1
|
Chan LKM, Rao T, Masangcay P, Kuo SCL, Wan TT. A Systematic Review and Meta-Analysis of The Efficacy of Endoscopic Ultrasound Guided Celiac Plexus Blocks for Chronic Pancreatitis Pain. J Pain Palliat Care Pharmacother 2025; 39:254-265. [PMID: 40168184 DOI: 10.1080/15360288.2025.2479481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Chronic pancreatitis is a globally prevalent progressive disease, with pain affecting up to 90% of patients, significantly impairing quality of life and leading to high rates of disability, hospitalizations, and opioid dependence. Pain management is crucial in treating chronic pancreatitis, with endoscopic ultrasound-guided celiac plexus block (EUS-CPB) recognized as an interventional option. This systematic review and meta-analysis, following PRISMA guidelines, synthesized data from 12 studies (5 randomized control trials and 7 observational) on the efficacy of EUS-CPB in managing chronic pancreatitis pain. The overall analysis revealed a significant pain relief proportion of 0.64 (n=612) with moderate heterogeneity. Subgroup analyses revealed a proportion of 0.72 in RCTs and 0.59 in observational studies. Common complications included diarrhea and exacerbation of abdominal pain, with no reported mortality. Despite variations in efficacy due to study heterogeneity and patient differences, the findings suggest EUS-CPB as a safe and effective option, with effects lasting weeks to months. Recent studies have demonstrated the applicability of EUS-CPB across ethnically diverse and pediatric populations. However, limitations including small sample sizes and study variability highlight the need for personalized treatment approaches. Future larger randomized sham-controlled trials are recommended to better assess the duration of pain relief and impact on opioid use.
Collapse
Affiliation(s)
- Luke Kar Man Chan
- Department of Anaesthesia, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Tanish Rao
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
- Northern Health, Melbourne, Victoria, Australia
| | | | | | - Tai-Tak Wan
- Fairfield Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Syed-Abdul MM, Tian L, Hegele RA, Lewis GF. Futility of plasmapheresis, insulin in normoglycaemic individuals, or heparin in the treatment of hypertriglyceridaemia-induced acute pancreatitis. Lancet Diabetes Endocrinol 2025; 13:528-536. [PMID: 40147461 DOI: 10.1016/s2213-8587(25)00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 03/29/2025]
Abstract
There is a well-established link between the severity of hypertriglyceridaemia and acute pancreatitis and long-term triglyceride-lowering therapies known to prevent episodes of acute pancreatitis. Therefore, it has been assumed, without firm evidence, that rapid lowering of plasma triglycerides would be an effective strategy for reducing the clinical severity of acute pancreatitis and improving health outcomes. Therapies, such as intravenous heparin, intravenous insulin in normoglycaemic individuals (with glucose to prevent hypoglycaemia), and plasmapheresis, continue to be widely used as therapeutic interventions to rapidly reduce serum triglyceride concentration. These therapies are all associated with a risk of adverse reactions, require increased resources, and increase health-care costs. Randomised controlled clinical trials of these therapies have generally shown more rapid reductions in plasma triglycerides than conventional supportive care with the patient made nil by mouth. However, these three therapies alone or in combination, have failed to show effectiveness in improving substantial health benefit outcome measures. While we recognise the theoretical basis for rapidly reducing plasma triglycerides in hypertriglyceridaemia-induced pancreatitis-based on our review of studies using heparin, insulin, plasmapheresis, or a combination of these-these strategies overall do not reduce complications associated with acute pancreatitis or the rapidity of disease resolution. Therefore, we do not advocate the use of triglyceride-lowering therapies at this time, pending more convincing evidence.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Lili Tian
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Jiang J, Wang R, Song P, Peng Q, Jin X, Li B, Ni J, Shen J, Bao J, Wu Z, Ge X, Wang X, Hu G. Lactate Facilitates Pancreatic Repair Following Acute Pancreatitis by Promoting Reparative Macrophage Polarization. Cell Mol Gastroenterol Hepatol 2025:101535. [PMID: 40350150 DOI: 10.1016/j.jcmgh.2025.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND & AIMS During acute pancreatitis (AP), glycolysis is enhanced. The upregulation of glycolysis increases the level of metabolite lactate. Lactate has been shown to facilitate tissue repair across various pathologic conditions. However, its role in the recovery following AP remains unclear. This study aims to explore the role of lactate in the regenerative processes following AP and to elucidate its underlying molecular mechanisms. METHODS The caerulein-induced recovery AP model was established using wild-type and 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 (Pfkfb3) heterozygous mice. Pancreatic repair was evaluated histologically, whereas lactate levels and inflammatory markers were measured serologically. Macrophages were isolated from pancreatic tissue using fluorescence-activated cell sorting for mRNA sequencing to identify phenotypes. In ex vivo, macrophages were indirectly co-cultured with inflammatory acinar, and the effect of lactate on macrophage phenotype were investigated through immunoprecipitation, fluorescence analysis, and Western blotting. RESULTS We first found that exogenous lactate administration promoted pancreatic repair, whereas Pfkfb3 deficiency lowered lactate levels and ultimately delayed pancreatic repair. Mechanistically, lactate altered macrophage phenotype during recovery after AP, by reducing the proportion of pro-inflammatory macrophages and increasing the percentage of reparative macrophages. In the indirectly co-cultured macrophage, lactate increased lactylation levels and enhanced repair gene expression. Treatment with AZD3965, a chemical inhibitor of lactate transportation, blocked the effects on lactylation and gene expression. Besides, lactate repressed the JAK2-STAT1 pathway via GPR132 receptor, thereby suppressing the expression of pro-inflammatory genes. CONCLUSIONS Lactate facilitates pancreatic repair by promoting reparative macrophage polarization, achieved through promoting lactylation and inhibiting JAK2-STAT1 signaling. This phenotypic shift alleviates inflammation and facilitates tissue recovery, highlighting a potential therapeutic approach for AP.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Jin
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Shanghai General Hospital Jiuquan Hospital, Jiuquan, Gansu, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian, China
| | - Xiaolu Ge
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Chen Z, Zheng R, Jiang H, Zhang X, Peng M, Jiang T, Zhang X, Shang H. Therapeutic efficacy of Xuebijing injection in treating severe acute pancreatitis and its mechanisms of action: A comprehensive survey. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156629. [PMID: 40101453 DOI: 10.1016/j.phymed.2025.156629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a life-threatening condition associated with high mortality and limited therapeutic options. Current management strategies focus on infection prevention, immune regulation, and anticoagulation. Xuebijing Injection (XBJ), a widely used traditional Chinese medicine-derived intravenous preparation, has shown promising therapeutic effects in SAP. Herein, we sought to evaluate clinical and preclinical evidence on XBJ to reveal its potential mechanisms of action, and provide insights to guide future research and clinical applications. METHODS We conducted a comprehensive survey of studies on XBJ in the treatment of SAP across PubMed, Embase, Cochrane Library, CBM, CNKI, Wanfang and VIP databases from their inception to March 21st, 2024. RESULTS A total of 239 studies were included, comprising 12 animal experiments, 7 systematic reviews, 220 clinical trials. Mechanistic studies suggest that XBJ downregulates the expression of inflammatory mediators, improves immune function, and alleviates oxidative stress via multiple signaling pathways, including the TLR4/NF-κB, p38-MAPK, HMGB1/TLR, TLR4/NF-κB, FPR1/NLRP3, and JAK/STAT pathways. These effects contribute to reducing organ damage. Compared to standard treatment, XBJ has more effective at reducing mortality and complications, improving overall clinical outcomes, shortening ventilator use time, and hospital stay in SAP patients. CONCLUSIONS Preclinical evidence and clinical trial data indicated that XBJ can simultaneously regulate inflammatory responses, immune function, microcirculatory disorders, oxidative stress, and apoptosis. However, further research is required to elucidate the specific mechanisms of action, clinical characteristics and safety of XBJ.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton L8N 1Y3, Canada.
| | - Huiru Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Xinyi Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China
| | - Mengqi Peng
- Shandong Second Medical University, Weifang 261053, China
| | - Tong Jiang
- Binzhou medical university, YanTai 264000, China
| | - Xiaowei Zhang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Haiyuncang Lane, Dongcheng District, Beijing 100700, China; Dong-Fang Hospital of Beijing University of Chinese Medicine, No. 6 The First District of Fang-Xing-Yuan, Fengtai District, Beijing100078, China.
| |
Collapse
|
6
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Ye Z, Cheng L, Xuan Y, Yu K, Li J, Gu H. Chlorogenic acid alleviates the development of severe acute pancreatitis by inhibiting NLPR3 Inflammasome activation via Nrf2/HO-1 signaling. Int Immunopharmacol 2025; 151:114335. [PMID: 39987635 DOI: 10.1016/j.intimp.2025.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Severe acute pancreatitis (SAP), marked by profound tissue inflammation within the pancreatic tissue, is an abrupt and intense inflammation of the pancreas. Chlorogenic acid (CGA) is one of the effective pharmacological ingredients components in JinHong Tablet (JHT). The role of CGA in protecting pancreas from severe injury in pancreatitis needs to be studied. The intervention with CGA led to a significant decline in serum amylase and lipase levels in rats with SAP, concurrently mitigating the pathological impairment within the pancreatic tissue. CGA effectively diminishes the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in SAP rats by inhibiting the activation of NF-κB and the NLRP3 inflammasome. Additionally, in AR42J cells, the application of CGA was found to reduce the inflammatory response induced by caerulein. Mechanically, CGA alleviates the inflammatory response in SAP models by activating the Nrf2/HO-1 pathway. Together, CGA reduces the inflammatory response of SAP by activating the Nrf2/HO-1 pathway, thus alleviating the development of SAP. Our results provide a basis for the treatment of SAP.
Collapse
Affiliation(s)
- Zhen Ye
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Lin Cheng
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Yujun Xuan
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Kui Yu
- Department of General Surgery, Pudong Branch, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiong Li
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Xuhui District, Shanghai 200032, China.
| | - Honggang Gu
- Department of General Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, No. 725, Wanping South Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
8
|
Han H, Chen BT, Liu Y, Qi L, Xing L, Wang H, Zhao M, Zhang C, Yu P, Wei N, Wang J, Zhou F, Wang GJ, Cheng XW, Huang ZJ, Li L, Jiang HL. Engineered Stem Cell Booster Breaks Pathological Barriers to Treat Chronic Pancreatitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416261. [PMID: 40012418 DOI: 10.1002/adma.202416261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/26/2025] [Indexed: 02/28/2025]
Abstract
Chronic pancreatitis (CP) is a long-standing progressive fibrosis and has long been considered incurable, which remains a heavy health burden worldwide. Mesenchymal stem cells (MSCs) with anti-fibrosis properties are currently used in the treatment of fibroinflammatory diseases. However, its therapeutic effect is limited mainly due to two main types of pathological barriers in CP: 1) Fibrotic collagen hinders cell delivery, and 2) Malignant microenvironment attacks cell inactivation. Here, a MSCs-based exogenous nitric oxide (NO) delivery system (MSCs-Lip@RNO) is constructed. In the MSCs-Lip@RNO, NO not only can be a cell booster to regulate collagen fibers, relieve the vascular compression and enhance the accumulation of MSCs in the whole pancreas, but also can form a protective gas layer on the cell surface, which enhances the therapeutic effect of MSCs. In the CP rat model, the pancreatic injury and fibrosis are reduced with 7 days after a single dose administration of this long-acting MSCs. Collectively, this study offers a promising strategy for enhancing the delivery and therapeutic efficacy of MSCs to break pathological barriers in CP treatment.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
- College of Pharmacy, Yanbian University, Yanji, 133002, P. R. China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Chen Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ping Yu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ning Wei
- Jiangsu Renocell Biotech Co., Ltd, Nanjing, 211100, P. R. China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd, Nanjing, 211100, P. R. China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Guang-Ji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xian-Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, P. R. China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, P. R. China
- School of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
- College of Pharmacy, Yanbian University, Yanji, 133002, P. R. China
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Yang B, Qiao H, Liu Y, Wang X, Peng W. The Structure and Functional Changes of Thyroid in Severe Acute Pancreatitis Rats. Physiol Res 2025; 74:105-114. [PMID: 40126147 PMCID: PMC11995943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 03/25/2025] Open
Abstract
Severe acute pancreatitis (SAP) is associated with metabolic disorders, hypocalcemia, and multiple organ failure. The objective of this study was to investigate changes in thyroid ultrastructure and function in rats with SAP and to provide a theoretical basis for the clinical treatment of thyroid injury in patients with SAP. 64 male SPF Wistar rats were randomly divided into the SAP group and the control group. Pancreatic enzymatic indicators and thyroid hormones were detected, pathology scores were evaluated, and morphological changes were observed under light microscopy and transmission electron microscopy (TEM) in both groups. The serum levels of triiodothyronine (T3), tetraiodothyronine (T4) and Ca2+ were significantly lower in the SAP group than in the control group (P<0.05), whereas the level of calcitonin (CT) was significantly higher than that in the control group (P<0.05). The thyroid structure (pathology and electron microscopy) of the SAP rats was seriously damaged and worsened over time. SAP can cause thyroid injury through a variety of mechanisms, which can also retroact to pancreatitis to aggravate the inflammatory response. This study may have theoretical significance for basic research on SAP. Key words Severe acute pancreatitis, Thyroid, Structure and functional changes, Transmission electron microscopy.
Collapse
Affiliation(s)
- B Yang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China. Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
10
|
Liu F, Xiao Z, Zeng H, Li J, Ai F, Qi J. Early enteral nutrition with fructooligosaccharides improves prognosis in severe acute pancreatitis. Sci Rep 2025; 15:5267. [PMID: 39939635 PMCID: PMC11822058 DOI: 10.1038/s41598-025-89739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Soluble dietary fiber, notably as an adjunct to early enteral nutrition (EEN), is gaining prominence in clinical therapy. This study evaluates the effect of fructooligosaccharides (FOS), a new soluble dietary fiber, on the prognosis of patients with severe acute pancreatitis (SAP). In a retrospective cohort study at the Third Xiangya Hospital of Central South University from July 2017 to July 2023, 110 SAP patients were analyzed. TPF (enteral nutritional suspension of total protein)-normal and TPF-FOS groups both received standard EEN solutions; the latter additionally received FOS. Outcomes were compared between the groups. The study included 37 patients in the TPF-FOS group and 73 patients in the TPF-normal group. Mortality was 13.50% in the TPF-FOS group and 34.20% in the TPF-normal group (P < 0.05). FOS was identified as an independent protective factor (OR: 0.826, P = 0.041). The TPF-FOS group showed lower rates of intra-abdominal infection and decreased the level of inflammation (P < 0.05). FOS potentially acts as an independent protective factor against death in SAP. Additionally, the supplementation of EEN with FOS may contribute to reducing mortality and improving the prognosis of SAP patients.
Collapse
Affiliation(s)
- Fangchun Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, 410005, Hunan, China
| | - Zhiming Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hongyan Zeng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jingbo Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jing Qi
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
11
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
12
|
Kumar S, Aziz T, Kumar R, Kumar P, Kumar A, Saha A, Kumar D, Niraj MK. Diagnostic accuracy of interleukin-6 as a biomarker for early prediction of severe acute pancreatitis: A systematic review and meta-analysis. J Family Med Prim Care 2025; 14:667-674. [PMID: 40115573 PMCID: PMC11922355 DOI: 10.4103/jfmpc.jfmpc_1366_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 03/23/2025] Open
Abstract
Background Acute pancreatitis (AP) is an inflammatory disease of the pancreas with varying severity. The mortality rate varies from 20% to 40% among severe acute pancreatitis (SAP). Interleukin-6 (IL-6) is a pro- and anti-inflammatory cytokine that involves various infections, inflammations, and systemic disorders. Injury to acinar cells leads to necrosis, releasing proinflammatory cytokines, including IL-6, which peaks earlier. The lack of extensive data regarding the association of IL-6 with AP influences us to do this meta-analysis for early detection and treatment of AP to prevent multiorgan failure. Methods We searched the PubMed, Cochrane Library, and Google Scholar databases for relevant articles published from inception to June 2024. We examined the positive and negative likelihood ratios, diagnostic odds ratios, and pooled sensitivity and specificity. We used the QUADAS-2 tool to evaluate the risk of bias. Results This meta-analysis included 13 studies involving 1386 patients with AP, of which 343 had SAP and 1043 had mild and moderately severe AP. The positive and negative likelihood ratios were 3.5 (95% CI 2.6 to 4.5) and 0.25 (95% CI 0.16 to 0.40). The diagnostic odds ratio of IL-6 to diagnose SAP is 14 (95% CI: 7 to 27), and the summary receiver operating characteristic curve is 0.85 (95% CI: 0.82-0.88). Conclusion Based on the results of this meta-analysis, serum IL-6 is a promising biomarker for diagnosing SAP in the early stage. However, a larger-scale study involving a more extensive population is necessary due to the considerable variation between the studies.
Collapse
Affiliation(s)
- Shishir Kumar
- Department of Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Tarique Aziz
- Department of Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Rajendra Kumar
- Department of Physiology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Pramod Kumar
- Department of Biochemistry, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | - Amit Kumar
- Department of Laboratory Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Avijit Saha
- Department of Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Divakar Kumar
- Department of Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Mukesh Kumar Niraj
- Department of Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| |
Collapse
|
13
|
Zhao Z, Han L, Tuerxunbieke B, Ming L, Ji J, Chen Y, Sun R, Tian W, Yang F, Huang Q. Effects of gut microbiota and metabolites on pancreatitis: a 2-sample Mendelian randomization study. J Gastrointest Surg 2025; 29:101885. [PMID: 39549891 DOI: 10.1016/j.gassur.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) and chronic pancreatitis (CP) have high incidences and poor prognoses. The early screening of at-risk populations still awaits further study. The limitation was mainly based on observational studies, with limited sample size and the presence of confounding factors. This study used a 2-sample Mendelian randomization (MR) analysis based on publicly available data from genome-wide association studies to reveal the causal effect of gut microbiota and metabolites on pancreatitis. METHODS This study collected summary statistics on gut microbiota, metabolites, AP, and CP. A 2-sample MR analysis was performed using MR-Egger, inverse variance-weighted, MR Pleiotropy RESidual Sum and Outlier, maximum likelihood, and weighted median. RESULTS The 2-sample MR showed that only Eubacterium coprostanoligenes was an independent protective factor for AP among all gut microbiota, and the other microbiota were not significant for pancreatitis. Unsaturated fatty acids in metabolites are protective factors for both AP (odds ratio [OR], 0.730; 95% CI, 0.593-0.899; P = .003) and CP (OR, 0.660; 95% CI, 0.457-0.916; P = .013). Furthermore, carnitine was a protective factor CP, and glucose was an independent risk factor for CP. CONCLUSION This study provides potential evidence of the causal role of gut microbiota and metabolites on pancreatitis, which may be conducive for designing microbiome and metabolite interventions on AP or CP in the future.
Collapse
Affiliation(s)
- Zhirong Zhao
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Han
- Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Baobaonai Tuerxunbieke
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China; Yancheng Traditional Chinese Medicine Hospital, Yancheng, Jiangsu Province, China
| | - Jiamin Ji
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuan Chen
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ran Sun
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weiliang Tian
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fan Yang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Huang
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Zhou H, Lu J, Wang T, Gu X, Li X, Zhao J. Acute pancreatitis following asparaginase treatment in pediatric acute lymphoblastic leukemia with a heterozygous SPINK1 c.194 + 2T>C intronic variant: a case report. Front Pediatr 2024; 12:1493362. [PMID: 39564382 PMCID: PMC11573588 DOI: 10.3389/fped.2024.1493362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Background Asparaginase is a critical component of chemotherapy for pediatric acute lymphoblastic leukemia (ALL), but its use is often complicated by asparaginase-associated pancreatitis (AAP). Genetic predispositions, such as variants in the SPINK1 gene, have been linked to an increased risk of pancreatitis. However, the role of genetic factors in relation to asparaginase treatment remains incompletely understood, partly because mutations in pancreatitis-causing genes are rarely found in pediatric ALL. Case description A four-year and three-month-old Chinese girl was admitted to our hospital due to fever for half a day, with no history of significant prior medical history. Initial blood tests revealed hematological abnormalities, including leukopenia, anemia, and thrombocytosis. Bone marrow aspiration identified 81.5% blast cells with B-lymphocyte morphology and immunophenotype, leading to a diagnosis of B-cell acute lymphoblastic leukemia (B-ALL). The patient began treatment under the CCCG-ALL-2015 protocol, which included PEG-asparaginase (PEG-asp). On day 10 of induction, she developed AAP, which was primarily characterized by severe epigastric pain and elevated serum amylase. Despite effective symptom management with analgesics and anti-inflammatory therapy, AAP recurred following administration of L-asparaginase (L-asp). Genetic analysis revealed a heterozygous SPINK1 c.194 + 2T>C variant (rs148954387), a well-known pathogenic variant associated with increased susceptibility to pancreatitis. Sanger sequencing confirmed that the SPINK1 variant was inherited from her asymptomatic mother. The patient's AAP was managed conservatively, and an asparaginase-free regimen ultimately achieved complete remission without recurrence of pancreatitis. Conclusions The identification of the SPINK1 c.194 + 2T>C variant, which is recognized as pathogenic, provides valuable information for understanding the heightened risk of AAP in our pediatric ALL patient. Our case underscores the potential role of genetic predisposition in the development of AAP and highlights the importance of considering genetic screening prior to asparaginase therapy in pediatric ALL patients to identify those at increased risk.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Hematology and Oncology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Wang
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang, China
- Nanjing D.A. Medical Laboratory, Nanjing, Jiangsu, China
| | - Xiaoyan Gu
- Department of Hematology and Oncology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Xueya Li
- Department of Hematology and Oncology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Jing Zhao
- Department of Pediatrics, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China
| |
Collapse
|
15
|
Vincent A, C A S. Predicting Severity of Acute Pancreatitis-Evaluation of Neutrophil-to-Lymphocyte Count Ratio as Emerging Biomarker: A Retrospective Analytical Study. Cureus 2024; 16:e74881. [PMID: 39741615 PMCID: PMC11685782 DOI: 10.7759/cureus.74881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Acute pancreatitis (AP) is a pancreatic inflammatory disease that can range in severity from mild, self-limiting forms to severe cases with high mortality rates. AP has various etiologies, including lifestyle factors like alcohol consumption and obesity, and its rapid progression makes early and accurate prediction of severity critical for effective management and improved patient outcomes. The traditional AP severity assessment tools, such as Ranson's criteria and APACHE II, require extensive data and time, making them less feasible in emergency settings. In response, simpler biomarkers that can quickly predict AP severity upon patient presentation are needed to enable early risk stratification and targeted interventions. The study aims to address this research gap by evaluating the neutrophil-to-lymphocyte ratio (NLR) as a potential biomarker for predicting AP severity, as well as assessing its correlation with the CT Severity Index, a widely used measure of AP severity. Methods The study used a retrospective analytical design, conducted at the R L Jalappa Hospital & Research Centre in Karnataka, India. The researchers included 118 patients diagnosed with acute pancreatitis (AP) according to the Revised Atlanta Classification. The dataset collected from the participants' medical records included variables such as age, gender, history of alcohol and tobacco use, duration of abdominal pain, ICU stay, CT Severity Index scores, and the neutrophil-to-lymphocyte ratio (NLR). Statistical analysis was performed using SPSS software version 21.0 (IBM Corp., Armonk, NY, USA). A p-value of less than 0.05 was considered statistically significant. This comprehensive methodological approach aimed to provide precise insights into the role of NLR in predicting AP severity while accounting for variability in patient data. Results The study included 118 patients, with 85 classified as having mild to moderate pancreatitis and 33 with severe pancreatitis. There were no significant differences between the two groups in terms of demographic factors such as gender, BMI, alcohol use, smoking, and comorbidities. The study also examined the relationship between the neutrophil-to-lymphocyte ratio (NLR) and the CT Severity Index, a measure of pancreatitis severity. The results showed a strong positive correlation between NLR and the CT Severity Index (r = 0.860, p < 0.001). This indicates that higher NLR values are associated with more severe pancreatitis, as measured by the CT Severity Index. These relationships suggest that NLR reflects the inflammatory response in acute pancreatitis, with higher levels of inflammatory markers associated with elevated NLR values. Conclusion This study aimed to evaluate the neutrophil-to-lymphocyte ratio (NLR) as a biomarker for predicting the severity of acute pancreatitis (AP). We conducted a retrospective analysis of 118 AP patients, categorizing them into mild-to-moderate and severe groups. NLR was significantly higher in the severe AP group compared to the mild-to-moderate group, suggesting its potential as an early predictor of AP severity. The study also examined the correlation between NLR and the CT Severity Index, a widely used measure of AP severity, further supporting the utility of NLR as a rapid and accessible tool for risk stratification in AP management.
Collapse
Affiliation(s)
- Akhil Vincent
- General Surgery, Sri Devaraj Urs Medical College, Kolar, IND
| | - Shashirekha C A
- General Surgery, Sri Devaraj Urs Medical College, Kolar, IND
| |
Collapse
|
16
|
Alomar T, Somaratna A, Boddupalli D. Persistent Risk of Pulmonary Embolism in Acute Pancreatitis Despite Prophylactic Anticoagulation. Cureus 2024; 16:e74249. [PMID: 39717286 PMCID: PMC11663624 DOI: 10.7759/cureus.74249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Acute pancreatitis, a sudden inflammatory condition, can lead to a hypercoagulable state resulting in complications such as deep vein thrombosis (DVT) or pulmonary embolism (PE). This case report discusses a unique presentation of a massive PE in a patient with acute pancreatitis despite being on appropriate prophylactic anticoagulation. A 27-year-old man presented with acute abdominal pain, nausea, and vomiting. He was diagnosed with diabetic ketoacidosis (DKA) and acute pancreatitis and admitted to the ICU. He was treated with prophylactic enoxaparin. On day 16, he experienced acute respiratory decompensation, and CT angiography revealed bilateral PEs, including a right main pulmonary artery saddle embolus. The patient underwent emergent thrombectomy with the immediate resolution of symptoms. He was transitioned to therapeutic heparin and later discharged on apixaban. A two-month follow-up showed no recurrence of PE. This case underscores the critical need to consider PE in patients with inflammatory conditions, even when on prophylactic anticoagulation. The hypercoagulable state induced by pancreatitis can overcome standard anticoagulation measures, leading to severe complications. Current guidelines may not adequately address the anticoagulation needs in such inflammatory states. Therefore, weight-based dosing of anticoagulants should be considered for patients with significant inflammation. This report highlights the necessity for vigilance in monitoring for PE in similar clinical scenarios to improve patient outcomes and inform future guidelines.
Collapse
Affiliation(s)
- Talal Alomar
- Internal Medicine, Creighton University School of Medicine, Phoenix, USA
| | - Anupama Somaratna
- Internal Medicine, Creighton University School of Medicine, Phoenix, USA
| | - Deepti Boddupalli
- Internal Medicine, Creighton University School of Medicine, Phoenix, USA
| |
Collapse
|
17
|
Hasan R, Bhuia MS, Chowdhury R, Khan MA, Mazumder M, Yana NT, Alencar MVOBD, Ansari SA, Ansari IA, Islam MT. Piperine exerts anti-inflammatory effects and antagonises the properties of celecoxib and ketoprofen: in vivo and molecular docking studies. Nat Prod Res 2024:1-16. [PMID: 39390887 DOI: 10.1080/14786419.2024.2413039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
This study evaluates the anti-inflammatory effects of a natural product, piperine (PPN), using in vivo and in silico methodologies. In the in vivo segment, inflammation was induced in the right hind paw of young chicks via a formalin (50 μL) injection. PPN was orally administered at doses of 25 and 50 mg/kg with or without celecoxib (CXB) and/or ketoprofen (KPN) (42 mg/kg). The vehicle acted as the negative control group (NC). The in silico analysis predicted the drug-likeness, pharmacokinetics, and toxicity profile of PPN, along with evaluating its binding affinity and ligand-receptor interactions. Results indicate that PPN significantly (p < 0.05) reduced licking frequency and paw edoema in a dose-dependent manner. However, in combination therapy, PPN diminished the effects of both CXB and KPN. PPN showed high affinity (-8.6 kcal/mol) towards the COX-2 enzyme. Therefore, PPN exerts anti-inflammatory effects in chicks through COX-2 inhibition pathways and antagonises CXB and KPN activities.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Modhurima Mazumder
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
18
|
Wiese J, Dakkak B, Ugonabo O, El-Dallal M, Frandah W. A Case Report of Acute Pancreatitis in Food-Induced Anaphylaxis. Cureus 2024; 16:e71017. [PMID: 39525265 PMCID: PMC11548797 DOI: 10.7759/cureus.71017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Food allergy-induced pancreatitis is a rare condition that presents unique diagnostic challenges. While acute pancreatitis (AP) is typically linked to factors such as gallstones, alcohol consumption, metabolic issues, medications, and autoimmune conditions, food allergies are seldom considered a potential cause. Diagnosing food allergy-induced pancreatitis often requires a high index of suspicion and the exclusion of more common causes of pancreatitis. Here we report a 54-year-old female patient who presented at the emergency department (ED) experiencing an anaphylactic reaction to food. After receiving treatment for anaphylaxis, she developed acute abdominal pain 12 hours later. A CT scan of the abdomen indicated AP. The patient was managed with supportive care, including analgesics and intravenous fluids, and did not experience any further complications. Other potential causes and risk factors for AP were ruled out or deemed unlikely. This case highlights the significance of diagnosing AP, particularly food allergy-induced pancreatitis in patients with anaphylaxis. Early detection and early initiation of therapy can subsequently reduce morbidity and mortality.
Collapse
Affiliation(s)
- Jennifer Wiese
- Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Bassel Dakkak
- Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Onyinye Ugonabo
- Internal Medicine, School of Medicine, Marshall University Hospital, Huntington, USA
| | - Mohammed El-Dallal
- Gastroenterology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Wesam Frandah
- Internal Medicine/Gastroenterology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| |
Collapse
|
19
|
Zheng M, Li H, Sun L, Cui S, Zhang W, Gao Y, Gao R. Calcipotriol abrogates TGF-β1/pSmad3-mediated collagen 1 synthesis in pancreatic stellate cells by downregulating RUNX1. Toxicol Appl Pharmacol 2024; 491:117078. [PMID: 39214171 DOI: 10.1016/j.taap.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
RUNX1 with CBFβ functions as an activator or repressor of critical mediators regulating cellular function. The aims of this study were to clarify the role of RUNX1 on regulating TGF-β1-induced COL1 synthesis and the mechanism of calcipotriol (Cal) on antagonizing COL1 synthesis in PSCs. RT-qPCR and Western Blot for determining the mRNAs and proteins of RUNX1 and COL1A1/1A2 in rat PSC line (RP-2 cell). Luciferase activities driven by RUNX1 or COL1A1 or COL1A2 promoter, co-immunoprecipitation and immunoblotting for pSmad3/RUNX1 or CBFβ/RUNX1, and knockdown or upregulation of Smad3 and RUNX1 were used. RUNX1 production was regulated by TGF-β1/pSmad3 signaling pathway in RP-2 cells. RUNX1 formed a coactivator with CBFβ in TGF-β1-treated RP-2 cells to regulate the transcriptions of COL1A1/1A2 mRNAs under a fashion of pSmad3/RUNX1/CBFβ complex. However, Cal effectively abrogated the levels of COL1A1/1A2 transcripts in TGF-β1-treated RP-2 cells by downregulating RUNX1 production and hindering the formation of pSmad3/RUNX1/CBFβ complexes. This study suggests that RUNX1 may be a promising antifibrotic target for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Shiyuan Cui
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Runping Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Chen S, Qin R, Zhang Z, Fan X, Zhou L, Wang H. HSP70 protects against acute pancreatitis-elicited intestinal barrier damage in rats. Clin Res Hepatol Gastroenterol 2024; 48:102388. [PMID: 38810880 DOI: 10.1016/j.clinre.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Acute pancreatitis (AP) is a frequent but severe abdominal emergency in general surgery with intestinal barrier dysfunction. Heat shock protein 70 (HSP70) is a ubiquitous molecular chaperone that has been proposed to exert favorable effects on AP. Nonetheless, the detailed impacts of HSP70 on the intestinal barrier function in AP are unknown, which will be investigated here. After the injection of sodium taurocholate into the biliopancreatic duct, the rat models of AP were established. After modeling, HSP70 expression was up-regulated through lentivirus infection. Western blot was used to detect HSP70 expression. H&E staining was used to examine the histological changes in the pancreatic and intestinal tissues. The levels of pancreatic biochemical markers and oxidative stress markers were detected using corresponding assay kits. ELISA was used to detect the levels of inflammatory cytokines and gastrointestinal function indicators. Immunofluorescence staining and Western blot were used to detect the expression of tight junction proteins. DCFH-DA probe and MitoSOX Red probe were used to detect total reactive oxygen species (ROS) and mitochondrial ROS (mtROS), respectively. TUNEL assay and Western blot were used to detect apoptosis. During the model construction, severe pancreatic and abnormal intestinal tissue abnormalities were observed, inflammatory response was activated and the intestinal barrier was disrupted. HSP70 expression was down-regulated in the intestinal tissues AP rat models. HSP70 ameliorated the morphological damage of pancreatic and intestinal tissues of AP rats. In addition, HSP70 significantly reduced intestinal barrier damage, inflammatory response, oxidative stress and apoptosis in the intestinal tissues of AP rat models. Collectively, HSP70 might attenuate AP through exerting anti-inflammatory, anti-oxidant, anti-apoptotic effects and inhibiting intestinal barrier disruption.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Zhibo Zhang
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Xirui Fan
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Lifang Zhou
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan'An Hospital of Kunming Medical University, Kunming 650051, Yunnan, People's Republic of China.
| |
Collapse
|
21
|
Topsakal S, Ozmen O, Karakuyu NF, Bedir M, Sancer O. Cannabidiol Mitigates Lipopolysaccharide-Induced Pancreatic Pathology: A Promising Therapeutic Strategy. Cannabis Cannabinoid Res 2024; 9:809-818. [PMID: 37903028 DOI: 10.1089/can.2023.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Background: Lipopolysaccharides (LPSs) are a component of certain types of bacteria and can induce an inflammatory response in the body, including in the pancreas. Cannabidiol (CBD), a nonpsychoactive compound found in cannabis, has been shown to have anti-inflammatory effects and may offer potential therapeutic benefits for conditions involving inflammation and damage. The aim of this study was to investigate any potential preventative effects of CBD on experimental LPS-induced pancreatic pathology in rats. Materials and Methods: Thirty-two rats were randomly divided into four groups as control, LPS (5 mg/kg, intraperitoneally [i.p.]), LPS+CBD, and CBD (5 mg/kg, i.p.) groups. Six hours after administering LPS, the rats were euthanized, and blood and pancreatic tissue samples were taken for biochemical, polymerase chain reaction (PCR), histopathological, and immunohistochemical examinations. Results: The results indicated that LPS decreased serum glucose levels and increased lipase levels. It also caused severe hyperemia, increased vacuolization in endocrine cells, edema, and slight inflammatory cell infiltrations at the histopathological examination. Insulin and amylin expressions decreased during immunohistochemical analyses. At the PCR analysis, Silent Information Regulator 2 homolog 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha expressions decreased and tumor protein p53 expressions increased in the LPS group. CBD improved the biochemical, PCR, histopathological, and immunohistochemical results. Conclusions: The findings of the current investigation demonstrated that LPS damages both the endocrine and exocrine pancreas. However, CBD demonstrated marked ameliorative effects in the pancreas in LPS induced rat model pancreatitis.
Collapse
Affiliation(s)
- Senay Topsakal
- Department of Endocrinology and Metabolism, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Bedir
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Okan Sancer
- Genetic Research Unit, Innovative Technologies Application and Research Center, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
22
|
Wang Y, Li HT, Liu G, Jiang CS, Ni YH, Zeng JH, Lin X, Wang QY, Li DZ, Wang W, Zeng XP. COMP promotes pancreatic fibrosis by activating pancreatic stellate cells through CD36-ERK/AKT signaling pathways. Cell Signal 2024; 118:111135. [PMID: 38479555 DOI: 10.1016/j.cellsig.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-β1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.
Collapse
Affiliation(s)
- Yi Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hai-Tao Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Presbyatrics, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| |
Collapse
|
23
|
Chang Z, Zhang H. A risk model for parenteral nutrition-associated liver disease in patients with severe acute pancreatitis. Arab J Gastroenterol 2024; 25:160-164. [PMID: 38378360 DOI: 10.1016/j.ajg.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND STUDY AIMS The aim of this study is to explore the risk factors for parenteral nutrition-associated liver disease (PNALD) in patients with severe acute pancreatitis by establishing a verification risk model. PATIENTS AND METHODS A total of 176 patients with severe acute pancreatitis from January 2019 to August 2021, were assigned into the observation group (n = 88) and control group (n = 88) based on the diagnostic results of PNALD, randomly. Their clinical data were recorded. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and alkaline phosphatase (ALP), etc., were detected. The logistic model and desicion tree model were used to analyze the risk factors. RESULTS Patients in the observation group had higher levels of ALT, AST, TBIL, and lower level of ALP than those of control group (P < 0.05). Multivariate logistic regression analysis revealed that alcohol intake history, ALT ≥69.65 U/L, AST ≥71.27 U/L, TBIL ≥26.27 μmol/L and ALP ≤45.11 U/L were risk factors for PNALD. The levels of ALT and AST in observation group were two times as high as those in the control group, which conformed to the Danan's criteria and accorded with the results of univariate analysis. CONCLUSION The regression model showed high consistency with the decision tree model in the prediction of risk factors. Alcohol intake history, ALT ≥69.65 U/L, AST ≥71.27 U/L, TBIL ≥26.27 μmol/L and ALP ≤45.11 U/L are risk factors for PNALD.
Collapse
Affiliation(s)
- Zheng Chang
- Second Hospital of Shandong University, Jinan 250033, China
| | - Hao Zhang
- Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
24
|
Hagn-Meincke R, Yadav D, Andersen DK, Vege SS, Fogel EL, Serrano J, Bellin MD, Topazian MD, Conwell DL, Li L, Van Den Eeden SK, Drewes AM, Pandol SJ, Forsmark CE, Fisher WE, Hart PA, Olesen SS, Park WG. Circulating immune signatures in chronic pancreatitis with and without preceding acute pancreatitis: A pilot study. Pancreatology 2024; 24:384-393. [PMID: 38461145 PMCID: PMC11023786 DOI: 10.1016/j.pan.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE To investigate profiles of circulating immune signatures in healthy controls and chronic pancreatitis patients (CP) with and without a preceding history of acute pancreatitis (AP). METHODS We performed a phase 1, cross-sectional analysis of prospectively collected serum samples from the PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translation StuDies (PROCEED) study. All samples were collected during a clinically quiescent phase. CP subjects were categorized into two subgroups based on preceding episode(s) of AP. Healthy controls were included for comparison. Blinded samples were analyzed using an 80-plex Luminex assay of cytokines, chemokines, and adhesion molecules. Group and pairwise comparisons of analytes were performed between the subgroups. RESULTS In total, 133 patients with CP (111 with AP and 22 without AP) and 50 healthy controls were included. Among the 80 analytes studied, CP patients with a history of AP had significantly higher serum levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-8, IL-1 receptor antagonist, IL-15) and chemokines (Cutaneous T-Cell Attracting Chemokine (CTACK), Monokine induced Gamma Interferon (MIG), Macrophage-derived Chemokine (MDC), Monocyte Chemoattractant Protein-1 (MCP-1)) compared to CP without preceding AP and controls. In contrast, CP patients without AP had immune profiles characterized by low systemic inflammation and downregulation of anti-inflammatory mediators, including IL-10. CONCLUSION CP patients with a preceding history of AP have signs of systemic inflammatory activity even during a clinically quiescent phase. In contrast, CP patients without a history of AP have low systemic inflammatory activity. These findings suggest the presence of two immunologically diverse subtypes of CP.
Collapse
Affiliation(s)
- Rasmus Hagn-Meincke
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Santhi Swaroop Vege
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Evan L Fogel
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melena D Bellin
- Division of Pediatric Endocrinology, University of Minnesota, Minnesota, MN, USA
| | - Mark D Topazian
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Darwin L Conwell
- Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liang Li
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Asbjørn M Drewes
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chris E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL, USA
| | - William E Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Søren S Olesen
- Centre for Pancreatic Diseases and Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Feng MC, Luo F, Huang LJ, Li K, Chen ZM, Li H, Yao C, Qin BJ, Chen GZ. Rheum palmatum L. and Salvia miltiorrhiza Bge. Alleviates Acute Pancreatitis by Regulating Th17 Cell Differentiation: An Integrated Network Pharmacology Analysis, Molecular Dynamics Simulation and Experimental Validation. Chin J Integr Med 2024; 30:408-420. [PMID: 37861962 DOI: 10.1007/s11655-023-3559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To identify the core targets of Rheum palmatum L. and Salvia miltiorrhiza Bge., (Dahuang-Danshen, DH-DS) and the mechanism underlying its therapeutic efficacy in acute pancreatitis (AP) using a network pharmacology approach and validate the findings in animal experiments. METHODS Network pharmacology analysis was used to elucidate the mechanisms underlying the therapeutic effects of DH-DS in AP. The reliability of the results was verified by molecular docking simulation and molecular dynamics simulation. Finally, the results of network pharmacology enrichment analysis were verified by immunohistochemistry, Western blot analysis and real-time quantitative PCR, respectively. RESULTS Sixty-seven common targets of DH-DS in AP were identified and mitogen-activated protein kinase 3 (MAPK3), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), protein c-Fos (FOS) were identified as core targets in the protein interaction (PPI) network analysis. Gene ontology analysis showed that cellular response to organic substance was the main functions of DH-DS in AP, and Kyoto Encyclopedia of Genes and Genomes analysis showed that the main pathway included Th17 cell differentiation. Molecular docking simulation confirmed that DH-DS binds with strong affinity to MAPK3, STAT3 and FOS. Molecular dynamics simulation revealed that FOS-isotanshinone II and STAT3-dan-shexinkum d had good binding capacity. Animal experiments indicated that compared with the AP model group, DH-DS treatment effectively alleviated AP by inhibiting the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α, and blocking the activation of Th17 cell differentiation (P<0.01). CONCLUSION DH-DS could inhibit the expression of inflammatory factors and protect pancreatic tissues, which would be functioned by regulating Th17 cell differentiation-related mRNA and protein expressions.
Collapse
Affiliation(s)
- Min-Chao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Liang-Jiang Huang
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Kai Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Zu-Min Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Hui Li
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Chun Yao
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
| | - Bai-Jun Qin
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning, 530000, China
- Guangxi Key Laboratory of Molecular Biology of Traditional Chinese Medicine and Preventive Medicine, Nanning, 530000, China
| | - Guo-Zhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530023, China.
| |
Collapse
|
26
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
27
|
Iyer S, Enman M, Sahay P, Dudeja V. Novel therapeutics to treat chronic pancreatitis: targeting pancreatic stellate cells and macrophages. Expert Rev Gastroenterol Hepatol 2024; 18:171-183. [PMID: 38761167 DOI: 10.1080/17474124.2024.2355969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a persistent, recurrent, and progressive disorder that is characterized by chronic inflammation and irreversible fibrosis of the pancreas. It is associated with severe morbidity, resulting in intense abdominal pain, diabetes, exocrine and endocrine dysfunction, and an increased risk of pancreatic cancer. The etiological factors are diverse and the major risk factors include smoking, chronic alcoholism, as well as other environmental and genetic factors. The treatment and management of CP is challenging, and no definitive curative therapy is currently available. AREAS COVERED This review paper aims to provide an overview of the different cell types in the pancreas that is known to mediate disease progression and outline potential novel therapeutic approaches and drug targets that may be effective in treating and managing CP. The information presented in this review was obtained by conducting a NCBI PubMed database search, using relevant keywords. EXPERT OPINION In recent years, there has been an increased interest in the development of novel therapeutics for CP. A collaborative multi-disciplinary approach coupled with a consistent funding for research can expedite progress of translating the findings from bench to bedside.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Macie Enman
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
28
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
29
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
30
|
Sun L, Zheng M, Gao Y, Brigstock DR, Gao R. Retinoic acid signaling pathway in pancreatic stellate cells: Insight into the anti-fibrotic effect and mechanism. Eur J Pharmacol 2024; 967:176374. [PMID: 38309676 DOI: 10.1016/j.ejphar.2024.176374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TβRⅡ, PDGFRβ, β-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-β1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.
Collapse
Affiliation(s)
- Li Sun
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meifang Zheng
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanhang Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - David R Brigstock
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Runping Gao
- Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Mathai MJ, Reddy M VS, Shetty V. Analysis of the Accuracy of the Modified CT Severity Index in Predicting Clinical Outcomes in Acute Pancreatitis: A Cross-Sectional Study. Cureus 2024; 16:e56123. [PMID: 38618334 PMCID: PMC11015064 DOI: 10.7759/cureus.56123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE To evaluate the accuracy of the modified CT severity index (MCTSI) in predicting the severity of acute pancreatitis and to prognosticate the clinical outcomes. METHODS AND MATERIALS The study was conducted at a tertiary health center between January 2021 and June 2023. A total of 150 consecutive patients with clinical/laboratory features suggestive of acute pancreatitis were included in the study and underwent a contrast-enhanced CT scan within 24 hours of admission. Based on their MCTSI score, these patients had conservative or surgical/endoscopic treatment. Clinical outcomes were assessed in terms of recovery, development of complications, or death. The receiver operating characteristic curve and descriptive statistics were computed to determine the sensitivity and specificity. The data were analyzed using SPSS version 16 software (SPSS Inc., Chicago, IL), and an attempt was made to evaluate the accuracy of MCTSI in predicting these clinical outcomes. RESULTS The mean age of patients in our study was 49.21 ± 11.02 years. Out of the 150 included patients, 103 were men and 47 were women. Compared to 11.68% of severe acute pancreatitis patients who died, 88.32% recovered. The area under the curve was determined as 0.865, based on which the MCTSI score predicted acute pancreatitis clinical outcome with 64% sensitivity and 92% specificity. The MCTSI demonstrated value in predicting clinical outcomes with a p-value of 0.043 ± 0.012 (p < 0.05) in the recovered patients while p = 0.032 ± 0.012 for patients who succumbed. The p-value for MCTSI in predicting complications was p = 0.0012 ± 0.0008 (p < 0.05). CONCLUSION Our study was able to demonstrate the high level of accuracy of the MCTSI score in predicting complications and clinical outcomes, especially in patients with severe acute pancreatitis. The MCTSI serves as a valuable asset in the preliminary evaluation of acute pancreatitis, thereby facilitating appropriate management.
Collapse
Affiliation(s)
- Mathew John Mathai
- Department of General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Vijay Sai Reddy M
- Department of General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| | - Varun Shetty
- Department of General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
32
|
Poulsen VV, Hadi A, Werge MP, Karstensen JG, Novovic S. Circulating Biomarkers Involved in the Development of and Progression to Chronic Pancreatitis-A Literature Review. Biomolecules 2024; 14:239. [PMID: 38397476 PMCID: PMC10887223 DOI: 10.3390/biom14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic pancreatitis (CP) is the end-stage of continuous inflammation and fibrosis in the pancreas evolving from acute- to recurrent acute-, early, and, finally, end-stage CP. Currently, prevention is the only way to reduce disease burden. In this setting, early detection is of great importance. Due to the anatomy and risks associated with direct sampling from pancreatic tissue, most of our information on the human pancreas arises from circulating biomarkers thought to be involved in pancreatic pathophysiology or injury. The present review provides the status of circulating biomarkers involved in the development of and progression to CP.
Collapse
Affiliation(s)
- Valborg Vang Poulsen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Amer Hadi
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Mikkel Parsberg Werge
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - John Gásdal Karstensen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| | - Srdan Novovic
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| |
Collapse
|
33
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
34
|
Mohanan A, Biju P, V B, V G. Unraveling Proto-Oncogene (ErbB2) Expression in Patients With Carcinoma Head of Pancreas and Chronic Pancreatitis Patients: A Case-Control Study. Cureus 2024; 16:e54859. [PMID: 38533139 PMCID: PMC10964396 DOI: 10.7759/cureus.54859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
Background The pre-malignant tendency of the normal, non-affected portion of the pancreas is not as well explored as the multicentricity documented in pancreatic cancer cases. In order to ascertain the expression of inflammatory markers and Erythroblastic Oncogene B (ErbB2) in the non-affected pancreas in patients with pancreatic cancer, a case-control study was carried out. Materials and methods In patients who underwent pancreatoduodenectomy for pancreatic cancer (PC), pro-inflammatory genes and a tumor marker, erythroblastic oncogene 2 (ErbB2) in the epidermal growth factor receptor family were analyzed in the pancreatic tissue at the cut surface of the normal pancreas using qRT-PCR. Twenty patients diagnosed with Chronic pancreatitis (CP) after Frey's surgical procedure were selected, and their pancreatic tissues were analyzed as controls. The HPLC-purified primers were designed using National Center for Biotechnology Information (NCBI) software. The primer's specificity was verified for gene expression analysis using the Basic Local Alignment Search Tool (BLAST). The genes under study were normalized using β-actin as the housekeeping gene, and the 2-ddct method was used to compute the fold change compared to the control sample. Results Patients with margin-positive were not included. Pro-inflammatory genes (TNF-α, NF-kβ, and COX-2) had significantly lower foldchange in PC patients compared to the CP group. The CP control group had higher levels of IL-6 gene expression than the PC group. Patients with pancreatic cancer had a considerably higher expression of the ErbB2 gene than patients with CP. Conclusion The upregulated ErbB2 gene in the unaffected pancreatic tissue of pancreatic cancer patients, when compared to controls, indicates that the remaining pancreas may have the capacity to cause cancer. Proto-oncogene may play a role in the pathophysiologic process in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Abhina Mohanan
- Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Pottakkat Biju
- Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Balasubramaniyan V
- Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Gladwin V
- Anatomy, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| |
Collapse
|
35
|
Idiz UO, Aru B, Kaya C, Peker KD, Tatar C, Guler M, Tunay A, Demirel GY, Gurol AO. Could we use PD-1 and PD-L1 expression on lymphocytes and monocytes as predictive markers for prognosis of acute biliary pancreatitis? Immunol Lett 2024; 265:37-43. [PMID: 38199503 DOI: 10.1016/j.imlet.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE This study aimed to assess the significance of immunophenotyping and serum cytokines in predicting the clinical progression of acute biliary pancreatitis (ABP). MATERIALS AND METHODS Cytokine levels, T-helper, cytotoxic T, natural killer (NK) cells, monocytes, HLA-DR, and PD-1, as well as PDL-1 immune checkpoints, were measured in ABP patients at the time of diagnosis and compared with results from healthy volunteers. The study also compared leukocyte counts, hematocrit, immunophenotyping results, cytokine statuses, and PD-1, PDL-1 expression between healthy volunteers and ABP subgroups categorized by pancreatitis severity. RESULTS The study included 65 ABP patients and 20 healthy volunteers. Significant differences were observed between groups in hematocrit, leukocyte counts, total monocytes, lymphocytes, CD3+ total T cells, CD4+ Th cells, PD-1 expression on CD4+ and CD8+T lymphocytes, HLA-DR expression on CD14+ monocytes, NK cells, PD-L1 expression on CD14+ monocytes, classical and intermediate monocytes, as well as levels of IL-6, IL-8, IL-10, IL-18, and IL-33 cytokines. Moderate correlations were found with lymphocyte counts, PD-1+CD4+ cells, PD-L1+CD14+ cells, and strong correlations with HLA-DR+CD14+ cells. Hematocrit, CD3+ total T cells, NK cells, CD4+PD-1 + T cells, and CD8+PD-1 + T cells showed independent associations with the severity of ABP. Lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, CD4+PD-1 + T cells, classical, and intermediate monocytes exhibited the highest Area Under the Curve rates in determining organ failure. CONCLUSIONS Hematocrit, lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, and intermediate monocytes emerged as parameters most closely associated with the severity and these parameters could be useful in predicting the severity of ABP.
Collapse
Affiliation(s)
- Ufuk Oguz Idiz
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey; Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey.
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Cemal Kaya
- Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kivanc Derya Peker
- Department of General Surgery, Hisar Hospital Intercontinental, Istanbul, Turkey
| | - Cihad Tatar
- Department of General Surgery, Acibadem University, Istanbul, Turkey
| | - Mert Guler
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Abdurrahman Tunay
- Department of Anesthesia and Reanimation, Istanbul Training and Research Hospital, Istanbul, Turkey
| | | | - Ali Osman Gurol
- Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey
| |
Collapse
|
36
|
Mostafa RE, Abdelrahmen SS, Saleh DO. L-Arginine-induced acute pancreatitis and its associated lung injury in rats: Down-regulation of TLR-4/MAPK-p38/JNK signaling pathway via Ginkgo biloba extract EGb 761. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:959-966. [PMID: 38911245 PMCID: PMC11193502 DOI: 10.22038/ijbms.2024.76162.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/04/2024] [Indexed: 06/25/2024]
Abstract
Objectives Acute pancreatitis (AP) is an abrupt inflammatory condition characterized by a storm of inflammatory cytokines leading to high morbidity and mortality. The current study aimed to examine the efficacy of Ginkgo biloba extract EGb 761 (GBE) in the treatment of L-arginine-induced AP and its associated lung injury. Materials and Methods Forty rats were randomly assigned into four groups. The normal group received only saline intraperitoneally while the other groups received two intraperitoneal L-arginine injections (250 mg/100 g b.wt) separated by a 1-hour interval to provoke AP. GBE (200 and 400 mg/kg/day, PO) was administered for 2 weeks post-induction of pancreatitis. Sera and pancreatic tissues were isolated. Results The outcome of the present study revealed that GBE ameliorated the elevated levels of serum amylase, lipase, and pancreatic inflammatory mediators viz., tumor necrosis factor-alpha (TNF-α), mitogen-activated protein kinase P38 (MAPK-P38), c-Jun N-terminal kinase 1 (JNK1), and nuclear factor-kappa B (NF-κB). Moreover, GBE restored the pancreatic gene expression of Toll-like receptor 4 (TLR4) and prostatic acid phosphatase-2 (PAP-2). Pancreatic and lung histopathological examinations confirmed the aforementioned parameters. Conclusion GBE interfered with the mechanistic pathway of L-arginine-induced acute pancreatic and its associated lung injury. Due to its anti-inflammatory properties, GBE can be used as a novel therapeutic candidate for the treatment of AP through down-regulating TLR-4/MAPK-p38/JNK and MAPK- p38/NF-κB signaling cascades.
Collapse
Affiliation(s)
- Rasha Ezzat Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre (ID: 60014618), Cairo, Egypt
| | | | - Dalia Osama Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre (ID: 60014618), Cairo, Egypt
| |
Collapse
|
37
|
Dunaevskaya SS, Sergeeva EY, Titova NM, Fefelova YA, Deulina VV. [Role of superoxide dismutase in acute pancreatitis: from antioxidant protection to gene regulation]. Khirurgiia (Mosk) 2024:112-117. [PMID: 38634592 DOI: 10.17116/hirurgia2024041112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We present modern data on the role of superoxide dismutase (SOD) in antioxidant protection and gene regulation in acute pancreatitis. Antioxidant enzymes are essential in pathogenesis of numerous diseases. SOD is one of the key enzymes of antioxidant system. In this review, we analyzed activity of this enzyme depending on various factors, mechanisms and role in physiological and pathological processes, in particular, acute pancreatitis. SOD is significantly less active in patients with severe acute pancreatitis accompanied by renal failure, severe circulatory disorders and high mortality. There are some SOD gene polymorphisms, in particular, acute destructive pancreatitis R213G, contributing to acute inflammation. Thus, SOD is not only one of the key antioxidant enzymes, but also potential transcription factor regulating activity of signaling pathways. These aspects can underlie new therapies for diseases.
Collapse
Affiliation(s)
- S S Dunaevskaya
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - E Yu Sergeeva
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - N M Titova
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Yu A Fefelova
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - V V Deulina
- Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
38
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
39
|
Baer JM, Zuo C, Kang LI, de la Lastra AA, Borcherding NC, Knolhoff BL, Bogner SJ, Zhu Y, Yang L, Laurent J, Lewis MA, Zhang N, Kim KW, Fields RC, Yokoyama WM, Mills JC, Ding L, Randolph GJ, DeNardo DG. Fibrosis induced by resident macrophages has divergent roles in pancreas inflammatory injury and PDAC. Nat Immunol 2023; 24:1443-1457. [PMID: 37563309 PMCID: PMC10757749 DOI: 10.1038/s41590-023-01579-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.
Collapse
Affiliation(s)
- John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Nicholas C Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Savannah J Bogner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Zhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jennifer Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mark A Lewis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan C Fields
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Saito Y, Sasaki K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Sci 2023; 114:3487-3495. [PMID: 37480223 PMCID: PMC10475783 DOI: 10.1111/cas.15890] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.
Collapse
Grants
- 17cm0106414h0002 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- JP21lm0203007 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 18KK0251 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 19K2265 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 20H00541 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 21K19526 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22K19559 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 16H06279 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yasuko Arao
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Saito
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Shogo Kobayashi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
41
|
Severino A, Varca S, Airola C, Mezza T, Gasbarrini A, Franceschi F, Candelli M, Nista EC. Antibiotic Utilization in Acute Pancreatitis: A Narrative Review. Antibiotics (Basel) 2023; 12:1120. [PMID: 37508216 PMCID: PMC10376815 DOI: 10.3390/antibiotics12071120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Acute pancreatitis is a complex inflammatory disease with significant morbidity and mortality. Despite advances in its management, the role of antibiotics in the prophylaxis and treatment of acute pancreatitis remains controversial. The aim of this comprehensive review is to analyze current evidence on the use of antibiotics in acute pancreatitis, focusing on prophylactic and therapeutic strategies. Prophylactic use aims to prevent local and systemic infections. However, recent studies have questioned the routine use of antibiotics for prophylaxis and highlighted the potential risks of antibiotic resistance and adverse effects. In selected high-risk cases, such as infected necrotizing pancreatitis, prophylactic antibiotic therapy may still be beneficial. As for therapeutic use, antibiotics are usually used to treat infected pancreatic necrosis and extrapancreatic infections. When selecting an antibiotic, the microbiologic profile and local resistance patterns should be considered. Combination therapy with broad-spectrum antibiotics is often recommended to cover both Gram-positive and Gram-negative pathogens. Recent research has highlighted the importance of individualized approaches to antibiotic use in acute pancreatitis and underscored the need for a tailored approach based on patient-specific factors. This review also highlights the potential role of new antimicrobial agents and alternative strategies, such as probiotics, in the management of acute pancreatitis.
Collapse
Affiliation(s)
- Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simone Varca
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (F.F.); (M.C.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (F.F.); (M.C.)
| | - Enrico Celestino Nista
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (A.S.); (S.V.); (C.A.); (T.M.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
42
|
Siggins RW, McTernan PM, Simon L, Souza-Smith FM, Molina PE. Mitochondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. Int J Mol Sci 2023; 24:8650. [PMID: 37239997 PMCID: PMC10218577 DOI: 10.3390/ijms24108650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alcohol misuse, directly or indirectly as a result of its metabolism, negatively impacts most tissues, including four with critical roles in energy metabolism regulation: the liver, pancreas, adipose, and skeletal muscle. Mitochondria have long been studied for their biosynthetic roles, such as ATP synthesis and initiation of apoptosis. However, current research has provided evidence that mitochondria participate in myriad cellular processes, including immune activation, nutrient sensing in pancreatic β-cells, and skeletal muscle stem and progenitor cell differentiation. The literature indicates that alcohol impairs mitochondrial respiratory capacity, promoting reactive oxygen species (ROS) generation and disrupting mitochondrial dynamics, leading to dysfunctional mitochondria accumulation. As discussed in this review, mitochondrial dyshomeostasis emerges at a nexus between alcohol-disrupted cellular energy metabolism and tissue injury. Here, we highlight this link and focus on alcohol-mediated disruption of immunometabolism, which refers to two distinct, yet interrelated processes. Extrinsic immunometabolism involves processes whereby immune cells and their products influence cellular and/or tissue metabolism. Intrinsic immunometabolism describes immune cell fuel utilization and bioenergetics that affect intracellular processes. Alcohol-induced mitochondrial dysregulation negatively impacts immunometabolism in immune cells, contributing to tissue injury. This review will present the current state of literature, describing alcohol-mediated metabolic and immunometabolic dysregulation from a mitochondrial perspective.
Collapse
Affiliation(s)
- Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
43
|
Li M, Ding W, Wang Y, Ma Y, Du F. Development and validation of a gene signature for pancreatic cancer: based on inflammatory response-related genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17166-17178. [PMID: 36192587 DOI: 10.1007/s11356-022-23252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the world with a poor prognosis. There were limited studies investigating the genetic signatures associated with inflammatory responses, tumor microenvironment (TME), and tumor drug sensitivity prediction. In the Cancer Genome Atlas (TCGA) dataset, we constructed an inflammatory response-related genes prognostic signature for PC, and predictive ability of the model was assessed via the International Cancer Genome Consortium (ICGC) database. Then, we explored the differences of TME, immune checkpoint genes and drug resistance genes, and the cancer cell sensitivity to chemotherapy drugs between different risk score group. Based on the TCGA and ICGC databases, we constructed and validated a prognostic model, which consisted of 5 genes (including AHR, F3, GNA15, IL18, and INHBA). Moreover, the prognostic model was independent prognostic factors affecting overall survival (OS). The low-risk score group had better OS, and lower stromal score, compared with patients in the high-risk score group. The difference of antigen-presenting cells, T cell regulation, and drug resistance genes between different risk score groups was found. In addition, the immune checkpoint genes were positively correlation to risk score. The expression levels of AHR, GNA15, IL18, and INHBA were related to the sensitivity of anti-tumor chemotherapy drugs. Gene set enrichment analysis (GSEA) showed significant pathway such as calcium signaling pathway and p53 signaling pathway. We successfully constructed a 5-inflammatory response-related gene signature to predict survival, TME, and cancer cell sensitivity to chemotherapy drugs in PC patients. Furthermore, substantiation was warranted to verify the role of these genes in tumorigenesis.
Collapse
Affiliation(s)
- Manjiang Li
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Wei Ding
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Yuxu Wang
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Yongbiao Ma
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China
| | - Futian Du
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, No. 151 of Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China.
| |
Collapse
|
44
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
45
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
46
|
Husic-Selimovic A, Jahic R, Kurtovic A, Custovic N, Fajkic A. Diagnostic Potential of Ratio Between Creatine Kinase and Amylase in Acute Pancreatitis. Mater Sociomed 2023; 35:280-284. [PMID: 38380277 PMCID: PMC10875939 DOI: 10.5455/msm.2023.35.280-284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/22/2024] Open
Abstract
Background Acute pancreatitis (AP) is an acute inflammatory illness of the pancreas representing a true question in diagnostic process. Laboratory markers of the hepatobiliary tract such as liver transaminases with pancreatic enzymes give a true hint of a hidden diagnosis together with urea, creatinine and creatine kinase (CK). Objective This clinical study aims to show whether there is any correlation between alpha-amylase and CK or their ratio examining hospitalized patients with AP diagnosis. Methods From total number of 99 patients with a clinical picture of AP, 71 patients in this retrospective analysis (including both genders) were included according to the presence of two biochemical markers in collected laboratory analysis at admission and 72 hours later on a laboratory check-up: CK and alpha-amylase. Results The median CK value of AP cases was 92 (41.75 - 207.25) in the acute period and 73 (37 - 159) after 72h staying in the hospital without statistical significant (p=0.521; p<0.05). However, there was a statistically significant correlation between the parameters of CK at admission and creatine kinase after 72h staying in the hospital. The median value of CK/Amylase ratio in the acute period was 0.168 (0.069 - 0.532) and 0.386 (0.12 - 1.12) after 72 hours of staying in the hospital. There was a statistically significant difference between values of CK/amylase ratio in these two groups (p=0.000; p<0.01). Conclusion In conclusion, a connection between CK and alpha-amylase needs to be elucidated in further studies and its existence must be researched both in physiological and pathophysiological conditions, and it is two-way and very complex. This study helped us obtain significant information about the perspective of AP in the potential relation to other non-standard laboratory markers for some diseases.
Collapse
Affiliation(s)
| | - Rijad Jahic
- General Hospital Prim. Dr. Abdulah Nakas Sarajevo, Bosnia and Herzegovina
| | - Avdo Kurtovic
- University Clinical Center Tuzla, Bosnia and Herzegovina
| | - Nerma Custovic
- University Clinical Center Sarajevo, Bosnia and Herzegovina
| | - Almir Fajkic
- Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
47
|
Lin M, Jin Y, Wang F, Meng Y, Huang J, Qin X, Fan Z. MARCH9 Mediates NOX2 Ubiquitination to Alleviate NLRP3 Inflammasome-Dependent Pancreatic Cell Pyroptosis in Acute Pancreatitis. Pancreas 2023; 52:e62-e69. [PMID: 37378901 DOI: 10.1097/mpa.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE The pathogenesis of acute pancreatitis mainly involves NLRP3 inflammasome-mediated pancreatic cell injury, although regulators of this inflammasome machinery are still not fully identified. Membrane-associated RING-CH 9 (MARCH9) is a member of MARCH-type finger proteins, which regulates innate immunity through catalyzing polyubiquitination of critical immune factors. The aim of present research is to examine the function of MARCH9 in acute pancreatitis. METHODS Cerulein-induced acute pancreatitis was established on pancreatic cell line AR42J and rat model. Reactive oxygen species (ROS) accumulation and NLRP3 inflammasome-dependent cell pyroptosis in pancreas were examined by flow cytometry. RESULTS MARCH9 was downregulated by cerulein, but overexpressing MARCH9 could inhibit NLRP3 inflammasome activation and ROS accumulation, thus suppressing pancreatic cell pyroptosis and mitigating pancreatic injury. We further uncovered that the mechanism underlying such an effect of MARCH9 is through mediating the ubiquitination of NADPH oxidase-2, whose deficiency reduces cellular ROS accumulation and inflammasome formation. CONCLUSIONS Our results suggested that MARCH9 suppresses NLRP3 inflammasome-mediated pancreatic cell injury through mediating the ubiquitination and degradation of NADPH oxidase-2, which compromises ROS generation and NLRP3 inflammasomal activation.
Collapse
Affiliation(s)
- Min Lin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yuzhou Jin
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Fushuang Wang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Yao Meng
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jin Huang
- From the Department of Gastroenterology, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | | | | |
Collapse
|
48
|
Lv J, Fang M, Sun S, Wang G, Fu S, Sun B, Tong J. Blockade of the Arid5a/IL-6/STAT3 axis underlies the anti-inflammatory effect of Rbpjl in acute pancreatitis. Cell Biosci 2022; 12:95. [PMID: 35725649 PMCID: PMC9208186 DOI: 10.1186/s13578-022-00819-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/19/2022] [Indexed: 01/07/2024] Open
Abstract
Background The microarray data analysis predicted that Rbpjl is poorly expressed in acute pancreatitis (AP). Activated IL-6/STAT3 signaling is further known to contribute to the progression of AP through immune regulation, and both IL-6 and STAT3 were bioinformatically predicted to interact with Arid5a. Accordingly, we aimed to investigate the potential involvement of the Arid5a/IL-6/STAT3 axis in the regulatory role of Rbpjl in the inflammation of AP. Methods Pancreatic acinar cells were exposed to lipopolysaccharide (LPS) to induce the pancreatic cell damage, and mice were subjected to supramaximal cerulein stimulation to induce AP. Expression patterns of Rbpjl and the Arid5a/IL-6/STAT3 axis were measured in mouse and cell models. Their expression was further manipulated to explore their effects on pancreatic cell injury and inflammation, as reflected by cell viability and apoptosis as well as reactive oxygen species (ROS) accumulation and proinflammatory cytokine secretion. Moreover, ChIP, EMSA, and dual-luciferase reporter assays were carried out to identify the interactions between Rbpjl and Arid5a. Results Rbpjl was found to be down-regulated in pancreatic tissues of AP mice and LPS-induced pancreatic acinar cells, while re-expression of Rbpjl led to enhanced cell viability, suppressed LPS-induced inflammation and ROS accumulation, and alleviation of AP-induced damage. Mechanistically, Rbpjl could bind to the promoter region of Arid5a and down-regulated its expression, thus repressing the activation of the IL-6/STAT3 signal axis. Furthermore, Rbpjl impaired Arid5a-dependent IL-6/STAT3 activation, hence alleviating pancreatic acinar cell inflammation. Furthermore, these effects were validated with in vivo experiments. Conclusion Collectively, our findings highlight that Rbpjl attenuates AP by down-regulating Arid5a and inactivating the IL-6/STAT3 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00819-1.
Collapse
|
49
|
Li BQ, Liu XY, Mao T, Zheng TH, Zhang P, Zhang Q, Zhang Y, Li XY. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis. Front Oncol 2022; 12:1050274. [PMID: 36505827 PMCID: PMC9730810 DOI: 10.3389/fonc.2022.1050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic progressive inflammatory disease of the pancreas, caused by multiple factors and accompanied by irreversible impairment of pancreatic internal and external secretory functions. Pathologically, atrophy of the pancreatic acini, tissue fibrosis or calcification, focal edema, inflammation, and necrosis are observed. Clinical manifestations include recurrent or persistent abdominal pain, diarrhea, emaciation, and diabetes. In addition, CP is prone to develop into pancreatic cancer(PC) due to persistent inflammation and fibrosis. The disease course is prolonged and the clinical prognosis is poor. Currently, clinical treatment of CP is still based on symptomatic treatment and there is a lack of effective etiological treatment. Encouragingly, experiments have shown that a variety of active substances have great potential in the etiological treatment of chronic pancreatitis. In this paper, we will review the pathogenesis of CP, as well as the research progress on anti-inflammatory and anti-fibrotic therapies, which will provide new ideas for the development of subsequent clinical studies and formulation of effective treatment programs, and help prevent CP from developing into pancreatic cancer and reduce the prevalence of PC as much as possible.
Collapse
|
50
|
Li Z, Du Y, Wang X. Pancreatic Lineage Cell Differentiation of Bone Marrow Mesenchymal Stromal Cells on Acellular Pancreatic Bioscaffold. Pancreas 2022; 51:1411-1426. [PMID: 37099787 DOI: 10.1097/mpa.0000000000002184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES We evaluated the potential differentiation ability of bone mesenchymal stromal cells (BMSCs) into pancreatic lineage cells on a rat acellular pancreatic bioscaffold (APB) and the effect of differentiated BMSCs in vivo. METHODS The BMSCs were dynamically or statically cultured with or without growth factor in both culture systems. We assessed the cytological behavior and differentiation. We also evaluated the pancreatic fibrosis and pathological scores. RESULTS The proliferation rates of BMSCs were significantly higher in the APB groups. The APB induced BMSCs to express mRNA markers at higher levels. All tested pancreatic functional proteins were also expressed at higher levels in the APB group. The secretion of metabolic enzymes was higher in the APB system. The ultrastructure of BMSCs in the APB group further revealed the morphological characteristics of pancreatic-like cells. For the in vivo study, the pancreatic fibrosis and pathological scores were significantly lower in the differentiated BMSCs group. In addition, in both the in vitro and the in vivo study, growth factor significantly improved proliferation, differentiation, and pancreatic cell therapy. CONCLUSIONS The APB can promote BMSC differentiation toward pancreatic lineage and pancreatic-like phenotypes, giving it the potential for use in pancreatic cell therapies and tissue engineering.
Collapse
Affiliation(s)
| | - Yue Du
- Department of Public Health, Tianjin Medical University, Tianjin, China
| | | |
Collapse
|