1
|
Fontana F, Longhi G, Carli E, Alessandri G, Mancabelli L, Lugli GA, Tarracchini C, Viappiani A, Anzalone R, Turroni F, Milani C, Ventura M. Revealing the genetic traits of the foodborne microbial genus hafnia: Implications for the human gut microbiome. Environ Microbiol 2024; 26:e16626. [PMID: 38646847 DOI: 10.1111/1462-2920.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.
Collapse
Affiliation(s)
- Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Martín I, Rodríguez A, García C, Córdoba JJ. Evolution of Volatile Compounds during Ripening and Final Sensory Changes of Traditional Raw Ewe’s Milk Cheese “Torta del Casar” Maturated with Selected Protective Lactic Acid Bacteria. Foods 2022; 11:foods11172658. [PMID: 36076843 PMCID: PMC9455757 DOI: 10.3390/foods11172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
In traditional soft ripened cheeses made with raw milk, the use of protective cultures is infrequent. In the present work, the effect of selected (for their activity against Listeria monocytogenes) protective cultures of Lactocaseibacillus casei 116 and Lactococcus garvieae 151 was evaluated, on the evolution of volatile compounds throughout the ripening and on the final sensory characteristics of traditional soft ripened “Torta del Casar” cheese. For this, both strains were separately inoculated in raw cheeses and ripened for 90 days. The selected LAB strains did not affect physicochemical parameters, including texture and color of the ripened cheeses. However, they could have a positive effect on the aroma, for the generation of methyl branched acids and for the reduction in compounds derived from β-oxidation of fatty acids. Thus, these protective cultures, in addition to contributing to their safety, could improve quality of the ripened cheeses.
Collapse
Affiliation(s)
- Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Alicia Rodríguez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Carmen García
- Tecnología y Calidad de Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Juan J. Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
- Correspondence:
| |
Collapse
|
3
|
Ramos-Vivas J, Tapia O, Elexpuru-Zabaleta M, Pifarre KT, Armas Diaz Y, Battino M, Giampieri F. The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods. Molecules 2022; 27:molecules27175585. [PMID: 36080356 PMCID: PMC9457839 DOI: 10.3390/molecules27175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- CIBER of Infectious Diseases—CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.R.-V.); (M.B.)
| | - Olga Tapia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.R.-V.); (M.B.)
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| |
Collapse
|
4
|
Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. Microorganisms 2022; 10:microorganisms10051073. [PMID: 35630516 PMCID: PMC9146562 DOI: 10.3390/microorganisms10051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
Feta is the most renowned protected designation of origin (PDO) white brined cheese produced in Greece. The fine organoleptic characteristics and the quality of Feta rely on, among other factors, its overall microbial ecosystem. In this study, we employed 16S rDNA and internal transcribed spacer (ITS) amplicon sequencing, as well as shotgun metagenomics, to investigate the microbiome of artisanal homemade and industrial Feta cheese samples from different regions of Greece, which has very rarely been investigated. 16S rDNA data suggested the prevalence of the Lactococcus genus in the homemade samples, while Streptococcus and Lactobacillus genera prevailed in the industrial control samples. Species identification deriving from shotgun metagenomics corroborated these findings, as Lactococcus lactis dominated two homemade samples while Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus were found to be dominating one industrial sample. ITS data revealed a complex diversity of the yeast population among the samples analyzed. Debaryomyces, Kluyveromyces, Cutaneotrichosporon, Pichia, Candida, and Rhodotorula were the major genera identified, which were distributed in a rather arbitrary manner among the different samples. Furthermore, a number of potential metagenome-assembled genomes (MAGs) could be detected among assembled shotgun bins. The overall analysis of the shotgun metagenomics supported the presence of different foodborne pathogens in homemade samples (e.g., Staphylococcus aureus, Listeria monocytogenes, Enterobacter cloacae, and Streptococcus suis), but with low to very low abundances. Concluding, the combination of both amplicon sequencing and shotgun metagenomics allowed us to obtain an in-depth profile of the artisanal homemade Feta cheese microbiome.
Collapse
|
5
|
Merchán AV, Ruiz-Moyano S, Hernández MV, Martín A, Lorenzo MJ, Benito MJ. Characterization of autochthonal Hafnia spp. strains isolated from Spanish soft raw ewe's milk PDO cheeses to be used as adjunct culture. Int J Food Microbiol 2022; 373:109703. [DOI: 10.1016/j.ijfoodmicro.2022.109703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022]
|
6
|
Shifts in the Bacterial Community Related to Quality Properties of Vacuum-Packaged Peeled Potatoes during Storage. Foods 2022; 11:foods11081147. [PMID: 35454734 PMCID: PMC9032337 DOI: 10.3390/foods11081147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
To reveal the potential relationship between the bacterial community and quality attributes of vacuum-packaged peeled potatoes, the bacterial community dynamics, visual quality, organic acids, flavor and volatile organic compounds (VOCs) during 12 days of storage under 10 °C were studied, and a correlation analysis was performed between the bacterial community and VOCs. During the whole storage, the dominant bacteria changed from Ralstonia, Pseudomonas, Pantoea and Comamonas to Clostridia, Clostridium, Lacrimispora, Lactococcus and Leuconostoc. The visual quality and hardness deteriorated significantly on day 12; meanwhile, lactic and acetic acid content accumulated to 0.79 and 4.87 mg/g FW, respectively. Potatoes’ flavor deteriorated severely after 8 days, as evidenced by results of an electronic nose (e-nose). A total of 37 VOCs were detected, and the total content showed an increasing trend from 2164.85 to 10658.68 μg/kg during the whole storage. A correlation analysis showed that Enterobacteriaceae, Erwinia, Lacrimispora, Lactococcus, Serratia, Pantoea, Clostridium, Flavobacterium and Clostridia were positively correlated with the biosynthesis of VOCs. In addition, 10 spoilage markers were screened according to a variable importance in projection (VIP) ≥ 1. Ethanol, which was the most abundant spoilage marker, was significantly related to Enterobacteriaceae, Erwinia, Lacrimispora and Lactococcus. The results of this study have great practical significance for prolonging the shelf life of fresh-cut agricultural produce.
Collapse
|
7
|
Ritschard JS, Van Loon H, Amato L, Meile L, Schuppler M. High Prevalence of Enterobacterales in the Smear of Surface-Ripened Cheese with Contribution to Organoleptic Properties. Foods 2022; 11:foods11030361. [PMID: 35159512 PMCID: PMC8834058 DOI: 10.3390/foods11030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The smear of surface-ripened cheese harbors complex microbiota mainly composed of typical Gram-positive aerobic bacteria and yeast. Gram-negative bacteria are usually classified as un-wanted contaminants. In order to investigate the abundance and impact of Gram-negative bacte-ria naturally occurring in the smear of surface-ripened cheese, we performed a culture-based analysis of smear samples from 15 semi-hard surface-ripened cheese varieties. The quantity, di-versity and species distribution of Proteobacteria in the surface smear of the analyzed cheese vari-eties were unexpectedly high, and comprised a total of 22 different species. Proteus and Morganella predominated most of the analyzed cheese varieties, while Enterobacter, Citrobacter, Hafnia and Serratia were also found frequently. Further physiological characterization of Proteus isolates re-vealed strong proteolytic activity, and the analysis of volatiles in the smear cheese surface head-space suggested that Enterobacterales produce volatile organic flavor compounds that contribute to the organoleptic properties of surface-ripened cheese. Autochthonous members of Enterobac-terales were found in 12 of the 15 smear samples from surface-ripened cheeses, suggesting that they are part of the typical house microbiota that shape the organoleptic properties of the cheese rather than represent unwanted contaminants. However, further investigation on safety issues of the individual species should be performed in order to manage the health risk for consumers.
Collapse
Affiliation(s)
- Jasmine S. Ritschard
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Hanne Van Loon
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Lea Amato
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
- Correspondence:
| |
Collapse
|
8
|
Metabolomic Markers of Storage Temperature and Time in Pasteurized Milk. Metabolites 2021; 11:metabo11070419. [PMID: 34202014 PMCID: PMC8306400 DOI: 10.3390/metabo11070419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
The current date labeling system for pasteurized milk is based on the predicted growth of spoilage microorganisms, but inherent inaccuracies and the inability to account for environmental factors (e.g., temperature fluctuations) contribute to household and retail food waste. Improved shelf-life estimation can be achieved by monitoring milk quality in real-time. In this study, we identify and quantify metabolites changing over storage temperature and time, the main factors affecting milk stability. Pasteurized 2% fat milk was stored at 4, 10, 15, and 20 °C. Metabolite change was analyzed using untargeted and targeted nuclear magnetic resonance (NMR) metabolomics approaches. Several metabolites correlated significantly to storage time and temperature. Citric acid decreased linearly over time at a temperature-dependent rate. Ethanol, formic acid, acetic acid, lactic acid, and succinic acid increased non-linearly after an initial period of minimal increase. Butyric acid exhibited strong inverse temperature dependencies. This study provides the first analysis of the effect of time and temperature on the concentration of key metabolites during milk storage. Candidate molecules for shelf-life monitoring have been identified, and the results improve our understanding of molecular changes during milk storage. These results will inform the development of real-time shelf-life indicators for milk, helping to reduce milk waste.
Collapse
|
9
|
Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2021; 10:foods10030573. [PMID: 33801804 PMCID: PMC8002191 DOI: 10.3390/foods10030573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
To overcome texture and flavor challenges in fermented plant-based product development, the potential of microorganisms is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus on physicochemical properties of fermented soy, oat, and coconut. L. rhamnosus was combined with different lactic acid bacteria strains and Bifidobacterium. Acidification, titratable acidity, and viability of L. rhamnosus and Bifidobacterium were evaluated. Oscillation and flow tests were performed to characterize rheological properties of fermented samples. Targeted and untargeted volatile organic compounds in fermented samples were assessed, and sensory evaluation with a trained panel was conducted. L. rhamnosus reduced fermentation time in soy, oat, and coconut. L. rhamnosus and Bifidobacterium grew in all fermented raw materials above 107 CFU/g. No significant effect on rheological behavior was observed when L. rhamnosus was present in fermented samples. Acetoin levels increased and acetaldehyde content decreased in the presence of L. rhamnosus in all three bases. Diacetyl levels increased in fermented oat and coconut samples when L. rhamnosus was combined with a starter culture containing Streptococcus thermophilus and with another starter culture containing S. thermophilus, L. bulgaricus and Bifidobacterium. In all fermented oat samples, L. rhamnosus significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of base-related attributes. In fermented coconut samples, gel firmness perception was significantly improved with L. rhamnosus. The findings suggest that L. rhamnosus can improve fermentation time and sensory perception of fermented plant-based products.
Collapse
|
10
|
Evolution of VOC and Sensory Characteristics of Stracciatella Cheese as Affected by Different Preservatives. Foods 2020; 9:foods9101446. [PMID: 33053809 PMCID: PMC7601598 DOI: 10.3390/foods9101446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
Undesired volatile organic compounds (VOCs) can negatively affect the flavor of fresh food products; especially those characterized by a mild and delicate aroma. Finding connections between chemical and sensory analyses is a useful way to better understand the arising of off-flavors. A study was conducted on stracciatella; a traditional Italian cream cheese that is emerging on international markets. Samples were prepared by adding two different preservatives (alone or combined): sorbic acid and an olive leaf extract. Their influence on flavor preservation during refrigerated storage was investigated by chemical, microbiological and sensory analyses. A strong change of the VOC profile was ascertained after 8 days in the control cheese and in the sample added with leaf extract alone. The samples containing sorbic acid, alone or in combination with leaf extract, gave the best chemical and sensory results, demonstrating a significant shelf-life extension. In particular, these samples had lower concentrations of undesired metabolites, such as organic acids and volatiles responsible for off-flavor, and received better scores for odor and taste. Ex and Ex-So samples had significantly higher antioxidant activity than Ctr and So throughout the entire storage period, and the color parameter shows no differences among samples taken on the same day. The use of the olive leaf extract, at the concentration tested, seemed to be interesting only in the presence of sorbic acid due to possible synergic effect that mainly acted against Enterobacteriaceae.
Collapse
|
11
|
Masiá C, Jensen PE, Buldo P. Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2020; 9:E1182. [PMID: 32859044 PMCID: PMC7555707 DOI: 10.3390/foods9091182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Texture and flavor are currently the main challenges in the development of plant-based dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based raw materials is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus, LGG® (LGG® is a trademark of Chr. Hansen A/S) on the physicochemical properties of fermented soy, oat, and coconut. LGG® was combined with different lactic acid bacteria (LAB) strains and Bifidobacterium, BB-12® (BB-12® is a trademark of Chr. Hansen A/S). Acidification, titratable acidity, and growth of LGG® and BB-12® were evaluated. Oscillation and flow tests were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates, and volatile organic compounds in fermented samples were identified, and a sensory evaluation with a trained panel was conducted. LGG® reduced fermentation time in all three bases. LGG® and BB-12® grew in all fermented raw materials above 107 CFU/g. LGG® had no significant effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content decreased in the presence of LGG® in all three bases. Diacetyl levels increased in fermented oat and coconut samples when LGG® was combined with YOFLEX® YF-L01 and NU-TRISH® BY-01 (YOFLEX® and NU-TRISH® are trademarks of Chr. Hansen A/S). In all fermented oat samples, LGG® significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of the attributes related to the base. In fermented coconut samples, gel firmness perception was significantly improved in the presence of LGG®. These findings suggest supplementation of LAB cultures with LGG® to improve fermentation time and sensory perception of fermented plant-based products.
Collapse
Affiliation(s)
- Carmen Masiá
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark; (C.M.); (P.E.J.)
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark; (C.M.); (P.E.J.)
| | - Patrizia Buldo
- Food Cultures and Enzymes, Plant Based Application Projects & Competences, Chr. Hansen A/S, Bøge Alle 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
12
|
Ashkezary MR, Bonanno A, Todaro M, Settanni L, Gaglio R, Todaro A, Alabiso M, Maniaci G, Mazza F, Grigoli AD. Effects of adding solid and molten chocolate on the physicochemical, antioxidant, microbiological, and sensory properties of ewe's milk cheese. J Food Sci 2020; 85:556-566. [PMID: 32067252 DOI: 10.1111/1750-3841.15045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
A novel dairy product, namely "chocolate cheese", was produced with two typical Sicilian food products: Pecorino cheese, processed from ewe's milk, and Modica chocolate. The cheese, manufactured with 0%, 5%, 10%, and 15% (w/w) solid or molten chocolate, was evaluated after 0, 2, 4, and 6 weeks of vacuum storage for its nutritional and health properties. The addition of chocolate reduced the pH, protein, fat, and ash; the addition of 5% or 10% molten chocolate reduced hardness (N/mm2 ). The addition of either solid or molten chocolate resulted in a slight increase (P < 0.1038) in the total polyphenol content, a higher oleic acid content, and less oxidative stability. The microbiological profile showed that the total mesophilic count and the number of mesophilic coccus lactic acid bacteria (LAB) were approximately equal (about 108 CFU/g) in all cheese. The survival of the microorganisms was affected by both the chocolate added and the storage time. Chocolate cheese stored for 6 weeks had less Enterobacteriaceae than control cheese, whereas yeasts were detected at higher cell densities in the former cheese. Filamentous fungi were undetectable in some cheese. Differences were also observed in the number of mesophilic rod LAB, which increased progressively over time in all cheese, and in Enterobacteriaceae, yeasts, and filamentous fungi, which decreased during storage. Descriptive and hedonic sensory tests and principal component analysis showed that fresh cheese and cheese stored for 2 weeks, including 5% molten chocolate, were the most preferred by evaluators. Based on these results, chocolate cheese has the potential to be appreciated in the market for its nutritional, health, and sensory properties. PRACTICAL APPLICATION: Chocolate cheese, made by combining two typical Sicilian foods, Pecorino cheese and Modica chocolate, is proposed as a novel dairy product. The highest sensory acceptance was obtained with the addition of 5% molten chocolate and storage for 2 weeks. Given its improved antioxidant properties, healthier fat, and sensory properties, chocolate cheese has the potential to be appreciated in the market, especially by young consumers.
Collapse
Affiliation(s)
- Mansour Rabie Ashkezary
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Adriana Bonanno
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Aldo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Marco Alabiso
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Giuseppe Maniaci
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Francesca Mazza
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128, Palermo, Italy
| |
Collapse
|
13
|
Tofalo R, Perpetuini G, Battistelli N, Pepe A, Ianni A, Martino G, Suzzi G. Accumulation γ-Aminobutyric Acid and Biogenic Amines in a Traditional Raw Milk Ewe's Cheese. Foods 2019; 8:E401. [PMID: 31510033 PMCID: PMC6770426 DOI: 10.3390/foods8090401] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023] Open
Abstract
The influence of calf (R1), kid (R2) and pig (R3) rennets on microbiota, biogenic amines (BAs) and γ-aminobutyric acid (GABA) accumulation in raw milk ewe's cheeses was evaluated. Cheeses were investigated at different ripening times for their microbial composition, free amino acids (FAAs), BAs and GABA content. Moreover, the expression of tyrosine (tdc) and histidine (hdc) decarboxylases genes was evaluated by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Microbial counts showed similar values in all samples. Pig rennet were cheeses were characterized by higher proteolysis and the highest values of BAs. The BAs detected were putrescine, cadaverine and tyramine, while histamine was absent. qRT-PCR confirmed this data, in fact hdc gene was not upregulated, while tdc gene expression increased over time in agreement with the increasing content of tyramine and the highest fold changes were detected in R3 cheeses. GABA showed the highest concentration in R2 cheeses reaching a value of 672 mg/kg. These results showed that the accumulation of BAs and GABA in Pecorino di Farindola is influenced by ripening time and type of coagulant. Further studies are required to develop starter cultures to reduce BAs content and improve health characteristics of raw milk ewe's cheeses.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Noemi Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Alessia Pepe
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
14
|
Narisawa T, Nakajima H, Umino M, Kojima T, Yamashita H, Kiribuchi-Otobe C, Yamada M, Asakura T. Cultivar differences in lipoxygenase activity affect volatile compound formation in dough from wheat mill stream flour. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Decimo M, Cabeza MC, Ordóñez JA, De Noni I, Brasca M. Volatile organic compounds associated with milk spoilage by psychrotrophic bacteria. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marilù Decimo
- Institute of Sciences of Food Production; National Research Council of Italy; Via G. Celoria 2 Milan 20133 Italy
| | - María C Cabeza
- Department of Nutrition, Bromatology and Technology of Food; Faculty of Veterinary; Complutense University; Avda Puerta de Hierro Madrid 28040 Spain
| | - Juan A Ordóñez
- Department of Nutrition, Bromatology and Technology of Food; Faculty of Veterinary; Complutense University; Avda Puerta de Hierro Madrid 28040 Spain
| | - Ivano De Noni
- Department of Food; Environmental and Nutritional Sciences; University of Milan; Via G. Celoria 2 Milan 20133 Italy
| | - Milena Brasca
- Institute of Sciences of Food Production; National Research Council of Italy; Via G. Celoria 2 Milan 20133 Italy
| |
Collapse
|
16
|
Câmara SPA, Dapkevicius A, Rosa HJD, Silva CCG, Malcata FX, Enes Dapkevicius MLN. Physicochemical, biochemical, microbiological and safety aspects of Pico cheese: Assessment throughout maturation and on the final product. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sandra P A Câmara
- IITAA-Institute of Agricultural and Environmental Research and Technology/Faculty of Agricultural and Environmental Sciences; University of the Azores; Rua Capitão João d'Ávila 9700-042 Angra do Heroísmo Portugal
| | - Airidas Dapkevicius
- IITAA-Institute of Agricultural and Environmental Research and Technology/Faculty of Agricultural and Environmental Sciences; University of the Azores; Rua Capitão João d'Ávila 9700-042 Angra do Heroísmo Portugal
| | - Henrique J D Rosa
- IITAA-Institute of Agricultural and Environmental Research and Technology/Faculty of Agricultural and Environmental Sciences; University of the Azores; Rua Capitão João d'Ávila 9700-042 Angra do Heroísmo Portugal
| | - Célia C G Silva
- IITAA-Institute of Agricultural and Environmental Research and Technology/Faculty of Agricultural and Environmental Sciences; University of the Azores; Rua Capitão João d'Ávila 9700-042 Angra do Heroísmo Portugal
| | - F Xavier Malcata
- Department of Chemical Engineering; University of Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Maria L N Enes Dapkevicius
- IITAA-Institute of Agricultural and Environmental Research and Technology/Faculty of Agricultural and Environmental Sciences; University of the Azores; Rua Capitão João d'Ávila 9700-042 Angra do Heroísmo Portugal
| |
Collapse
|
17
|
Dugat-Bony E, Sarthou AS, Perello MC, de Revel G, Bonnarme P, Helinck S. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese. J Dairy Sci 2016; 99:2502-2511. [DOI: 10.3168/jds.2015-10502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
|
18
|
Calasso M, Mancini L, Di Cagno R, Cardinali G, Gobbetti M. Microbial cell-free extracts as sources of enzyme activities to be used for enhancement flavor development of ewe milk cheese. J Dairy Sci 2015; 98:5874-89. [PMID: 26142846 DOI: 10.3168/jds.2015-9362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/26/2015] [Indexed: 02/04/2023]
Abstract
Freeze-dried cell-free extracts (CFE) from Lactobacillus casei LC01, Weissella cibaria 1XF5, Hafnia alvei Moller ATCC 51815, and Debaryomyces hansenii LCF-558 were used as sources of enzyme activities for conditioning the ripening of ewe milk cheese. Compared with control cheese (CC), CFE did not affect the gross composition and the growth of the main microbial groups of the cheeses. As shown through urea-PAGE electrophoresis of the pH 4.6-soluble nitrogen fraction and the analysis of free AA, the secondary proteolysis of the cheeses with CFE added was markedly differed from that of the CC. Compared with CC, several enzyme activities were higher in the water-soluble extracts from cheeses made with CFE. In agreement, the levels of 49 volatile compounds significantly differentiated CC from the cheeses made with CFE. The level of some alcohols, ketones, sulfur compounds, and furans were the lowest in the CC, whereas most aldehydes were the highest. Each CFE seemed to affect a specific class of chemical compounds (e.g., the CFE from H. alvei ATCC 51815 mainly influenced the synthesis of sulfur compounds). Apart from the microbial source used, the cheeses with the addition of CFE showed higher score for acceptability than the control cheese. Cheese ripening was accelerated or conditioned using CFE as sources of tailored enzyme activities.
Collapse
Affiliation(s)
- Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Leonardo Mancini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
19
|
Remenant B, Jaffrès E, Dousset X, Pilet MF, Zagorec M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol 2015; 45:45-53. [DOI: 10.1016/j.fm.2014.03.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
|
20
|
Orozova P, Sirakov I, Chikova V, Popova R, Al-Harbi AH, Crumlish M, Austin B. Recovery of Hafnia alvei from diseased brown trout, Salmo trutta L., and healthy noble crayfish, Astacus astacus (L.), in Bulgaria. JOURNAL OF FISH DISEASES 2014; 37:891-898. [PMID: 24422558 DOI: 10.1111/jfd.12212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 06/03/2023]
Abstract
Hafnia alvei was isolated in Bulgaria from healthy noble crayfish, Astacus astacus (L.), and then from farmed diseased brown trout, Salmo trutta L., with signs of haemorrhagic septicaemia. The isolates were identified initially with conventional phenotyping and commercial Merlin Micronaut and API 20E rapid identification systems, followed by sequencing of the 16S rRNA gene. Hafnia alvei Bt1, Bt2 and Aa4 were of low virulence to rainbow trout and brown trout, although cytotoxicity was demonstrated by Bt1 and Bt2, but not by Aa4.
Collapse
Affiliation(s)
- P Orozova
- National Reference Laboratory for Fish, Molluscs and Crustacean Diseases, National Diagnostic Science-and-Research Veterinary Medical Institute, Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
21
|
Decimo M, Morandi S, Silvetti T, Brasca M. Characterization of Gram-Negative Psychrotrophic Bacteria isolated from Italian Bulk Tank Milk. J Food Sci 2014; 79:M2081-90. [DOI: 10.1111/1750-3841.12645] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Marilù Decimo
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Stefano Morandi
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Tiziana Silvetti
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| | - Milena Brasca
- Inst. of Sciences of Food Production; Italian Natl. Research Council; Via Celoria 2 20133 Milan Italy
| |
Collapse
|
22
|
Casalinuovo F, Rippa P, Battaglia L, Parisi N. Isolation of Cronobacter spp. (Enterobacter Sakazakii) from Artisanal Mozzarella. Ital J Food Saf 2014; 3:1526. [PMID: 27800308 PMCID: PMC5076658 DOI: 10.4081/ijfs.2014.1526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/23/2022] Open
Abstract
Cronobacter spp. (Enterobacter sakazakii) is an opportunistic bacterial pathogen capable of causing disease and even fatalities in newborn infants within the first weeks of life if consumed as part of the diet. Premature and immunocompromised newborn infants are at particular risk. The microorganism has been isolated from a variety of foods including contaminated infant milk formula powder and milk powder substitute. The study aimed to evaluate the level of microbiological contamination in 47 samples of mozzarella cheese made with cow's milk collected from artisan cheese producers in Southern Italy. Samples were collected from commercial sales points and underwent qualitative and quantitative microbiological analyses to test for the bacterial contaminants most commonly found in milk and cheese products. The 47 samples underwent qualitative and quantitative microbiological tests according to ISO UNI EN standards. Analyses focused on Staphylococcus aures, Salmonella spp., Listeria monocytogenes, Pseudomonas spp., E. coli, Yersinia spp., total coliforms and Cronobacter sakazakii. The ISO/TS 22964:2006 method was used to investigate possible contamination by C. sakazakii. Biochemical identification was carried out using an automated system for identification and susceptibility tests. None of the samples examined resulted positive for Salmonella spp. or Listeria spp. Only one sample resulted positive for Staphylococcus aureus. Pseudomonas spp. was isolated in 10 (21%) of 47 samples. High levels of total coliforms were found in 10 of 47 samples. Cronobacter spp. (Enterobacter sakazakii) was isolated in one sample. This is the first study to confirm isolation of C. sakazakii in artisan mozzarella cheese made from cow's milk. The presence of C. sakazakii could be related to external contamination during the phases of production or to the use of contaminated milk. Since mozzarella is recommended in the diet of children and adults of all ages, this present study helps define it as a potential vehicle for C. sakazakii in subjects at particular risk.
Collapse
Affiliation(s)
- Francesco Casalinuovo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno - Sezione di Catanzaro , Italy
| | - Paola Rippa
- Istituto Zooprofilattico Sperimentale del Mezzogiorno - Sezione di Catanzaro , Italy
| | | | | |
Collapse
|
23
|
Preis S, Klauson D, Gregor A. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 114:125-38. [PMID: 23238056 DOI: 10.1016/j.jenvman.2012.10.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 05/23/2023]
Abstract
Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity.
Collapse
Affiliation(s)
- S Preis
- LUT Chemistry, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeenranta, Finland
| | | | | |
Collapse
|
24
|
Proteolysis, lipolysis, volatile compounds and sensory characteristics of Hispánico cheeses made using frozen curd from raw and pasteurized ewe milk. J DAIRY RES 2012; 80:51-7. [PMID: 23253470 DOI: 10.1017/s0022029912000738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hispánico cheese, manufactured from a mixture of cow and ewe milk, is representative of cheese varieties made using milk from more than one animal species in Mediterranean countries. The shortage of ewe milk production in autumn hinders the uniformity of Hispánico cheese composition throughout the year. To surmount this inconvenience of ewe milk seasonality, curds made in spring from raw and pasteurized ewe milk were stored frozen and used four months later for the manufacture of Hispánico cheese. Experimental cheeses were made by mixing fresh curd from pasteurized cow milk with thawed curd from raw or pasteurized ewe milk, and control cheese from a mixture of pasteurized cow and ewe milk in the same proportion. Characteristics of experimental and control cheeses throughout a 60-d ripening period were investigated. On the one hand, the experimental cheese containing frozen curd from raw ewe milk showed the highest counts of staphylococci, Gram-negative bacteria and coliforms, the highest levels of aminopeptidase and esterase activity, and the highest concentrations of free amino acids, free fatty acids, alcohols and esters. On the other, the experimental cheese containing frozen curd from pasteurized ewe milk had concentrations of free amino acids, free fatty acids and volatile compounds similar to those of control cheese, with the only exception being a higher level of ketones. Flavour intensity reached the highest scores in the experimental cheese containing frozen curd from raw ewe milk, followed by the experimental cheese containing frozen curd from pasteurized ewe milk. Flavour quality scores of both experimental cheeses were similar, and lower than those of control cheese.
Collapse
|
25
|
Schirone M, Tofalo R, Fasoli G, Perpetuini G, Corsetti A, Manetta AC, Ciarrocchi A, Suzzi G. High content of biogenic amines in Pecorino cheeses. Food Microbiol 2012; 34:137-44. [PMID: 23498190 DOI: 10.1016/j.fm.2012.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Pecorino refers to Italian cheeses made exclusively from raw or pasteurized ewes' milk, characterized by a high content of fat matter and it is mainly produced in the Middle and South of Italy by traditional procedures. The autochthonous microbiota plays an important role in the organoleptic traits of Pecorino cheese and it can influence biogenic amines (BA) content. The aim of this study was to characterize from microbiological and chemical point of view 12 randomly purchased commercial cheeses produced in Abruzzo region. Moreover, the BA content and the bacteria showing a decarboxylating activity were detected. For this purpose, a real-time quantitative PCR (qPCR) was applied to evaluate histamine and tyramine-producers. The samples were well differentiated for microbial groups composition, such as aerobic mesophilic bacteria, Enterobacteriaceae, coagulase-negative staphylococci, yeasts, enterococci, mesophilic and thermophilic lactobacilli. Pathogens such as Salmonella spp., Listeria monocytogenes and Escherichia coli O157:H7 were absent in all samples. In most samples the content of BA resulted to be high, with prevalence of histamine and tyramine. In particular, total BA content reached 5861 mg/kg in Pecorino di Fossa cheese. The qPCR method resulted to be very useful to understand the role of autochthonous Pecorino cheese microbiota on BA accumulation in many different products. In fact, since the ability of microorganisms to decarboxylate aminoacids is highly variable being in most cases strain-specific, the detection of bacteria possessing this activity is important to estimate the risk of BA cheese content.
Collapse
Affiliation(s)
- Maria Schirone
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via C.R. Lerici 1, 64023 Mosciano Sant'Angelo, Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hernández-Macedo M, Contreras-Castillo C, Tsai S, Da Cruz S, Sarantopoulos C, Padula M, Dias C. Gases and volatile compounds associated with micro-organisms in blown pack spoilage of Brazilian vacuum-packed beef. Lett Appl Microbiol 2012; 55:467-75. [DOI: 10.1111/lam.12004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/26/2022]
Affiliation(s)
- M.L. Hernández-Macedo
- Departamento de Agroindústria, Alimentos e Nutrição, ESALQ; Universidade de São Paulo; São Paulo Brazil
| | - C.J. Contreras-Castillo
- Departamento de Agroindústria, Alimentos e Nutrição, ESALQ; Universidade de São Paulo; São Paulo Brazil
| | - S.M. Tsai
- Centro de Energia Nuclear na Agricultura, CENA; Universidade de São Paulo; São Paulo Brazil
| | - S.H. Da Cruz
- Departamento de Agroindústria, Alimentos e Nutrição, ESALQ; Universidade de São Paulo; São Paulo Brazil
| | - C.I.G.L. Sarantopoulos
- Centro de Tecnologia de Embalagem; Instituto de Tecnologia de Alimentos; São Paulo Brazil
| | - M. Padula
- Centro de Tecnologia de Embalagem; Instituto de Tecnologia de Alimentos; São Paulo Brazil
| | - C.T.S. Dias
- Departamento de Ciências Exatas, ESALQ; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
27
|
Hubbs AF, Cumpston AM, Goldsmith WT, Battelli LA, Kashon ML, Jackson MC, Frazer DG, Fedan JS, Goravanahally MP, Castranova V, Kreiss K, Willard PA, Friend S, Schwegler-Berry D, Fluharty KL, Sriram K. Respiratory and olfactory cytotoxicity of inhaled 2,3-pentanedione in Sprague-Dawley rats. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:829-44. [PMID: 22894831 DOI: 10.1016/j.ajpath.2012.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
High-Pressure Treatment and Freezing of Raw Goat Milk Curd for Cheese Manufacture: Effects on Cheese Characteristics. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Impact of Gram-negative bacteria in interaction with a complex microbial consortium on biogenic amine content and sensory characteristics of an uncooked pressed cheese. Food Microbiol 2012; 30:74-82. [DOI: 10.1016/j.fm.2011.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 11/09/2011] [Accepted: 12/06/2011] [Indexed: 11/15/2022]
|
30
|
Coton M, Delbés-Paus C, Irlinger F, Desmasures N, Le Fleche A, Stahl V, Montel MC, Coton E. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiol 2012; 29:88-98. [DOI: 10.1016/j.fm.2011.08.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/14/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
|
31
|
Ecological and aromatic impact of two Gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese. Int J Food Microbiol 2012; 153:332-8. [DOI: 10.1016/j.ijfoodmicro.2011.11.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 11/17/2022]
|
32
|
Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward AC, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N. Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 2011; 57:651-60. [PMID: 21815832 DOI: 10.1139/w11-050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG)(5)-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter , Brevibacterium , Corynebacterium , and Staphylococcus . New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes , Hafnia , Proteus , Pseudomonas , and Psychrobacter . Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gram-negative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.
Collapse
Affiliation(s)
- Sandra Larpin-Laborde
- Université de Caen Basse-Normandie, Unité des Microorganismes d'Intérêt Laitier et Alimentaire, E.A. 3213, IFR 146 ICORE, 14032 Caen CEDEX, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deetae P, Saint-Eve A, Spinnler HE, Helinck S. Critical effect of oxygen on aroma compound production by Proteus vulgaris. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Deetae P, Mounier J, Bonnarme P, Spinnler H, Irlinger F, Helinck S. Effects of Proteus vulgaris growth on the establishment of a cheese microbial community and on the production of volatile aroma compounds in a model cheese. J Appl Microbiol 2009; 107:1404-13. [DOI: 10.1111/j.1365-2672.2009.04315.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Ercolini D, Russo F, Ferrocino I, Villani F. Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk. Food Microbiol 2009; 26:228-31. [DOI: 10.1016/j.fm.2008.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/16/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
|
36
|
Growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp. during ripening in a cheese model medium. Appl Microbiol Biotechnol 2009; 82:169-77. [DOI: 10.1007/s00253-008-1805-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
37
|
Hettinga KA, van Valenberg HJF, Lam TJGM, van Hooijdonk ACM. Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy Sci 2009; 91:3834-9. [PMID: 18832205 DOI: 10.3168/jds.2007-0941] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In addition, samples from cows without clinical mastitis and with low somatic cell count (SCC) were collected for comparison. All mastitis samples were examined by using classical microbiological methods, followed by headspace analysis for volatile metabolites. Milk from culture-negative samples contained a lower number and amount of volatile components compared with cows with clinical mastitis. Because of variability between samples within a group, comparisons between pathogens were not sufficient for classification of the samples by univariate statistics. Therefore, an artificial neural network was trained to classify the pathogen in the milk samples based on the bacterial metabolites. The trained network differentiated milk from uninfected and infected quarters very well. When comparing pathogens, Staph. aureus produced a very different pattern of volatile metabolites compared with the other samples. Samples with coagulase-negative staphylococci and E. coli had enough dissimilarity with the other pathogens, making it possible to separate these 2 pathogens from each other and from the other samples. The 2 streptococcus species did not show significant differences between each other but could be identified as a different group from the other pathogens. Five groups can thus be identified based on the volatile bacterial metabolites: Staph. aureus, coagulase-negative staphylococci, streptococci (Strep. uberis and Strep. dysgalactiae as one group), E. coli, and uninfected quarters.
Collapse
Affiliation(s)
- K A Hettinga
- Dairy Science and Technology group, Wageningen University and Research Centre, Wageningen, the Netherlands.
| | | | | | | |
Collapse
|
38
|
In situ gene expression in cheese matrices: application to a set of enterococcal genes. J Microbiol Methods 2008; 75:485-90. [PMID: 18727939 DOI: 10.1016/j.mimet.2008.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/23/2022]
Abstract
Transcriptional approaches are increasingly used to compare the behaviour of pathogenic and non-pathogenic bacteria in different culture conditions. The purpose of this study was to apply these methods in cheese to better characterize food and clinical Enterococcus faecalis isolates during cheese processing. Because of the complex biochemical composition of the cheese matrix, e.g. the presence of casein and fat, we developed an efficient method to recover total RNA from bacteria in a semi-hard cheese model. To validate the RNA extraction method, we analysed expression of 7 genes from two E. faecalis strains (one clinical and one food isolate) in both cheese and culture medium by semi-quantitative RT-PCR. We then used PCR-based DNA macro-arrays to compare expression of 154 genes from two E. faecalis strains in both cheese and culture medium. The food strain isolated from cheese is transcriptionally active in cheese, as reflected by the higher transcript levels of various genes. Conversely, overall transcript levels of the V583 clinical isolate were lower in cheese, suggesting that the food strain may be more adapted to a dairy environment than the clinical strain. The method described here constitutes a very promising tool for future transcriptomic studies in cheese matrices. Global profiling in foods may prove to be a valid criterion for differentiating food from clinical isolates.
Collapse
|
39
|
Vivas J, Padilla D, Real F, Bravo J, Grasso V, Acosta F. Influence of environmental conditions on biofilm formation by Hafnia alvei strains. Vet Microbiol 2008; 129:150-5. [DOI: 10.1016/j.vetmic.2007.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 11/29/2022]
|
40
|
Abstract
This review describes volatiles released into the air by bacteria growing on defined media. Their occurrence, function, and biosynthesis are discussed, and a total of 308 references are cited. An effort has been made to organize the compounds according to their biosynthetic origin.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| | | |
Collapse
|
41
|
Friedemann M. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 2007; 116:1-10. [PMID: 17331606 DOI: 10.1016/j.ijfoodmicro.2006.12.018] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/28/2006] [Accepted: 12/29/2006] [Indexed: 11/29/2022]
Abstract
The ubiqitous microorganism Enterobacter sakazakii is a rare contaminant of infant formula and may cause severe systemic infection in neonates. So far, other food is not known to cause E. sakazakii-infections. The scarce information about the ecology of E. sakazakii and the uncertainty concerning the source of infection in children and adults warrant a summary of the current knowledge about the presence of this opportunistic microorganism in food other than infant formula. This review systematizes publications on the presence of E. sakazakii in food and beverages until June 2006. Food other than infant formula has been rarely investigated for the presence of E. sakazakii. Nevertheless, this microorganism could be isolated from a wide spectrum of food and food ingredients. E. sakazakii was isolated from plant food and food ingredients like cereal, fruit and vegetables, legume products, herbs and spices as well as from animal food sources like milk, meat and fish and products made from these foods. The spectrum of E. sakazakii-contaminated food covers both raw and processed food. The kind of processing of E. sakazakii-contaminated food was not restricted to dry products. Fresh, frozen, ready-to-eat, fermented and cooked food products as well as beverages and water suitable for the preparation of food, were found to be contaminated by E. sakazakii. Although E. sakazakii-contaminated food do not have general public health significance, measures for prevention should consider the presence of E. sakazakii in food, food ingredients, their processing and preparation as possible source of contamination, colonization or infection.
Collapse
Affiliation(s)
- Miriam Friedemann
- Bundesinstitut für Risikobewertung (BfR), Federal Institute for Risk Assessment (BfR), Alt-Marienfelde 17-21, D-12277 Berlin, Germany.
| |
Collapse
|
42
|
Chaves-López C, De Angelis M, Martuscelli M, Serio A, Paparella A, Suzzi G. Characterization of the Enterobacteriaceae isolated from an artisanal Italian ewe's cheese (Pecorino Abruzzese). J Appl Microbiol 2006; 101:353-60. [PMID: 16882142 DOI: 10.1111/j.1365-2672.2006.02941.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate some physiological characteristics of the Enterobacteriaceae isolated from Pecorino cheese. METHODS AND RESULTS The production of organic acids, secondary volatile compounds, biogenic amines (BA) and the lipolytic and proteolytic activities of Citrobacter braakii, Enterobacter sakazakii, Escherichia coli, Kluyvera spp., Salmonella enterica ssp. arizonae and Serratia odorifera strains were determined in skim milk after 48 h of fermentation at 30 degrees C. The proteolytic activity observed only in Ser. odorifera and Kluyvera spp. was confirmed by the peptide profiles of the pH 4.6-insoluble fraction using RP-HPLC; however, the lipase activity was evidenced in all the isolates of E. coli, Kluyvera spp. and Salm. enterica ssp. arizonae. During fermentation, all the strains utilized citric acid and produced significant quantities of putrescine followed by histamine, spermine and spermidine as well as acetic and lactic acid. Moreover, the major volatile compounds produced were ethanol, 2,3-butanedione, 3-hydroxy-2-butanone, 2-heptanone and acetone. CONCLUSIONS The Enterobacteriaceae of dairy origin possess many metabolic activities that could affect the sensory quality of the cheese in which they grow during ripening. SIGNIFICANCE AND IMPACT OF THE STUDY The important physiological characteristics possessed by Enterobacteriaceae confirm the complexity of the microbiota of Pecorino Abruzzese cheese, which influences the typical sensory properties of this product.
Collapse
Affiliation(s)
- C Chaves-López
- Dipartimento di Scienze degli Alimenti, Università di Teramo, Via Carlo Lerici 1 Mosciano Stazione (TE), Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Morales P, Fernández-García E, Nuñez M. Volatile compounds produced in cheese by pseudomonas strains of dairy origin belonging to six different species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6835-43. [PMID: 16104808 DOI: 10.1021/jf050717b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Production of volatile compounds by seven Pseudomonas strains belonging to six different species, Ps. brenneri, Ps. graminis, Ps. libanensis, Ps. lundensis, Ps. putida, and Ps. rhodesiae, was investigated, with the aim of elucidating their possible contribution to the volatile profile of cheese. Laboratory-scale cheeses were made from pasteurized milk of low bacterial counts separately inoculated with approximately 10(5) colony-forming units/mL of each Pseudomonas strain and ripened for 12 days at 10 degrees C. A total of 122 volatile compounds were identified in cheeses by GC-MS of the dynamic headspace. The abundance of 62 compounds, belonging to eight chemical groups (aldehydes, ketones, acids, esters, alcohols, hydrocarbons, benzene compounds, and sulfur compounds) increased during ripening for at least one of the strains. Most groups of volatile compounds were more abundant in the outer part of cheeses than in the inner part, in agreement with the aerobic metabolism of the genus Pseudomonas and coinciding with the higher counts in the outer part. Production of volatile compounds in cheese by Pseudomonas was shown to be species-dependent.
Collapse
Affiliation(s)
- Pilar Morales
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid, 28040 Spain
| | | | | |
Collapse
|
44
|
Morales P, Fernández-García E, Nuñez M. Production of volatile compounds in cheese by Pseudomonas fragi strains of dairy origin. J Food Prot 2005; 68:1399-407. [PMID: 16013377 DOI: 10.4315/0362-028x-68.7.1399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volatile compounds produced in cheese by five Pseudomonas fragi strains isolated from 1-day-old raw milk cheeses were investigated. Each strain was representative of a different biochemical group of isolates of identical phenotypic characteristics, according to identification with API 20 NE strips. The five strains were ascribed to the species P. fragi after 16S rRNA sequencing because of their high degree of coincidence with P. fragi ATCC 4973. In each of two experiments, carried out on different days, five cheeses were made at laboratory scale from pasteurized milk separately inoculated with approximately 10(5) CFU/ml of each P. fragi strain. After 12 days at 10 degrees C, mean counts of P. fragi strains were close to 10(10) CFU/g in the outer part of cheeses and close to 10(8) CFU/g in the inner part. A total of 131 volatile compounds, 49 of which were further characterized, were identified in cheeses by gas chromatography-mass spectrometry after extraction with a purge and trap apparatus. Abundances of compounds were generally higher in the outer part of cheeses. Production of volatile compounds was clearly strain dependent. Only two strains produced ethyl esters, and three produced nonethyl esters. Ethyl acetate, ethyl butyrate, ethyl caproate, methyl acetate, isopropyl acetate, and propyl tiglate were the major esters, and ethanol, 2-propanol, and 3-methyl butanol were the major alcohols. Undecene was the major hydrocarbon, dimethyl sulfide and methyl thiocyanate the major sulfur compounds, and 2-pentanone the major ketone. Two aromatic compounds, styrene and o-dichlorobenzene, were present in all cheeses.
Collapse
Affiliation(s)
- Pilar Morales
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid, 28040 Spain
| | | | | |
Collapse
|
45
|
Rappert S, Müller R. Odor compounds in waste gas emissions from agricultural operations and food industries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2005; 25:887-907. [PMID: 16129591 DOI: 10.1016/j.wasman.2005.07.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 06/06/2005] [Accepted: 07/18/2005] [Indexed: 05/04/2023]
Abstract
In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.
Collapse
Affiliation(s)
- S Rappert
- Biotechnology II, Technical University Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg, Germany
| | | |
Collapse
|