approach. Animals (Basel) 2025; 15:91. [PMID: 39795034 PMCID: PMC11718836 DOI: 10.3390/ani15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Obesity is defined as the excessive accumulation of adipose tissue and is currently the most common disease in cats. Similarly to humans, obesity negatively impacts the health and welfare of cats, predisposing them to many other disorders. The objective of this study was to compare the serum proteomes of normal-weight and overweight/obese cats, aiming to gain insights into the physiopathology of feline obesity and potentially identify new biomarkers. For this, serum samples from a total of 20 adult neutered domestic shorthair client-owned cats, ten normal weight and ten overweight/obese, were submitted to tandem mass tags labelling and liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 288 proteins were detected in the serum samples. Out of these, 12 proteins showed statistically significant differences in abundance between control cats and cats with obesity, namely Ig-like domain-containing protein, Alpha-2-HS-glycoprotein, Complement C8 gamma chain, An-tithrombin-III, Serpin family A member 1, Complement factor H, C3-beta-c, Albumin, C4b-binding protein alpha chain, Alpha-1-B glycoprotein, Solute carrier family 12 member 4, and Fibronectin. Overall this report identifies new proteins involved and provides additional knowledge about the physiopathological changes related to feline obesity.
Collapse
Affiliation(s)
- Esmeralda Cañadas-Vidal
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
- Veterinary Clinical Hospital, University of Murcia, Calle Campus Universitario 16, Espinardo, 30100 Murcia, Spain
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, Calle Campus Universitario, Espinardo, 30100 Murcia, Spain;
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
| | - Dina Rešetar Maslov
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.M.); (I.R.); (V.M.)
| | - Ivana Rubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.M.); (I.R.); (V.M.)
| | | | - Juan D. Garcia-Martinez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, Calle Campus Universitario, Espinardo, 30100 Murcia, Spain;
| | - José J. Ceron
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
| | - Vladimir Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (D.R.M.); (I.R.); (V.M.)
| | - Luis Pardo-Marin
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
| | - Silvia Martinez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, Espinardo, 30100 Murcia, Spain; (E.C.-V.); (J.J.C.); (L.P.-M.); (S.M.-S.); (A.T.)
| |
Collapse
|
3
|
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024; 12:17. [PMID: 38921823 PMCID: PMC11207525 DOI: 10.3390/proteomes12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.
Collapse
Affiliation(s)
- Motahare Khorrami
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Christopher Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, Sydney 2109, NSW, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney 2109, NSW, Australia;
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| |
Collapse
|
4
|
Previtali P, Pagani L, Risca G, Capitoli G, Bossi E, Oliveira G, Piga I, Radice A, Trezzi B, Sinico RA, Magni F, Chinello C. Towards the Definition of the Molecular Hallmarks of Idiopathic Membranous Nephropathy in Serum Proteome: A DIA-PASEF Approach. Int J Mol Sci 2023; 24:11756. [PMID: 37511514 PMCID: PMC10380405 DOI: 10.3390/ijms241411756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a pathologically defined disorder of the glomerulus, primarily responsible for nephrotic syndromes (NS) in nondiabetic adults. The underlying molecular mechanisms are still not completely clarified. To explore possible molecular and functional signatures, an optimised mass spectrometry (MS) method based on next-generation data-independent acquisition combined with ion-mobility was applied to serum of patients affected by IMN (n = 15) or by other glomerulopathies (PN) (n = 15). The statistical comparison highlighted a panel of 57 de-regulated proteins with a significant increase in lipoprotein-related proteins (APOC1, APOB, APOA1, APOL1 and LCAT) and a substantial quantitative alteration of key serpins (including A4, D1, A7, A6, F2, F1 and 1) possibly associated with IMN or NS and podocyte stress. A critical dysregulation in metabolisms of lipids (e.g., VLDL assembly and clearance) likely to be related to known hyperlipidemia in IMN, along with involvement of non-classical complement pathways and a putative enrolment of ficolin-2 in sustaining the activation of the lectin-mediated complement system have been pinpointed. Moreover, mannose receptor CD206 (MRC1-down in IMN) and biotinidase (BTD-up in IMN) are able alone to accurately distinguish IMN vs. PN. To conclude, our work provides key proteomic insights into the IMN complexity, opening the way to an efficient stratification of MN patients.
Collapse
Affiliation(s)
- Paolo Previtali
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Lisa Pagani
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Eleonora Bossi
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Glenda Oliveira
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Isabella Piga
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Antonella Radice
- Microbiology Institute, ASST (Azienda Socio Sanitaria Territoriale) Santi Paolo e Carlo, 20142 Milan, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, University of Milano Bicocca and Nephrology, 20900 Monza, Italy
- Dialysis Unit, ASST-Monza, Ospedale San Gerardo, 20900 Monza, Italy
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Clizia Chinello
- Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| |
Collapse
|
5
|
Ribeiro HC, Zandonadi FDS, Sussulini A. An overview of metabolomic and proteomic profiling in bipolar disorder and its clinical value. Expert Rev Proteomics 2023; 20:267-280. [PMID: 37830362 DOI: 10.1080/14789450.2023.2267756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a complex psychiatric disease characterized by alternating mood episodes. As for any other psychiatric illness, currently there is no biochemical test that is able to support diagnosis or therapeutic decisions for BD. In this context, the discovery and validation of biomarkers are interesting strategies that can be achieved through proteomics and metabolomics. AREAS COVERED In this descriptive review, a literature search including original articles and systematic reviews published in the last decade was performed with the objective to discuss the results of BD proteomic and metabolomic profiling analyses and indicate proteins and metabolites (or metabolic pathways) with potential clinical value. EXPERT OPINION A large number of proteins and metabolites have been reported as potential BD biomarkers; however, most studies do not reach biomarker validation stages. An effort from the scientific community should be directed toward the validation of biomarkers and the development of simplified bioanalytical techniques or protocols to determine them in biological samples, in order to translate proteomic and metabolomic findings into clinical routine assays.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
| | - Flávia da Silva Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas(UNICAMP), Campinas, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
6
|
Yu J, Boland L, Catt M, Puk L, Wong N, Krockenberger M, Bennett P, Ruaux C, Wasinger VC. Serum proteome profiles in cats with chronic enteropathies. J Vet Intern Med 2023; 37:1358-1367. [PMID: 37279179 PMCID: PMC10365053 DOI: 10.1111/jvim.16743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Serum protein biomarkers are used to diagnose, monitor treatment response, and to differentiate various forms of chronic enteropathies (CE) in humans. The utility of liquid biopsy proteomic approaches has not been examined in cats. HYPOTHESIS/OBJECTIVES To explore the serum proteome in cats to identify markers differentiating healthy cats from cats with CE. ANIMALS Ten cats with CE with signs of gastrointestinal disease of at least 3 weeks duration, and biopsy-confirmed diagnoses, with or without treatment and 19 healthy cats were included. METHODS Cross-sectional, multicenter, exploratory study with cases recruited from 3 veterinary hospitals between May 2019 and November 2020. Serum samples were analyzed and evaluated using mass spectrometry-based proteomic techniques. RESULTS Twenty-six proteins were significantly (P < .02, ≥5-fold change in abundance) differentially expressed between cats with CE and controls. Thrombospondin-1 (THBS1) was identified with >50-fold increase in abundance in cats with CE (P < 0.001) compared to healthy cats. CONCLUSIONS AND CLINICAL IMPORTANCE Damage to the gut lining released marker proteins of chronic inflammation that were detectable in serum samples of cats. This early-stage exploratory study strongly supports THBS1 as a candidate biomarker for chronic inflammatory enteropathy in cats.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Melissa Catt
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Leah Puk
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Fabian O, Bajer L, Drastich P, Harant K, Sticova E, Daskova N, Modos I, Tichanek F, Cahova M. A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review. Int J Mol Sci 2023; 24:ijms24119386. [PMID: 37298338 DOI: 10.3390/ijms24119386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Lukas Bajer
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology, Royal Vinohrady Teaching Hospital, Srobarova 1150/50, 100 00 Prague, Czech Republic
| | - Nikola Daskova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Filip Tichanek
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| |
Collapse
|
8
|
Gato WE, Wu J, Appiah I, Smith O, Rochani H. Hepatic proteomic assessment of oral ingestion of titanium dioxide nano fiber (TDNF) in Sprague Dawley rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 57:1116-1123. [PMID: 36622359 DOI: 10.1080/10934529.2022.2159733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanofibers (TDNF) have been widely employed in pigments, sunscreens, paints, ointments, toothpaste and photocatalytic splitting of water. However, their potential toxicity has not been thoroughly examined. The goal of the present study is to examine hepatic effects associated with the ingestion of TDNF. TDNF was fabricated via electrospinning method and characterized. Six to seven weeks old male Sprague Dawley rats ingested (oral gavage) a total of 0 ppm, 40, 60 ppm TDNF for two weeks. After sacrifice, the liver was assessed for cellular effects using proteomic approach. The fibers diameter ranged from 0.18 - 0.29 μm, forming clusters and majority of the fibers were in the rutile phase. Proteomics assessment revealed more that more than 400 hundred proteins in the liver may be affected. These proteins are involved in such processes as catalysis of fatty acids by CoA, homocysteine metabolism, beta oxidation and the condensation of carbamoyl phosphate in the urea cycle among others. Further analysis of the protein associations showed that 325 biological processes, 140 molecular functions and 70 cellular components appear to be affected from the ingestion of TNDF. Quantitative analysis of specific mRNA transcripts indicated CMBL, GSTM1 and SDS were differentially expressed.
Collapse
Affiliation(s)
- Worlanyo E Gato
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Ji Wu
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Isaac Appiah
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Olivia Smith
- Department of Chemistry, Otterbein University, Westerville, Ohio, USA
| | - Haresh Rochani
- Department of Environmental Health and Biostatistics, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| |
Collapse
|
9
|
Araújo MJ, Sousa ML, Fonseca E, Felpeto AB, Martins JC, Vázquez M, Mallo N, Rodriguez-Lorenzo L, Quarato M, Pinheiro I, Turkina MV, López-Mayán JJ, Peña-Vázquez E, Barciela-Alonso MC, Spuch-Calvar M, Oliveira M, Bermejo-Barrera P, Cabaleiro S, Espiña B, Vasconcelos V, Campos A. Proteomics reveals multiple effects of titanium dioxide and silver nanoparticles in the metabolism of turbot, Scophthalmus maximus. CHEMOSPHERE 2022; 308:136110. [PMID: 36007739 DOI: 10.1016/j.chemosphere.2022.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.
Collapse
Affiliation(s)
- Mário J Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Maria L Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - José Carlos Martins
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - María Vázquez
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Natalia Mallo
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Miguel Spuch-Calvar
- TeamNanoTech / Magnetic Materials Group, CINBIO, Universidade de Vigo - Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
10
|
Liang Q, Zhao Q, Hao X, Wang J, Ma C, Xi X, Kang W. The Effect of Flammulina velutipes Polysaccharide on Immunization Analyzed by Intestinal Flora and Proteomics. Front Nutr 2022; 9:841230. [PMID: 35155543 PMCID: PMC8832141 DOI: 10.3389/fnut.2022.841230] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Proteomics and intestinal flora were used to determine the mechanism of immune modulatory effects of Flammulina velutipes polysaccharide on immunosuppressed mice. The results showed that compared with the model group, F. velutipes polysaccharide could increase thymus and spleen indices and improve thymus tissue structure in mice; IL-2 and IL-4 contents were significantly increased and IL-6 and TNF-α contents were significantly decreased; serum acid phosphatase (ACP), lactate dehydrogenase (LDH) and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); in the liver, superoxide dismutase (SOD) and catalase (CAT) activities were increased (P < 0.001), while malondialdehyde (MDA) content was decreased (P < 0.001). Proteomics discovered that F. velutipes polysaccharides may exert immune modulatory effects by participating in signaling pathways such as immune diseases, transport and catabolism, phagosomes and influenza A, regulating the immune-related proteins Transferrin receptor protein 1 (TFRC) and Radical S-adenosyl methionine domain-containing protein 2 (RSAD2), etc. Gut microbial studies showed that F. velutipes polysaccharides could increase the abundance of intestinal flora and improve the flora structure. Compared to the model group, the content of short-chain fatty acids (SCFAs) and the relative abundance of SCFA-producers Bacteroides and Alloprevotella were increased in the F. velutipes polysaccharide administration group, while Lachnospiraceae_NK4A136_group and f_Lachnospiraceae_Unclassified decreased in relative abundance. Thus, F. velutipes polysaccharide may play an immunomodulatory role by regulating the intestinal environment and improving the balance of flora.
Collapse
Affiliation(s)
- Qiongxin Liang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Qingchun Zhao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Xuting Hao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jinmei Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- *Correspondence: Changyang Ma
| | - Xuefeng Xi
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- College of Physical Education, Henan University, Kaifeng, China
- Xuefeng Xi
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- Wenyi Kang
| |
Collapse
|
11
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
12
|
Sarkar A, Monu, Kumar V, Malhotra R, Pandit H, Jones E, Ponchel F, Biswas S. Poor Clearance of Free Hemoglobin Due to Lower Active Haptoglobin Availability is Associated with Osteoarthritis Inflammation. J Inflamm Res 2021; 14:949-964. [PMID: 33776468 PMCID: PMC7987317 DOI: 10.2147/jir.s300801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Circulating plasma proteins play an important role in various diseases, and analysis of the plasma proteome has led to the discovery of various disease biomarkers. Osteoarthritis (OA) is the most common chronic joint disease, mostly affecting people of older age. OA typically starts as a focal disease (in a single compartment, typically treated with unicompartmental knee replacement), and then progresses to the other compartments (if not treated in time, typically treated with total knee replacement). For this, identification of differential proteins was carried out in plasma samples of OA cases and compared with healthy controls. The aim of this study was to identify circulatory differentially expressed proteins (DEPs) in knee-OA patients undergoing total knee replacement or unicompartmental knee replacement compared to healthy controls and assess their role, in order to have better understanding of the etiology behind OA pathophysiology. Methods DEPs were identified with two-dimensional gel electrophoresis (2DE) and isobaric tags for relative and absolute quantification (iTRAQ), followed by liquid chromatography with tandem mass spectrometry. Validation of DEPs was carried out using Western blot and ELISA. Posttranslational modifications were checked after running native gel using purified protein from patients, followed by detection of autoantibodies. Results In total, 52 DEPs were identified, among which 45 were distinct DEPs. Haptoglobin (Hp) was identified as one of the most significantly upregulated proteins in OA (P=0.005) identified by both 2DE and iTRAQ. Decreased levels of Hp tetramers and increased levels of autoantibodies against Hpβ were observed in OA plasma. Conclusion Our data suggest that poor clearance of free hemoglobin and low levels of Hp tetramers may be associated with OA pathogenesis and inflammation.
Collapse
Affiliation(s)
- Ashish Sarkar
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Monu
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajesh Malhotra
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| |
Collapse
|
13
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
14
|
Asad S, Wegler C, Ahl D, Bergström CAS, Phillipson M, Artursson P, Teleki A. Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease. J Pharm Sci 2020; 110:239-250. [PMID: 33159915 DOI: 10.1016/j.xphs.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition resulting in impaired intestinal homeostasis. Current practices for diagnosis of IBD are challenged by invasive, demanding procedures. We hypothesized that proteomics analysis could provide a powerful tool for identifying clinical biomarkers for non-invasive IBD diagnosis. Here, the global intestinal proteomes from commonly used in vitro and in vivo models of IBD were analyzed to identify apical and luminal proteins that can be targeted by orally delivered diagnostic agents. Global proteomics analysis revealed upregulated plasma membrane proteins in intestinal segments of proximal- and distal colon from dextran sulfate sodium-treated mice and also in inflamed human intestinal Caco-2 cells pretreated with pro-inflammatory agents. The upregulated colon proteins in mice were compared to the proteome of the healthy ileum, to ensure targeting of diagnostic agents to the inflamed colon. Promising target proteins for future investigations of non-invasive diagnosis of IBD were found in both systems and included Tgm2/TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1. Ultimately, these findings will guide the selection of appropriate antibodies for surface functionalization of imaging agents aimed to target inflammatory biomarkers in situ.
Collapse
Affiliation(s)
- Shno Asad
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden; Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), SE-75123 Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|
15
|
Glover K, Coombs KM. ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses 2020; 12:v12070771. [PMID: 32708879 PMCID: PMC7412063 DOI: 10.3390/v12070771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The zika virus (ZIKV) is a neurotropic virus that causes congenital abnormalities in babies when they are infected in utero. Some studies have reported these congenital abnormalities result from ZIKV attacking neural progenitor cells within the brain which differentiate into neurons, oligodendrocytes, and astrocytes. Each of these glial cells play important roles during development of the fetal brain. In addition to ZIKV-induced congenital abnormalities, infected patients experience gastrointestinal complications. There are presently no reports investigating the role of this virus at the proteomic level in gastrointestinal associated cells, so we conducted an in vitro proteomic study of ZIKV-induced changes in Caco-2, a colon-derived human cell line which is known to be permissive to ZIKV infection. We used SomaScan, a new aptamer-based proteomic tool to identify host proteins that are dysregulated during ZIKV infection at 12, 24, and 48 h post-infection. Bioinformatic analyses predicted that dysregulation of differentially-regulated host proteins results in various gastrointestinal diseases. Validation of the clinical relevance of these promising protein targets will add to the existing knowledge of ZIKV biology. These potential proteins may be useful targets towards the development of therapeutic interventions.
Collapse
Affiliation(s)
- Kathleen Glover
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
16
|
The use of proteomics for the identification of promising vaccine and diagnostic biomarkers in Plasmodium falciparum. Parasitology 2020; 147:1255-1262. [PMID: 32618524 DOI: 10.1017/s003118202000102x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum is the main cause of severe malaria in humans that can lead to death. There is growing evidence of drug-resistance in P. falciparum treatment, and the design of effective vaccines remains an ongoing strategy to control the disease. On the other hand, the recognition of specific diagnostic markers for P. falciparum can accelerate the diagnosis of this parasite in the early stages of infection. Therefore, the identification of novel antigenic proteins especially by proteomic tools is urgent for vaccination and diagnosis of P. falciparum. The proteome diversity of the life cycle stages of P. falciparum, the altered proteome of P. falciparum-infected human sera and altered proteins in P. falciparum-infected erythrocytes could be proposed as appropriate proteins for the aforementioned aims. Accordingly, this review highlights and proposes different proteins identified using proteomic approaches as promising markers in the diagnosis and vaccination of P. falciparum. It seems that most of the candidates identified in this study were able to elicit immune responses in the P. falciparum-infected hosts and they also played major roles in the life cycle, pathogenicity and key pathways of this parasite.
Collapse
|
17
|
Hamza GM, Bergo VB, Mamaev S, Wojchowski DM, Toran P, Worsfold CR, Castaldi MP, Silva JC. Affinity-Bead Assisted Mass Spectrometry (Affi-BAMS): A Multiplexed Microarray Platform for Targeted Proteomics. Int J Mol Sci 2020; 21:E2016. [PMID: 32188029 PMCID: PMC7139916 DOI: 10.3390/ijms21062016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
The ability to quantitatively probe diverse panels of proteins and their post-translational modifications (PTMs) across multiple samples would aid a broad spectrum of biological, biochemical and pharmacological studies. We report a novel, microarray analytical technology that combines immuno-affinity capture with Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS), which is capable of supporting highly multiplexed, targeted proteomic assays. Termed "Affinity-Bead Assisted Mass Spectrometry" (Affi-BAMS), this LC-free technology enables development of highly specific and customizable assay panels for simultaneous profiling of multiple proteins and PTMs. While affinity beads have been used previously in combination with MS, the Affi-BAMS workflow uses enrichment on a single bead that contains one type of antibody, generally capturing a single analyte (protein or PTM) while having enough binding capacity to enable quantification within approximately 3 orders of magnitude. The multiplexing capability is achieved by combining Affi-BAMS beads with different protein specificities. To enable screening of bead-captured analytes by MS, we further developed a novel method of performing spatially localized elution of targets from individual beads arrayed on a microscope slide. The resulting arrays of micro spots contain highly concentrated analytes localized within 0.5 mm diameter spots that can be directly measured using MALDI MS. While both intact proteins and protein fragments can be monitored by Affi-BAMS, we initially focused on applying this technology for bottom-up proteomics to enable screening of hundreds of samples per day by combining the robust magnetic bead-based workflow with the high throughput nature of MALDI MS acquisition. To demonstrate the variety of applications and robustness of Affi-BAMS, several studies are presented that focus on the response of 4EBP1, RPS6, ERK1/ERK2, mTOR, Histone H3 and C-MET to stimuli including rapamycin, H2O2, EPO, SU11274, Staurosporine and Vorinostat.
Collapse
Affiliation(s)
- Ghaith M. Hamza
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, MA 02451, USA; (G.M.H.); (M.P.C.)
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | - Vladislav B. Bergo
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| | - Sergey Mamaev
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| | - Don M. Wojchowski
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | - Paul Toran
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (D.M.W.); (P.T.)
| | | | - M. Paola Castaldi
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Boston, MA 02451, USA; (G.M.H.); (M.P.C.)
| | - Jeffrey C. Silva
- Adeptrix Corporation, Beverly, MA 01915, USA; (V.B.B.); (S.M.); (C.R.W.)
| |
Collapse
|
18
|
Proteomics and Imaging in Crohn’s Disease: TAILS of Unlikely Allies. Trends Pharmacol Sci 2020; 41:74-84. [DOI: 10.1016/j.tips.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
|
19
|
Ning L, Shan G, Sun Z, Lou X, Zhang F, Li S, Du H, Yu J, Chen H, Xu G. Serum proteome profiles to differentiate Crohn disease from intestinal tuberculosis and primary intestinal lymphoma: A pilot study. Medicine (Baltimore) 2019; 98:e18304. [PMID: 31852111 PMCID: PMC6922555 DOI: 10.1097/md.0000000000018304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The differential diagnosis of Crohn disease (CD) from intestinal tuberculosis (ITB) and primary intestinal lymphoma (PIL) is challenging in patients who exhibit atypical clinical characteristics. The aim of the present study was to explore the serum proteome profiles of CD, PIL and ITB and to identify their differentiations.Treatment-naïve patients with CD (n = 10), PIL (n = 10) and ITB (n = 10) were enrolled in the present study. Differentially expressed proteins (DEPs) in patient serum samples were compared between groups using tandem mass tag labeled proteomic technology. A principal component analysis (PCA) plot and volcano maps were also visualized. Functional pathway analysis was performed using Reactome. The Area under the Curve (AUC) was calculated for each DEP.A total of 818 proteins were identified through proteomic quantification. Among them, 108 DEPs were identified to be differentiated between CD and ITB, 105 proteins between CD and PIL and 55 proteins between ITB and PIL. The proteome from the three groups was distinguishable in the PCA plot. The results revealed that 19, 12, and 10 proteins (AUC ≥ 0.95) were differentially expressed between CD and PIL, CD and ITB, and PIL and ITB, respectively. Among these DEPs, tumor necrosis factor ligand superfamily member 13 was higher in CD than in ITB and PIL. Peroxiredoxin-5, T-complex protein 1 subunit Gamma, CutA, and Fibulin-5 were increased in CD and PIL when compared with ITB. The levels of fibrinogen chains were also significantly higher in patients with PIL compared with CD.The current study demonstrated that serum proteome was distinguishable among patients with CD, PIL, and ITB. The identified proteins may assist in the clinical differentiation among them.
Collapse
Affiliation(s)
- Longgui Ning
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Guodong Shan
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Zeyu Sun
- Proteomics and Metabolomics Platform, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Hangzhou, China
| | - Xinhe Lou
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Fenming Zhang
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Sha Li
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Haojie Du
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Jinghua Yu
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Hongtan Chen
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Guoqiang Xu
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine
| |
Collapse
|
20
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
21
|
Dovrolis N, Filidou E, Kolios G. Systems biology in inflammatory bowel diseases: on the way to precision medicine. Ann Gastroenterol 2019; 32:233-246. [PMID: 31040620 PMCID: PMC6479645 DOI: 10.20524/aog.2019.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple approaches. Systems biology has come to fulfill this need in approaching the pathogenetic mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from different scientific sources. In combination with bioinformatics and network medicine, it uses principles from computer science, mathematics, physics, chemistry, biology, medicine and computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose combined analysis leads to network formation and ultimately to a more integrative image of disease etiopathogenesis. In this review, we analyze the current literature on the methods and the tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Correspondence to: Prof. George Kolios, MD PhD, Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece, e-mail:
| |
Collapse
|
22
|
Di Narzo AF, Brodmerkel C, Telesco SE, Argmann C, Peters LA, Li K, Kidd B, Dudley J, Cho J, Schadt EE, Kasarskis A, Dobrin R, Hao K. High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:462-471. [PMID: 30445421 PMCID: PMC6441306 DOI: 10.1093/ecco-jcc/jjy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The molecular aetiology of inflammatory bowel disease [IBD] and its two subtypes, ulcerative colitis [UC] and Crohn's disease [CD], have been carefully investigated at genome and transcriptome levels. Recent advances in high-throughput proteome quantification has enabled comprehensive large-scale plasma proteomics studies of IBD. METHODS The study used two cohorts: [1] The CERTIFI-cohort: 42 samples from the CERTIFI trial of anti-TNFα-refractory CD patients; [2] the PROgECT-UNITI-HCs cohort: 46 UC samples of the PROgECT study, 84 CD samples of the UNITI I and UNITI II studies, and 72 healthy controls recruited in Mount Sinai Hospital, New York, USA. The plasma proteome for these two cohorts was quantified using high-throughput platforms. RESULTS For the PROgECT-UNITI-HCs cohort, we measured a total of 1310 proteins. Of these, 493 proteins showed different plasma levels in IBD patients to the plasma levels in controls at 10% false discovery rate [FDR], among which 11 proteins had a fold change greater than 2. The proteins upregulated in IBD were associated with immunity functionality, whereas the proteins downregulated in IBD were associated with nutrition and metabolism. The proteomic profiles were very similar between UC and CD. In the CERTIFI cohort, 1014 proteins were measured, and it was found that the plasma protein level had little correlation with the blood or intestine transcriptomes. CONCLUSIONS We report the largest proteomics study to date on IBD and controls. A large proportion of plasma proteins are altered in IBD, which provides insights into the disease aetiology and indicates a potential for biomarker discovery.
Collapse
Affiliation(s)
- Antonio F Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren A Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | | | - Brian Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Gisbert JP, Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. J Crohns Colitis 2019; 13:374-384. [PMID: 30307487 DOI: 10.1093/ecco-jcc/jjy158] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein domain is probably the most ubiquitously affected in disease, response and recovery, and therefore proteomics holds special promise for biomarker discovery in general, and particularly in inflammatory bowel disease [IBD], i.e. ulcerative colitis and Crohn's disease. Tremendous progress has been made over the past decade in the development and refinement of proteomics technologies. These advances provide opportunities for a long-anticipated personalized medicine approach to the treatment of IBD. The present review examines the current state of IBD proteomics research and its usefulness in clinical practice. We performed a systematic bibliographic search to identify studies investigating the use of proteomics in patients with IBD, and we then summarized the current 'state of the art' in the applications of proteomic technologies in the study of IBD. In particular, in the present review we provide: [1] a brief introduction to proteomics in health and disease; [2] a review of the different stages from biomarker discovery to clinical application; and [3] a comprehensive review of the clinical usefulness and application of proteomics in IBD, including: [a] screening to differentiate IBD from healthy controls; [b] differentiating Crohn's disease from ulcerative colitis; [c] prediction of the behaviour or the IBD course; [d] prediction of IBD response to biological treatment; and [e] monitoring response to treatment. We also review the importance of the type of sample-blood vs intestinal tissue-for the study of proteomics in IBD patients. Finally, we emphasize the current limitations of proteomic studies in IBD.
Collapse
Affiliation(s)
- Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
24
|
Manfredi M, Conte E, Barberis E, Buzzi A, Robotti E, Caneparo V, Cecconi D, Brandi J, Vanni E, Finocchiaro M, Astegiano M, Gariglio M, Marengo E, De Andrea M. Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease. J Proteomics 2019; 195:138-149. [DOI: 10.1016/j.jprot.2018.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
|
25
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
26
|
Titz B, Gadaleta RM, Lo Sasso G, Elamin A, Ekroos K, Ivanov NV, Peitsch MC, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int J Mol Sci 2018; 19:ijms19092775. [PMID: 30223557 PMCID: PMC6163330 DOI: 10.3390/ijms19092775] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options. Complementing other biological endpoints, bioanalytical "omics" methods that quantify many biomolecules simultaneously have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker discovery to studies dissecting host⁻microbiome interactions and the role of intestinal epithelial cells. Future studies can leverage recent advances, including improved analytical methodologies, additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics could effectively accelerate the development of novel targeted treatments and the discovery of complementary biomarkers, enabling continuous monitoring of the treatment response of individual patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized medicine approach to IBD.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Raffaella M Gadaleta
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
27
|
Zhang D, Ren YB, Wei K, Hong J, Yang YT, Wu LJ, Zhang J, Shi Z, Wu HG, Ma XP. Herb-partitioned moxibustion alleviates colon injuries in ulcerative colitis rats. World J Gastroenterol 2018; 24:3384-3397. [PMID: 30122878 PMCID: PMC6092579 DOI: 10.3748/wjg.v24.i30.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To observe the effect of herb-partitioned moxibustion (HPM) on expression of colonic cytokines in ulcerative colitis (UC) rats. METHODS A UC rat model was established by protein immunization in combination with topical chemical stimulation. Rats in the HPM group (n = 8) received HPM at bilateral Tianshu (ST25) points. The gross injury and pathological scores of the colon were recorded. The expression profile of colonic cytokines was assayed using the protein microarray technique. Specific differential cytokines were selected and verified by ELISA. The corresponding UniProt Accessions of the differentially expressed cytokines were retrieved in the UniProt database. The pathways involved were analyzed with the help of the KEGG PATHWAY database. The DAVID database was used for functional cluster and pathway analysis. RESULTS HPM improved colon injuries in UC rats, manifested by accelerated repair of ulcers and alleviation of inflammation, and the gross injury and pathological scores both significantly decreased (P < 0.01). Fold change > 1.3 or < 0.77 was taken as the screening standard. There were 77 down-regulated and 9 up-regulated differentially expressed colonic cytokines in the HPM group compared with the model group, and expression of 20 differed significantly (P < 0.05). Twelve of the 20 significantly differentially expressed cytokines [β-catenin, interleukin-1 receptor 6 (IL-1R6), IL-1β, B7-1, nerve growth factor receptor, AMP-activated protein kinase-α1, neuropilin-2, orexin A, adipocyte differentiation-related protein, IL-2, Fas and FasL] were up-regulated in the model group (n = 3, compared with the normal group) but down-regulated in the HPM group (n = 3, compared with the model group). Functional cluster analysis showed that the differentially expressed colonic cytokines in the HPM group regulated apoptosis and protein phosphorylation. KEGG pathway analysis showed that 52 down-regulated and 7 up-regulated differentially expressed colonic cytokines in the HPM group had pathways. The pathways that interacted between the cytokines and their receptors accounted for the largest proportion (28 of the down-regulated and 5 of the up-regulated cytokines). CONCLUSION HPM promotes the repair of colon injuries in UC rats, which is related to the regulation of several abnormally expressed cytokines.
Collapse
Affiliation(s)
- Dan Zhang
- Laboratory of Acupuncture-moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yan-Bo Ren
- Department of Integrated Traditional Chinese Medicine and Western Medicine, North Branch of Huashan Hospital, Fudan University, Shanghai 201907, China
| | - Kai Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jue Hong
- Laboratory of Acupuncture-moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yan-Ting Yang
- Yueyang Clinical Medicine School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Jie Wu
- Yueyang Clinical Medicine School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ji Zhang
- Yueyang Clinical Medicine School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng Shi
- Laboratory of Acupuncture-moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Huan-Gan Wu
- Laboratory of Acupuncture-moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiao-Peng Ma
- Laboratory of Acupuncture-moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
- Yueyang Clinical Medicine School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
28
|
Palmieri O, Mazza T, Castellana S, Panza A, Latiano T, Corritore G, Andriulli A, Latiano A. Inflammatory Bowel Disease Meets Systems Biology: A Multi-Omics Challenge and Frontier. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:692-698. [PMID: 27930092 DOI: 10.1089/omi.2016.0147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inflammatory bowel disease (IBD) is a systemic disease that is characterized by the inflammation of the gastrointestinal tract. It includes ulcerative colitis and the Crohn's disease. Presently, IBD is one of the most investigated common complex human disorders, although its causes remain unclear. Multi-omics mechanisms involving genomic, transcriptomic, proteomic, and epigenomic variations, not to forget the miRNome, together with environmental contributions, result in an impairment of the immune system in persons with IBD. Such interactions at multiple levels of biology and in concert with the environment constitute the actual engine of this complex disease, demanding a multifactorial and multi-omics perspective to better understand the root causes of IBD. This expert analysis reviews and examines the latest literature and underscores, from the perspective of systems biology, the value of multi-omics technologies as opportunities to unravel the "IBD integrome." We anticipate that multi-omics research will accelerate the new discoveries and insights on IBD in the near future. It shall also pave the way for early diagnosis and help clinicians and families with IBD to forecast and make informed decisions about the prognosis and, possibly, personalized therapeutics in the future.
Collapse
Affiliation(s)
- Orazio Palmieri
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- 2 Laboratory of Bioinformatics, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Stefano Castellana
- 2 Laboratory of Bioinformatics, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Anna Panza
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Tiziana Latiano
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Giuseppe Corritore
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Angelo Andriulli
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| | - Anna Latiano
- 1 Division of Gastroenterology, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo, Italy
| |
Collapse
|
29
|
Yan F, Mo X, Liu J, Ye S, Zeng X, Chen D. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol Med Rep 2017; 16:7175-7184. [PMID: 28944829 PMCID: PMC5865843 DOI: 10.3892/mmr.2017.7525] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress-mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.
Collapse
Affiliation(s)
- Fenggen Yan
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Junfeng Liu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Siqi Ye
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xing Zeng
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Dacan Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
30
|
Mourad FH, Yau Y, Wasinger VC, Leong RW. Proteomics in Inflammatory Bowel Disease: Approach Using Animal Models. Dig Dis Sci 2017; 62:2266-2276. [PMID: 28717845 DOI: 10.1007/s10620-017-4673-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
Recently, proteomics studies have provided important information on the role of proteins in health and disease. In the domain of inflammatory bowel disease, proteomics has shed important light on the pathogenesis and pathophysiology of inflammation and has contributed to the discovery of some putative clinical biomarkers of disease activity. By being able to obtain a large number of specimens from multiple sites and control for confounding environmental, genetic, and metabolic factors, proteomics studies using animal models of colitis offered an alternative approach to human studies. Our aim is to review the information and lessons acquired so far from the use of proteomics in animal models of colitis. These studies helped understand the importance of different proteins at different stages of the disease and unraveled the different pathways that are activated or inhibited during the inflammatory process. Expressed proteins related to inflammation, cellular structure, endoplasmic reticulum stress, and energy depletion advanced the knowledge about the reaction of intestinal cells to inflammation and repair. The role of mesenteric lymphocytes, exosomes, and the intestinal mucosal barrier was emphasized in the inflammatory process. In addition, studies in animal models revealed mechanisms of the beneficial effects of some therapeutic interventions and foods or food components on intestinal inflammation by monitoring changes in protein expression and paved the way for some new possible inflammatory pathways to target in the future. Advances in proteomics technology will further clarify the interaction between intestinal microbiota and IBD pathogenesis and investigate the gene-environmental axis of IBD etiology.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box 113-6044, Hamra, Beirut, 110 32090, Lebanon. .,Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia.
| | - Yunki Yau
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of NSW Australia, Kensington, NSW, 2052, Australia
| | - Rupert W Leong
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia
| |
Collapse
|
31
|
Lee HJ, Kim JH, Kim SW, Joo HA, Lee HW, Kim YS, Park SJ, Hong SP, Kim TI, Kim WH, Kim YH, Cheon JH. Proteomic Analysis of Serum Amyloid A as a Potential Marker in Intestinal Behçet's Disease. Dig Dis Sci 2017; 62:1953-1962. [PMID: 28523576 DOI: 10.1007/s10620-017-4606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS Data regarding biomarkers to understand disease pathogenesis and to assess disease activity of intestinal Behçet's disease (BD) are limited. Therefore, we aimed to investigate the differentially expressed proteins in sera from patients with intestinal BD and to search for biomarkers using mass spectrometry-based proteomic analysis. METHODS Serum samples were pooled for the screening study, and two-dimensional electrophoresis (2-DE) was performed to characterize the proteins present in intestinal BD patients. Candidate protein spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatic analysis. To validate the proteomic results, serum samples from an independent cohort were assessed by enzyme-linked immunosorbent assay. RESULTS Pooled serum samples were used for 2-DE, and approximately 400 protein spots were detected in the sera of intestinal BD patients. Of the 22 differentially expressed proteins, 3 were successfully identified using MALDI-TOF/TOF MS. The three up-regulated proteins identified in the intestinal BD group included fibrin, apolipoprotein A-IV, and serum amyloid A (SAA). Serum SAA in intestinal BD patients (2.76 ± 2.50 ng/ml) was significantly higher than that in controls (1.68 ± 0.90 ng/ml, p = 0.007), which is consistent with the proteomic results. In addition, the level of IL-1β in patients with intestinal BD (8.96 ± 1.23 pg/ml) was higher than that in controls (5.40 ± 0.15 pg/ml, p = 0.009). SAA released by HT-29 cells was markedly increased by tumor necrosis factor-α (TNF-α) and lipopolysaccharides stimulation. CONCLUSIONS Our proteomic analysis revealed that SAA was up-regulated in intestinal BD patients.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jae Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Won Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Ah Joo
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Hye Won Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - You Sun Kim
- Department of Internal Medicine, Inje University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung Pil Hong
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Won Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea.
| | - Jae Hee Cheon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S, Lin J, Chen N. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell 2017; 8:686-695. [PMID: 28523434 PMCID: PMC5563283 DOI: 10.1007/s13238-017-0413-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an intestinal immune-dysfunctional disease worldwide whose prevalence increasing in Asia including China. It is a chronic disease of the gastrointestinal tract with unknown cause. Exosomes are small vesicles in various body fluids. They have diameters of 40-120 nm, and one of their functions is long-distance transfer of various substances. In this study, we investigated the contents of salivary exosomes in patients with IBD and in healthy controls to explore a new biomarker in patients with IBD. In this study, whole saliva was obtained from patients with IBD (ulcerative colitis (UC), n = 37; Crohn's disease (CD), n = 11) and apparently healthy individuals (HC, n = 10). Salivary exosomes were extracted from samples, and the proteins within the exosomes were identified by liquid chromatograph-mass spectrometer (LC-MS/MS). The results showed that more than 2000 proteins were detected in salivary exosomes from patients with IBD. Through gene ontology analysis, we found that proteasome subunit alpha type 7 (PSMA7) showed especially marked differences between patients with IBD and the healthy controls, in that its expression level was much higher in the CD and UC groups. This exosomal protein is related to proteasome activity and inflammatory responses. So we conclude that in this research, salivary exosomal PSMA7 was present at high levels in salivary exosomes from subjects with IBD. It can be a very promising biomarker to release the patients from the pain of colonoscopy.
Collapse
Affiliation(s)
- Xiaowen Zheng
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yulan Liu
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Peng You
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Shan Sun
- The School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiuxiang Lin
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Ning Chen
- The Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
33
|
Expression and Localization of miR-21 and miR-126 in Mucosal Tissue from Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2017; 23:739-752. [PMID: 28426456 DOI: 10.1097/mib.0000000000001086] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND microRNAs (miRNAs) are small noncoding RNAs that guide degradation of mRNA and regulate protein expression. miRNA based diagnostic biomarkers for ulcerative colitis (UC) and Crohn's disease (CD) are emerging but information about the cellular localization of many miRNAs is limited and more detailed histologic evaluation of miRNA expression patterns is needed to understand their immunobiological function. METHODS Formalin-fixed paraffin-embedded colon biopsies from 10 patients with UC and 8 patients with CD together with 9 controls were examined by RT-qPCR and quantitative in situ hybridization (ISH). The cellular expression of miR-21 positive cells was further characterized using immunohistochemical cellular markers. RESULTS Increased levels of miR-21 and miR-126 were found in UC compared with controls and increased levels of miR-21 were observed in UC compared with CD by both RT-qPCR and quantitative in situ hybridization. miR-126 was localized to endothelial cells and miR-21 to cells in the lamina propria. Multiplex immunohistochemical staining showed miR-21 expression in subsets of CD68 macrophages and CD3 T cells in UC, however, far the majority of the miR-21 positive cells could not be categorized among CD68, CD3, and CD19 cells. CONCLUSIONS This study shows that miR-126 levels are increased in UC and expressed in endothelial cells. miR-21 is expressed in subsets of monocytes/macrophages and T cells and may work as a potential biomarker to distinguish UC from CD. Quantitative in situ hybridization may be a powerful tool for such analysis as it combines overall expression with validation of cellular origin. Studies in larger cohorts may confirm this for clinical diagnostics.
Collapse
|
34
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
35
|
Deng J, Wang L, Ni J, Beretov J, Wasinger V, Wu D, Duan W, Graham P, Li Y. Proteomics discovery of chemoresistant biomarkers for ovarian cancer therapy. Expert Rev Proteomics 2016; 13:905-915. [DOI: 10.1080/14789450.2016.1233065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Junli Deng
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Department of Gynecological Oncology, Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jie Ni
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Valerie Wasinger
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales (UNSW), Kensington, Australia
- School of Medical Sciences, University of New South Wales (UNSW), Kensington, Australia
| | - Duojia Wu
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, University of New South Wales (UNSW), Kensington, Australia
| |
Collapse
|
36
|
Wan S, Liu W, Tian C, Ren X, Ding Z, Qian Q, Jiang C, Wu Y. Differential Proteomics Analysis of Colonic Tissues in Patients of Slow Transit Constipation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4814702. [PMID: 27239471 PMCID: PMC4867068 DOI: 10.1155/2016/4814702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/11/2016] [Indexed: 11/17/2022]
Abstract
Objective. To investigate and screen the different expression of proteins in STC and normal group with a comparative proteomic approach. Methods. Two-dimensional electrophoresis was applied to separate the proteins in specimens from both 5 STC patients and 5 normal controls. The proteins with statistically significant differential expression between two groups were identified by computer aided image analysis and matrix assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI-TOF-MS). Results. A total of 239 protein spots were identified in the average gel of the normal control and 215 in patients with STC. A total of 197 protein spots were matched and the mean matching rate was 82%. There were 14 protein spots which were expressed with statistically significant differences from others. Of those 14 protein spots, the expression of 12 spots increased markedly, while that of 2 spots decreased significantly. Conclusion. The proteomics expression in colonic specimens of STC patients is statistically significantly different from that of normal control, which may be associated with the pathogenesis of STC.
Collapse
Affiliation(s)
- Songlin Wan
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Cuiping Tian
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xianghai Ren
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Zhao Ding
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Qun Qian
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Congqing Jiang
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Department of Colorectal & Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal & Colorectal Diseases of Hubei Province, Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| |
Collapse
|