1
|
Fortuin J, Leclercq CC, Iken M, Villas-Boas SG, Soukoulis C. Proteomic and peptidomic profiling of spirulina-fortified probiotic powder formulations during in vitro digestion. Int J Biol Macromol 2025; 302:140432. [PMID: 39884605 DOI: 10.1016/j.ijbiomac.2025.140432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
This study reports on the influence of lactic acid fermentation on the proteomic and peptidomic profiles of spirulina protein isolate (SPI)-fortified, freeze-dried powders containing living Lacticaseibacillus rhamnosus GG (LGG) cells during in vitro digestion. For comparison, powders fortified with whey protein isolate (WPI) and pea protein isolate (PPI) were also evaluated. Prior to freeze-drying, the powder precursors were either non-treated or fermented. Capillary SDS-PAGE electropherograms revealed a mild proteolytic effect due to fermentation. C-phycocyanin (SPI) and β-lactoglobulin (WPI) showed the highest resistance to pepsinolysis. All samples were responsive to pancreases, with fermented WPI showing the lowest responsiveness. Fermentation enhanced the degree of hydrolysis (DH) in gastric chymes, whereas in intestinal chymes, DH followed the order SPI > PPI > WPI, with fermentation showing no significant impact. A total of 6, 11, and 52 potential bioactive peptide sequences, associated with various beneficial activities, were identified in the SPI, PPI, and WPI digesta, respectively. The highest amino acid bioaccessibilities were observed for cysteine and methionine in SPI, isoleucine and arginine in PPI, and glycine in WPI. In conclusion, fortifying probiotic formulations with protein isolates offers secondary health benefits, stemming from the release of bioactive peptides and bioaccessible essential amino acids.
Collapse
Affiliation(s)
- Jennyfer Fortuin
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg; Food Quality and Design Group, Wageningen University and Research, 6708, NL, Wageningen, the Netherlands
| | - Céline C Leclercq
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | | | - Silas G Villas-Boas
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg
| | - Christos Soukoulis
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts Fourneaux, L4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Mondragon Portocarrero ADC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024; 16:3108. [PMID: 39339708 PMCID: PMC11435326 DOI: 10.3390/nu16183108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the last two decades, the consumption of plant-based dairy substitutes in place of animal-based milk has increased in different geographic regions of the world. Dairy substitutes of vegetable origin have a quantitative composition of macronutrients such as animal milk, although the composition of carbohydrates, proteins and fats, as well as bioactive components, is completely different from that of animal milk. Many milk components have been shown to have relevant effects on the intestinal microbiota. Methods: Therefore, the aim of this review is to compare the effects obtained by previous works on the composition of the gut microbiota after the ingestion of animal milk and/or vegetable beverages. Results: In general, the results obtained in the included studies were very positive for animal milk intake. Thus, we found an increase in gut microbiota richness and diversity, increase in the production of short-chain fatty acids, and beneficial microbes such as Bifidobacterium, lactobacilli, Akkermansia, Lachnospiraceae or Blautia. In other cases, we found a significant decrease in potential harmful bacteria such as Proteobacteria, Erysipelotrichaceae, Desulfovibrionaceae or Clostridium perfingens after animal-origin milk intake. Vegetable beverages have also generally produced positive results in the gut microbiota such as the increase in the relative presence of lactobacilli, Bifidobacterium or Blautia. However, we also found some potential negative results, such as increases in the presence of potential pathogens such as Enterobacteriaceae, Salmonella and Fusobacterium. Conclusions: From the perspective of their effects on the intestinal microbiota, milks of animal origin appear to be more beneficial for human health than their vegetable substitutes. These different effects on the intestinal microbiota should be considered in those cases where the replacement of animal milks by vegetable substitutes is recommended.
Collapse
Affiliation(s)
- Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Patricia Regal Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Israel Samuel Ibarra Ortega
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico;
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| |
Collapse
|
3
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
4
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
5
|
Li J, Bollati C, Aiello G, Bartolomei M, Rivardo F, Boschin G, Arnoldi A, Lammi C. Evaluation of the multifunctional dipeptidyl-peptidase IV and angiotensin converting enzyme inhibitory properties of a casein hydrolysate using cell-free and cell-based assays. Front Nutr 2023; 10:1198258. [PMID: 37284652 PMCID: PMC10240083 DOI: 10.3389/fnut.2023.1198258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
The objective of the study was the evaluation of the potential pleiotropic effect of a commercial casein hydrolysate (CH). After an analysis of the composition, the BIOPEP-UWM database suggested that these peptides contained numerous sequences with potential inhibitory activities on angiotensin converting enzyme (ACE) and dipeptidyl-peptidase IV (DPP-IV). The anti-diabetic and anti-hypertensive effects of these peptides were thus assessed using either cell-free or cell-based assays. In the cell-free system, CH displayed inhibitory properties against DPP-IV (IC50 value equal to 0.38 ± 0.01 mg/mL) and ACE (IC50 value equal to 0.39 ± 0.01 mg/mL). Further, CH reduced the DPP-IV and ACE activities expressed by human intestinal Caco-2 cells by 61.10 ± 1.70% and 76.90 ± 4.47%, respectively, versus untreated cells, after 6 h of treatment at the concentration of 5 mg/mL. This first demonstration of the multifunctional behavior of this material suggests that it may become an anti-diabetic and/or anti-hypertensive ingredient to be included in the formulation of different functional food or nutraceutics.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Whey Protein Hydrolysates of Sheep/Goat Origin Produced by the Action of Trypsin without pH Control: Degree of Hydrolysis, Antihypertensive Potential and Antioxidant Activities. Foods 2022; 11:foods11142103. [PMID: 35885347 PMCID: PMC9320122 DOI: 10.3390/foods11142103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Tryptic WPHs with considerable residual whey protein content intact were developed from two sheep/goat WPCs (65% and 80% protein) without pH control. Pasteurization was used to avoid denaturation. Changes in non-protein nitrogen (DH_TCASN), free amino groups (DH_TNBS), and major whey proteins were used to investigate the degree and extent of hydrolysis. Antihypertensive potential (ACE-IA), radical scavenging (DPPH-RSA), and iron chelation (Fe-CA) were assessed. No statistically significant changes in pH (5.84−6.29) were observed during hydrolysis and storage. At the start of hydrolysis, DH_TCASN was ≅11% for both substrates whereas DH_TNBS was >10% and >5% for WP65 and WP80, respectively. After one-hour hydrolysis, DH_TCASN was ≅17% for both substrates and DH_TNBS was ≅15% and ≅11% for WP65 and WP80, respectively. The β-lactoglobulin, α-lactalbumin, and caseinomacropeptide of WP65 were hydrolyzed by 14 ± 1.3%, 73.9 ± 2.6% and 37 ± 2.6%. The respective values for WP80 were 14.9 ± 1.7%, 79.9 ± 1%, and 32.7 ± 4.8%. ACE-IA of the hydrolysates of both substrates was much higher (>80%) than that of controls (<10%). Hydrolysis, substrate type, and storage did not affect the DPPH-RSA (45−54%). Fe-CA of the WP65 and WP80 hydrolysates were ≅40% and ≅20%, respectively; a similar outcome was found in the respective controls. Refrigerated storage for 17 h did not affect the degree of hydrolysis and biofunctional activities.
Collapse
|
7
|
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front Nutr 2022; 8:815640. [PMID: 35127796 PMCID: PMC8810531 DOI: 10.3389/fnut.2021.815640] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bioactive peptides generated from food proteins have great potential as functional foods and nutraceuticals. Bioactive peptides possess several significant functions, such as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antihypertensive effects in the living body. In recent years, numerous reports have been published describing bioactive peptides/hydrolysates produced from various food sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in the plant, animal, marine, and dairy products, as well as their by-products. This review also emphasizes the health benefits, bioactivities, and utilization of active peptides obtained from the mentioned sources. Their possible application in functional product development, feed, wound healing, pharmaceutical and cosmetic industries, and their use as food additives have all been investigated alongside considerations on their safety.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- National Research Centre, Department of Food Technology, Food Industries and Nutrition Research Institute, Cairo, Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Gouda AS, Adbelruhman FG, Sabbah Alenezi H, Mégarbane B. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients - A narrative review and hypotheses. Saudi J Biol Sci 2021; 28:5897-5905. [PMID: 34177317 PMCID: PMC8213517 DOI: 10.1016/j.sjbs.2021.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/02/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
The world is currently facing a frightening coronavirus disease-2019 (COVID-19) epidemic. Severity of COVID-19 presentation is highly variable among infected individuals with increasingly recognized risk factors. Although observational studies suggested lower COVID-19 severity in populations consuming fermented foods, no controlled study investigated the role of diet. Yogurt, a fermented dairy product, exhibits interesting properties related to the presence of bioactive peptides and probiotics that may play a beneficial role in COVID-19 presentation and outcome. Peptides contained in yogurt are responsible for angiotensin-converting enzyme-inhibitory, bradykinin potentiating, antiviral, anti-inflammatory, antithrombotic, and antioxidant effects. The types and activity of these peptides vary widely depending on their amino acid sequence, on the probiotics used in yogurt production and on intestinal digestion. Additionally, probiotics used in yogurt exhibit direct angiotensin-converting enzyme-inhibitory, antiviral and immune boosting activities. Since COVID-19 pathogenesis involves angiotensin II accumulation and bradykinin deficiency, yogurt bioactive peptides appear as potentially beneficial. Therefore, epidemiological investigations and randomized controlled clinical trials to evaluate the exact role of yogurt consumption on COVID-19 manifestations and outcome should be encouraged.
Collapse
Affiliation(s)
- Ahmed S. Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, Cairo University, Cairo, Egypt,Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Fatima G. Adbelruhman
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hamedah Sabbah Alenezi
- Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France,Corresponding author at: Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris University, Paris, France.
| |
Collapse
|
9
|
Bioactive Peptides from Liquid Milk Protein Concentrate by Sequential Tryptic and Microbial Hydrolysis. Processes (Basel) 2021. [DOI: 10.3390/pr9101688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, bioactive peptides as a health-promoting agent have come to the forefront of health research; however, industrial production is limited, possibly due to the lack of the required technological knowledge. The objective of the investigation was to prepare bioactive peptides with hypoallergenic properties from liquid milk protein concentrate (LMPC), through sequential enzymatic and microbial hydrolysis. LMPC was produced from ultra-heat-treated (UHT) skimmed cow’s milk using a nanofiltration membrane. The effect of the concentration of trypsin (0.008–0.032 g·L−1) on the hydrolysis of LMPC was studied. Subsequently, the hydrolysis of tryptic-hydrolyzed LMPC (LMPC-T) with lactic acid bacteria was performed, and the effect of glucose in microbial hydrolysis was studied. Aquaphotomic analysis of the hydrolysis of LMPC was performed using the spectral range of 1300–1600 nm (near-infrared spectra). Changes in antioxidant capacity, anti-angiotensin-converting enzyme activity, and antibacterial activity against Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes were noted after the sequential tryptic and microbial hydrolysis of LMPC. Allergenicity in LMPC was reduced, due to sequential hydrolysis with 0.016 g·L−1 of trypsin and lacteal acid bacteria. According to the aquaphotomic analysis result, there was a dissociation of hydrogen bonds in compounds during the initial period of fermentation and, subsequently, the formation of compounds with hydrogen bonds. The formation of compounds with a hydrogen bond was more noticeable when microbial hydrolysis was performed with glucose. This may support the belief that the results of the present investigation will be useful to scale up the process in the food and biopharmaceutical industries.
Collapse
|
10
|
Guha S, Sharma H, Deshwal GK, Rao PS. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00045-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Milk from different species has been exploited for the isolation of various functional ingredients for decades. Irrespective of the source, milk is considered as a complete food, as it provides essential nutrients required by the human body. Proteins and their fractions are valuable sources of bioactive peptides that might exert a health beneficial role in the human body such as immune-modulation, antioxidant activity, ACE-inhibitory activity, anti-neoplastic, anti-microbial, etc. In milk, bioactive peptides may either be present in their natural form or released from their parental proteins due to enzymatic action. The increasing interest in bioactive peptides among researchers has lately augmented the exploration of minor dairy species such as sheep, goat, camel, mithun, mare, and donkey. Alternative to cow, milk from minor dairy species have also been proven to be healthier from infancy to older age owing to their higher digestibility and other nutritive components. Therefore, realizing the significance of milk from such species and incentivized interest towards the derivatization of bioactive peptides, the present review highlights the significant research achievements on bioactive peptides from milk and milk products of minor dairy species.
Graphical abstract
Collapse
|
11
|
Rafiq S, Gulzar N, Sameen A, Huma N, Hayat I, Ijaz R. Functional role of bioactive peptides with special reference to cheeses. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saima Rafiq
- Department of Food Science and Technology Faculty of Agriculture University of Poonch Rawalakot 12350 Azad kashmirPakistan
| | - Nabila Gulzar
- Department of Dairy Technology University of Veterinary and Animal Sciences Lahore Lahore55300Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology University of Agriculture Faisalabad38040Pakistan
| | - Nuzhat Huma
- National Institute of Food Science and Technology University of Agriculture Faisalabad38040Pakistan
| | - Imran Hayat
- Department of Food Science and Technology Faculty of Agriculture University of Poonch Rawalakot 12350 Azad kashmirPakistan
| | - Raina Ijaz
- Department of Horticulture Faculty of Agriculture University of Poonch Rawalakot 12350 Azad Kashmir Pakistan
| |
Collapse
|
12
|
Production of Liquid Milk Protein Concentrate with Antioxidant Capacity, Angiotensin Converting Enzyme Inhibitory Activity, Antibacterial Activity, and Hypoallergenic Property by Membrane Filtration and Enzymatic Modification of Proteins. Processes (Basel) 2020. [DOI: 10.3390/pr8070871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liquid milk protein concentrate with different beneficial values was prepared by membrane filtration and enzymatic modification of proteins in a sequential way. In the first step, milk protein concentrate was produced from ultra-heat-treated skimmed milk by removing milk serum as permeate. A tubular ceramic-made membrane with filtration area 5 × 10−3 m2 and pore size 5 nm, placed in a cross-flow membrane house, was adopted. Superior operational strategy in filtration process was herein: trans-membrane pressure 3 bar, retention flow rate 100 L·h−1, and implementation of a static turbulence promoter within the tubular membrane. Milk with concentrated proteins from retentate side was treated with the different concentrations of trypsin, ranging from 0.008–0.064 g·L−1 in individual batch-mode operations at temperature 40 °C for 10 min. Subsequently, inactivation of trypsin in reaction was done at a temperature of 70 °C for 30 min of incubation. Antioxidant capacity in enzyme-treated liquid milk protein concentrate was measured with the Ferric reducing ability of plasma assay. The reduction of angiotensin converting enzyme activity by enzyme-treated liquid milk protein concentrate was measured with substrate (Abz-FRK(Dnp)-P) and recombinant angiotensin converting enzyme. The antibacterial activity of enzyme-treated liquid milk protein concentrate towards Bacillus cereus and Staphylococcus aureus was tested. Antioxidant capacity, anti-angiotensin converting enzyme activity, and antibacterial activity were increased with the increase of trypsin concentration in proteolytic reaction. Immune-reactive proteins in enzyme-treated liquid milk protein concentrate were identified with clinically proved milk positive pooled human serum and peroxidase-labelled anti-human Immunoglobulin E. The reduction of allergenicity in milk protein concentrate was enzyme dose-dependent.
Collapse
|
13
|
Li S, Bu T, Zheng J, Liu L, He G, Wu J. Preparation, Bioavailability, and Mechanism of Emerging Activities of Ile-Pro-Pro and Val-Pro-Pro. Compr Rev Food Sci Food Saf 2019; 18:1097-1110. [PMID: 33337010 DOI: 10.1111/1541-4337.12457] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Ile-Pro-Pro and Val-Pro-Pro are two most well-known food-derived bioactive peptides, initially identified as inhibitors of angiotensin I-converting enzyme (ACE) from a sample of sour milk. These two peptides were identified in fermented and enzymatic hydrolyzed cow and non-cow (that is, goat, sheep, buffalo, yak, camel, mare, and donkey) milk, as well as sourdough prepared from wheat, rye, and malt. Similar to other bioactive peptides, bioavailability of these peptides is low (about 0.1%), reaching picomolar concentration in human plasma; they showed blood pressure lowering activity in animals and in human, via improved endothelial function, activation of ACE2, and anti-inflammatory property. Emerging bioactivities of these two peptides toward against metabolic syndrome and bone-protection received limited attention, but may open up new applications of these peptides as functional food ingredients. Further studies are warranted to determine the best source as well as to identify novel enzymes (particularly from traditional fermented milk products) to improve the efficiency of production, to characterize possible peptide receptors using a combination of omics technology with molecular methods to understand if these two peptides act as signal-like molecules, to improve their bioavailability, and to explore new applications based on emerging bioactivities.
Collapse
Affiliation(s)
- Shanshan Li
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, College of Biosystems Engineering and Food Science, Zhejiang Univ., 866 Yuhangtang Road, Hangzhou, 310058, China.,Ningbo Research Inst., Zhejiang Univ., Ningbo, 315100, China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Tingting Bu
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, College of Biosystems Engineering and Food Science, Zhejiang Univ., 866 Yuhangtang Road, Hangzhou, 310058, China.,Ningbo Research Inst., Zhejiang Univ., Ningbo, 315100, China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Jiexia Zheng
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, College of Biosystems Engineering and Food Science, Zhejiang Univ., 866 Yuhangtang Road, Hangzhou, 310058, China.,Ningbo Research Inst., Zhejiang Univ., Ningbo, 315100, China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Ling Liu
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, College of Biosystems Engineering and Food Science, Zhejiang Univ., 866 Yuhangtang Road, Hangzhou, 310058, China.,Ningbo Research Inst., Zhejiang Univ., Ningbo, 315100, China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Guoqing He
- Zhejiang Key Laboratory for Agro-Food Processing, Fuli Inst. of Food Science, College of Biosystems Engineering and Food Science, Zhejiang Univ., 866 Yuhangtang Road, Hangzhou, 310058, China.,Ningbo Research Inst., Zhejiang Univ., Ningbo, 315100, China.,ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China
| | - Jianping Wu
- ZJU-UA Joint Lab for Molecular Nutrition and Bioactive Peptides, College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, China.,Dept. of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, Univ. of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
14
|
Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09823-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Sultan S, Huma N, Butt MS, Aleem M, Abbas M. Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Crit Rev Food Sci Nutr 2017; 58:105-115. [PMID: 26852912 DOI: 10.1080/10408398.2015.1136590] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dairy products are associated with numerous health benefits. These are a good source of nutrients such as carbohydrates, protein (bioactive peptides), lipids, minerals, and vitamins, which are essential for growth, development, and maintenance of the human body. Accordingly, dairy bioactive peptides are one of the targeted compounds present in different dairy products. Dairy bioactive compounds can be classified as antihypertensive, anti-oxidative, immmunomodulant, anti-mutagenic, antimicrobial, opoid, anti-thrombotic, anti-obesity, and mineral-binding agents, depending upon biological functions. These bioactive peptides can easily be produced by enzymatic hydrolysis, and during fermentation and gastrointestinal digestion. For this reason, fermented dairy products, such as yogurt, cheese, and sour milk, are gaining popularity worldwide, and are considered excellent source of dairy peptides. Furthermore, fermented and non-fermented dairy products are associated with lower risks of hypertension, coagulopathy, stroke, and cancer insurgences. The current review article is an attempt to disseminate general information about dairy peptides and their health claims to scientists, allied stakeholders, and, certainly, readers.
Collapse
Affiliation(s)
- Saira Sultan
- a National Institute of Food Science and Technology , University of Agriculture Faisalabad , Faisalabad , Pakistan.,b Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , Queensland , Australia
| | - Nuzhat Huma
- a National Institute of Food Science and Technology , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Masood Sadiq Butt
- a National Institute of Food Science and Technology , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Muhammad Aleem
- c Institute of Biological Chemistry and Nutritional Science (140a), Universitat Hohenheim , Stuttgart , Germany
| | - Munawar Abbas
- d Institute of Home & Food Sciences, Government College University , Faisalabad , Pakistan
| |
Collapse
|
16
|
Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, González-Córdova AF. Food-derived immunomodulatory peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3631-3641. [PMID: 26940008 DOI: 10.1002/jsfa.7697] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Carretera a La Victoria Km 0.6, 83304, Hermosillo, Sonora, Mexico
| |
Collapse
|
17
|
Sultan S, Huma N, Butt MS, Shahid M. Antihypertensive and Antioxidative Potential of Water Soluble Peptide Fraction from Different Yoghurts. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saira Sultan
- Queensland Alliance for Agriculture and Food Innovation; University of Queensland; Queensland Australia
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad Pakistan
| | - Nuzhat Huma
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology; University of Agriculture; Faisalabad Pakistan
| | - Muhammad Shahid
- Department of Chemistry and Biochemistry; University of Agriculture; Faisalabad Pakistan
| |
Collapse
|
18
|
|
19
|
Nath A, Mondal S, Kanjilal T, Chakraborty S, Curcio S, Bhattacharjee C. Synthesis and functionality of proteinacious nutraceuticals from casein whey—A clean and safe route of valorization of dairy waste. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Bhat ZF, Kumar S, Bhat HF. Bioactive peptides of animal origin: a review. Journal of Food Science and Technology 2015; 52:5377-92. [PMID: 26344955 DOI: 10.1007/s13197-015-1731-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/12/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Bioactive peptides are specific protein fragments which, above and beyond their nutritional capabilities, have a positive impact on the body's function or condition which may ultimately influence health. Although, inactive within the sequence of the parent proteins, these peptides can be released during proteolysis or fermentation and play an important role in human health by affecting the digestive, endocrine, cardiovascular, immune and nervous systems. Several peptides that are released in vitro or in vivo from animal proteins have been attributed to different health effects, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, opioid activities, enhancement of mineral absorption and/or bioavailability, cytomodulatory and immunomodulatory effects, antiobesity, and anti-genotoxic activity. Several functional foods based on the bioactivities of these peptides with scientifically evidenced health claims are already on the market or under development by food companies. Consumer's increasing interest in these products has given an impetus to the food industry and scientific sector who are continuously exploring the possibilities for the development of new functional products based on these peptides. In this review, we describe above stated properties of bioactive peptides of animal origin.
Collapse
Affiliation(s)
- Z F Bhat
- Division of Livestock Products Technology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R. S. Pura, Jammu, Jammu and Kashmir 181102 India
| | - Sunil Kumar
- Division of Livestock Products Technology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R. S. Pura, Jammu, Jammu and Kashmir 181102 India
| | - Hina Fayaz Bhat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Alusteing, Shuhama, Jammu and Kashmir India
| |
Collapse
|
21
|
Espejo-Carpio FJ, De Gobba C, Guadix A, Guadix EM, Otte J. Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
El-Salam MHA, El-Shibiny S. Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, and Yak Milks and Milk Products. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2012.692137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Muro Urista C, Álvarez Fernández R, Riera Rodriguez F, Arana Cuenca A, Téllez Jurado A. Review: Production and functionality of active peptides from milk. FOOD SCI TECHNOL INT 2011; 17:293-317. [PMID: 21917640 DOI: 10.1177/1082013211398801] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups.
Collapse
Affiliation(s)
- C Muro Urista
- Department of Chemical Engineering and Investigation, Instituto Tecnológico de Toluca. Av. Tecnológico s/n Ex-Rancho la Virgen, Toluca, C.P. 52140, México.
| | | | | | | | | |
Collapse
|
24
|
Hernandez-Hernandez O, Sanz ML, Kolida S, Rastall RA, Moreno FJ. In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11949-11955. [PMID: 22004447 DOI: 10.1021/jf203576g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides , Lactobacillus - Enterococcus , Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides - Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.
Collapse
|
25
|
Hernández-Ledesma B, Ramos M, Gómez-Ruiz JÁ. Bioactive components of ovine and caprine cheese whey. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Seol KH, Song JH, Prayad T, Kim HW, Jang AR, Ham JS, Oh MH, Kim DH, Lee MH. Assessment of the Inhibitory Activity of Peptide Extracts from Hanwoo Musculus Longissimus on Angiotensin I-Converting Enzyme. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.5.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 2011; 165:23-35. [PMID: 21185549 DOI: 10.1016/j.cis.2010.11.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 02/05/2023]
Abstract
Bioactive food peptides are encrypted within the sequence of food proteins but can be released during food processing (by enzymatic hydrolysis or fermentation) or during gastrointestinal transit. Among bioactive food peptides, those with antihypertensive activity are receiving special attention due to the high prevalence of hypertension in the Western countries and its role in cardiovascular diseases. This paper reviews the current literature on antihypertensive food peptides, focusing on the main methodologies for their production, such as enzymatic hydrolysis, fermentation and the use of recombinant bacteria. This paper also describes the structure/activity relationship of angiotensin-converting enzyme (ACE)-inhibitory peptides, as well as their bioavailability, physiological effects demonstrated by both in vitro and in vivo assays, and the contribution of mechanisms of action other than ACE inhibition. Finally, current reported strategies for incorporation of antihypertensive peptides into foods and their effects on both availability and activity are revised in this manuscript.
Collapse
|
28
|
De Simone C, Picariello G, Mamone G, Stiuso P, Dicitore A, Vanacore D, Chianese L, Addeo F, Ferranti P. Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey. J Pept Sci 2008; 15:251-8. [DOI: 10.1002/psc.1093] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Engineered Food/Protein Structure And Bioactive Proteins and Peptides From Whey. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-0-387-75430-7_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Miguel M, Manso MA, López-Fandiño R, Alonso MJ, Salaices M. Vascular effects and antihypertensive properties of κ-casein macropeptide. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2007.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Otte J, Shalaby SM, Zakora M, Pripp AH, El-Shabrawy SA. Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2006.05.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Foltz M, Meynen EE, Bianco V, van Platerink C, Koning TMMG, Kloek J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J Nutr 2007; 137:953-8. [PMID: 17374660 DOI: 10.1093/jn/137.4.953] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food products containing angiotensin converting enzyme (ACE) inhibitory peptides reportedly play a role in treatment of mild hypertension. The aim of this placebo-controlled crossover study was to assess the bioavailability of Ile-Pro-Pro and 7 other ACE-inhibiting peptides present in a lactotripeptide (LTP)-enriched yogurt beverage and whether meal intake affects Ile-Pro-Pro bioavailability. Six male and female subjects randomly consumed an LTP-enriched yogurt beverage or a placebo in the fasted state and an LTP-enriched yogurt beverage in the fed or fasted state. The area under the curve (AUC) of Ile-Pro-Pro after the LTP treatment in the fasted state was 2.1-fold of that after the placebo treatment (P < 0.001). The maximum peptide plasma concentration (C(max)) value was greater after consumption of the LTP-enriched beverage (897 +/- 157 pmol/L) than after the placebo treatment (555 +/- 0.09 pmol/L; P < 0.001) with a greater time after ingestion when reaching C(max) (T(max)) in the placebo treatment. Plasma concentrations of the peptides Leu-Trp, Phe-Tyr, Ile-Tyr, and Leu-Pro-Pro increased compared with baseline (P < 0.05) in the LTP-enriched and placebo treatment when consumed in the fasted state. However, DeltaC(max) values differed significantly between the placebo and LTP-enriched treatment only for Leu-Pro-Pro. Meal intake affected Ile-Pro-Pro concentrations. When the beverage was consumed after a meal, the AUC of Ile-Pro-Pro was 1.3-fold (P < 0.05) of the AUC derived from premeal intake. This was due to an increase in the plasma elimination half-life (P < 0.05); C(max) and T(max) were not affected by meal intake. In summary, this is the first demonstration, to our knowledge, that the tripeptide Ile-Pro-Pro selectively escapes from intestinal degradation and reaches the circulation undegraded.
Collapse
Affiliation(s)
- Martin Foltz
- Unilever Food and Health Research Institute, 3133 AR Vlaardingen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Thomä-Worringer C, Sørensen J, López-Fandiño R. Health effects and technological features of caseinomacropeptide. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2006.06.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2006.06.004] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
|
37
|
Manso MA, López-Fandiño R. κ-Casein Macropeptides from Cheese Whey: Physicochemical, Biological, Nutritional, and Technological Features for Possible Uses. FOOD REVIEWS INTERNATIONAL 2004. [DOI: 10.1081/fri-200033456] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|