1
|
Fang J, Lu J, Zhao X, Zhang T, Ye H, Fang T, Wang Y, Guo N. Zearalenone removal using inactivated yeast embedded in porous modified yam starch aerogels and its application in corn silk tea. Food Chem 2024; 460:140593. [PMID: 39111046 DOI: 10.1016/j.foodchem.2024.140593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Zearalenone contaminates food and poses a threat to human health. It is vital to develop cost-effective and environmentally-friendly adsorbents for its removal. By screening Sporobolomyces pararoseus (SZ4) and modified yam starch (adsorption capacity (qe) of 1.33 and 0.94 mg/g, respectively), this study prepared a novel composite aerogel adsorbent (P-YSA@SZ410). The compressive strength of P-YSA@SZ410 was 1.35-fold higher than unloaded yeast. It contained several functional groups and three-dimensional interconnected channels, achieving a 0° contact angle within 0.18 s, thereby demonstrating excellent water-absorbent properties. With a qe of 2.96 mg/g at 308 K, the adsorption process of P-YSA@SZ410 was spontaneous, endothermic, and matched pseudo-second-order and Langmuir models. The composite adsorbed zearalenone via electrostatic attraction and hydrogen bonding, maintaining a qe of 2.24 mg/g after five cycles. P-YSA@SZ410 was found to remove zearalenone effectively under various conditions and could be applied to corn silk tea, indicating its great potential as an adsorbent material.
Collapse
Affiliation(s)
- Jiaqi Fang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jiahong Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xingchen Zhao
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lygnby, Denmark
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tianqi Fang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
3
|
Pushparaj K, Meyyazhagan A, Pappuswamy M, Mousavi Khaneghah A, Liu W, Balasubramanian B. Occurrence, identification, and decontamination of potential mycotoxins in fruits and fruit by‐products. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore Tamil Nadu India
| | - Arun Meyyazhagan
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Manikantan Pappuswamy
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute Warsaw Poland
| | - Wen‐Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang China
| | | |
Collapse
|
4
|
Wang Z, Wang L, Ming Q, Yue T, Ge Q, Yuan Y, Gao Z, Cai R. Reduction the contamination of patulin during the brewing of apple cider and its characteristics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1149-1162. [PMID: 35343883 DOI: 10.1080/19440049.2022.2055155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patulin is one of the most significant food safety problems in fruit and derived products. The reduction of patulin contamination in food processing has always been the focus of research. In this study, nine yeast strains were applied for the brewing of apple cider and the fate of patulin was determined. In this process, the patulin contamination can be decreased by adsorption onto and degradation of yeast cells in the main fermentation (20.8-49.1%), as well as the adsorption removal during clarification (18.7-58%), inverted cans (21.3-31.4%) and aging (1.0-5.8%). Saccharomyces cerevisiae (1027) was selected to reveal the elimination mechanism of patulin in main fermentation. The decrease of patulin content was mainly due to degradation and the intracellular enzymes played a more important role than extracellular ones. In addition, the synthesis of enzymes was related to the induction of patulin. Furthermore, the degradation product of patulin in the main fermentation was identified as E-ascladiol, which is less toxic than patulin. Based on the representative strain of S. cerevisiae 1027, patulin contamination can be effectively eliminated during apple cider brewing. This study provides a new insight into eliminating patulin contamination in the brewing of apple cider.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qiaoying Ming
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qian Ge
- Institute of Quality Standards and Testing Technology for Agricultural Products (Ningxia), Yinchuan, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Rui Cai
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
6
|
López-Fernández O, Bohrer BM, Munekata PES, Domínguez R, Pateiro M, Lorenzo JM. Improving oxidative stability of foods with apple-derived polyphenols. Compr Rev Food Sci Food Saf 2021; 21:296-320. [PMID: 34897991 DOI: 10.1111/1541-4337.12869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023]
Abstract
Consumers demand healthy and natural food products. Thus, naturally derived antioxidants are emerging as a promising alternative to the use of present ingredients. Apples and apple derivative products (e.g., apple juice, apple cider, apple sauce, and others) are widely consumed throughout the world for a variety of different reasons and supply a large quantity of polyphenolic compounds. The extraction of polyphenolic compounds from apples and their incorporation into processed foods as naturally sourced ingredients could be a preferred alternative to commonly used commercial antioxidants that are used in many foods. In addition, they could have a positive impact on the environment and on the economy due to the utilization of byproducts generated during processing of apples, like apple pomace. In terms of the extraction procedures for the antioxidant compounds found in apples, the most efficient processes are methods that use ultrasound as the extraction tool. With this technique, greater yields are achieved, and less extraction time is required when compared with other, more conventional, extraction methods. However, parameters such as the extraction solvent, temperature during extraction, and extraction time must be suitably optimized in order to obtain the best performance and the highest antioxidant capacity. From an application standpoint, the use of apple-derived polyphenol extracts as a naturally derived food additive has documented applications for bread, meat, fish, cookies, and juices and there is evidence of increased antioxidant capacity, reduced rate of lipid oxidation, and increased storage time without compromising on sensory properties.
Collapse
Affiliation(s)
| | - Benjamin M Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
7
|
Influence of processing steps on the fate of ochratoxin A, patulin, and alternariol during production of cloudy and clear apple juices. Mycotoxin Res 2021; 37:341-354. [PMID: 34693499 PMCID: PMC8571144 DOI: 10.1007/s12550-021-00443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Mycotoxins are frequently found in fruits and fruit juices. However, data about occurrence and fate of mycotoxins along the fruit juice processing chain are currently insufficient. Herein, a liquid chromatographic/tandem mass spectrometric (LC–MS/MS) multi-mycotoxin method was developed and applied to investigate the effect of technological unit operations on the fate of three of the most relevant mycotoxins along the processing chain for cloudy and clear apple juice, namely patulin (PAT), ochratoxin A (OTA), and alternariol (AOH). Raw juice obtained directly after dejuicing was spiked with the aforementioned mycotoxins at pilot-plant scale prior to subjecting it to different technological unit operations. Regarding clear apple juice production treatment with a pectinolytic enzyme preparation, and pasteurization were insignificant for mycotoxin reduction, but fining with subsequent filtration was effective, although the mycotoxins showed different affinity towards the tested agents. The most effective fining agent was activated charcoal/bentonite in combination with ultrafiltration, which removed OTA (54 µg/L) and AOH (79 µg/L) to not quantifiable amounts (limit of quantification (LOQ) 1.4 and 4.6 µg/L, respectively), while PAT was reduced only by 20% (from 396 to 318 µg/L). Regarding cloudy apple juice production, all studied processing steps such as centrifugation and pasteurization were ineffective in reducing mycotoxin levels. In brief, none of the common steps of clear and cloudy apple juice production represented a fully effective safety step for minimizing or even eliminating common mycotoxins. Thus, ensuring the sole use of sound apples should be of utmost importance for processors, particularly for those manufacturing cloudy juices.
Collapse
|
8
|
Zoghi A, Darani KK, Hekmatdoost A. Effects of Pretreatments on Patulin Removal from Apple Juices Using Lactobacilli: Binding Stability in Simulated Gastrointestinal Condition and Modeling. Probiotics Antimicrob Proteins 2021; 13:135-145. [PMID: 32572682 DOI: 10.1007/s12602-020-09666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, researchers have reported the presence of patulin as a mycotoxin in commercial apple products, especially apple juices. The aim of this study was to assess adsorption of patulin from artificially contaminated apple juice using two lactic acid bacteria (LAB) strains of Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014. Furthermore, effects of five physical and chemical pretreatments on the patulin adsorption were investigated. Results demonstrated that patulin adsorption abilities of both strains increased with NaOH pretreatment but decreased after autoclaving. The NaOH-treated L. plantarum ATCC 8014 showed the best removal rate (59.74%) after 48 h of refrigerated storage, compared with the NaOH-treated L. acidophilus ATCC 4356 (52.36%). Moreover, stability of the LAB-patulin complex was assessed in simulated gastrointestinal tract conditions and a low quantity of patulin was released into the solution. The patulin adsorption process by NaOH-treated L. plantarum ATCC 8014 followed Freundlich isotherm model and pseudo-second-order kinetic model. Fourier transform infrared spectroscopy showed that polysaccharide and protein components of the L. plantarum ATCC 8014 cell wall played key roles in patulin adsorption. The major functional groups of the cell wall that were involved in adsorbing patulin included -OH/-NH, -CH2, C=O, and C-O groups. The current results suggest that NaOH-treated L. plantarum ATCC 8014 cells include the potential to detoxify patulin-contaminated apple juices.
Collapse
Affiliation(s)
- Alaleh Zoghi
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P.O. Box 193954741, Tehran, Iran
| | - Kianoush Khosravi Darani
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, P.O. Box 193954741, Tehran, Iran.
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yiğit GG, Cerit İ, Demirkol O. Oxidative stability of cocoa hazelnut cream enriched with inactive yeast cells. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gamze Gül Yiğit
- Department of Food Engineering Sakarya University Esentepe Sakarya Turkey
| | - İnci Cerit
- Department of Food Engineering Sakarya University Esentepe Sakarya Turkey
| | - Omca Demirkol
- Department of Food Engineering Sakarya University Esentepe Sakarya Turkey
| |
Collapse
|
10
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
11
|
Zhang M, Wen Y, Luo X, Wang X, Li J, Liu A, He L, Chen S, Ao X, Yang Y, Zou L, Liu S. Characterization, mechanism of cypermethrin biosorption by Saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124350. [PMID: 33176957 DOI: 10.1016/j.jhazmat.2020.124350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Cypermethrin is a common food contaminant and environmental pollutant that cause health threats to animals and humans. In this study, the characterization, mechanism, and application of cypermethrin removal by Saccharomyces cerevisiae were investigated. The binding of cypermethrin by the strains S. cerevisiae YS81 and HP was rapid and reached equilibrium at 2-8 h. The removal efficiency was dependent on incubation temperature and yeast concentration, whereas cypermethrin binding was not affected by pH. Heat and acid treatments enhanced the binding ability. Both strains survived in simulated digestion juices and removed cypermethrin effectively under simulated gastrointestinal conditions. Among the strains tested, the YS81 strain was the better candidate for cypermethrin concentration reduction. For the two S. cerevisiae strains, the biosorption kinetics and isotherm followed the pseudo-second-order model and Langmuir model well. The cell walls and the protoplasts were the main yeast cell components involved in cypermethrin binding. Fourier transformed infrared spectroscopy analysis revealed that -OH, -NH, -C-N, -COO-, and -C-O played a major role in binding cypermethrin. Inactive cells effectively removed cypermethrin from apple and cucumber juices and did not affect the physico-chemical properties. Therefore, S. cerevisiae strains YS81 and HP may be used for cypermethrin reduction in food or feed.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yunling Wen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaoli Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
12
|
Assaf CEH, De Clercq N, De Paepe E, Vlaemynck G, Van Coillie E, Van Pamel E. Effect of ascorbic acid, oxygen and storage duration on patulin in cloudy apple juice produced on a semi-industrial scale. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patulin (PAT), a mycotoxin mainly produced by Penicillium expansum, is of high concern with regard to human food safety. This study examined the stability of PAT in artificially contaminated cloudy apple juice (CAJ) produced on a semi-industrial scale using an innovative technology allowing degassing and pressing under low-oxygen conditions (VaculIQ 1000). The effects of adding ascorbic acid (AA), degassing during production and storing in the dark at 20 °C on the PAT concentration were studied, as well as possible degradation and reaction products formed. The highest PAT degradation (50%) was observed for flash-pasteurised juice with AA added, produced under low-oxygen conditions and degassed and stored for 14 days at 20 °C in the dark in aluminium laminate aseptic bags. Juices produced showed no significant differences in the quality parameters measured and did not show significant formation of reaction products. Further research needs to be focused on the fate of PAT in CAJ produced on an industrial level with and without addition of AA.
Collapse
Affiliation(s)
- C. El Hajj Assaf
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - N. De Clercq
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E. De Paepe
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - G. Vlaemynck
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E. Van Coillie
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - E. Van Pamel
- Flanders Research Institute for Agricultural, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
13
|
Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon 2020; 184:83-93. [DOI: 10.1016/j.toxicon.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
|
14
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
15
|
Zheng X, Wei W, Rao S, Gao L, Li H, Yang Z. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Liu Y, Galani Yamdeu JH, Gong YY, Orfila C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr Rev Food Sci Food Saf 2020; 19:1521-1560. [DOI: 10.1111/1541-4337.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| |
Collapse
|
17
|
Qiu Y, Zhang Y, Wei J, Gu Y, Yue T, Yuan Y. Thiol-functionalized inactivated yeast embedded in agar aerogel for highly efficient adsorption of patulin in apple juice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121802. [PMID: 31822350 DOI: 10.1016/j.jhazmat.2019.121802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The issue of patulin (PAT) contamination in apple juice has attracted widespread concern. Recently, inactivated yeast based biosorbents have shown great advantages in the removal of toxic contaminants. However, the traditional yeast adsorbents have disadvantages of a limited adsorption capacity in juice and separation difficulty. In the present work, five chemical thiol-functionalization methods were used to increase the PAT adsorption efficiency of yeast cells in apple juice. Thereinto, glutaraldehyde cross-linking increased the thiol (-SH) content of yeast cells to 1.26 mmol g-1 and improved the PAT adsorption capacity of inactivated yeast in apple juice by 150 times. The covalent bonding of -SH and PAT played an important role in the improvement of adsorption capacity. The as-prepared thiol-modification yeast (Y-SH(Gl)) was then embedded in the agar aerogel to obtain Y-SH(Gl)@Agar free of separation. PAT adsorption of Y-SH(Gl)@Agar was consistent with the Freundlich model and the pseudo-second-order kinetic model. Moreover, Y-SH(Gl)@Agar was competent for PAT removal in apple juice and manifested negligible effects on juice quality. Cytotoxicity investigation indicated its good biocompatibility and ignorable food safety risk, thereby demonstrating that Y-SH(Gl)@Agar may be a promising adsorbent material for the control of PAT contaminant in juice.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yangeng Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China.
| |
Collapse
|
18
|
Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Oporto CI, Villarroel CA, Tapia SM, García V, Cubillos FA. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces Cerevisiae. Toxins (Basel) 2019; 11:toxins11070400. [PMID: 31295862 PMCID: PMC6669508 DOI: 10.3390/toxins11070400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a mycotoxin produced by a suite of fungi species. Patulin is toxic to humans and is a sporadic contaminant in products that were made from fungi-infected fruits. The baker yeast Saccharomyces cerevisiae (S. cerevisiae) has been shown to decrease patulin levels likely by converting it to the less harmful E-ascladiol, yet this capacity is dependent on the strain utilized. In this study we show that four representative strains of different S. cerevisiae lineages differ in their ability to tolerate and decrease patulin levels in solution, demonstrating that some strains are better suitable for patulin biocontrol. Indeed, we tested the biocontrol capacities of the best patulin-reducer strain (WE) in contaminated apple juice and demonstrated their potential role as an efficient natural biocontrol solution. To investigate the mechanisms behind the differences between strains, we explored transcriptomic changes of the top (WE strain) and worst (WA strain) patulin-biocontroller strains after being exposed to this toxin. Large and significant gene expression differences were found between these two strains, the majority of which represented genes associated with protein biosynthesis, cell wall composition and redox homeostasis. Interestingly, the WE isolate exhibited an overrepresentation of up-regulated genes involved in membrane components, suggesting an active role of the membrane towards patulin detoxification. In contrast, WA upregulated genes were associated with RNA metabolism and ribosome biogenesis, suggesting a patulin impact upon transcription and translation activity. These results suggest that different genotypes of S. cerevisiae encounter different stresses from patulin toxicity and that different rates of detoxification of this toxin might be related with the plasma membrane composition. Altogether, our data demonstrates the different molecular mechanisms in S. cerevisiae strains withstanding patulin exposure and opens new avenues for the selection of new patulin biocontroller strains.
Collapse
Affiliation(s)
- Christian I Oporto
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Sebastián M Tapia
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile
| | - Verónica García
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago 9170201, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Millennium Institute for Integrative Biology (iBio), Santiago 7500574, Chile.
| |
Collapse
|
20
|
Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120. [PMID: 30857445 DOI: 10.1080/03602532.2019.1589493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patulin is a mycotoxin produced by a number of filamentous fungal species. It is a polyketide secondary metabolite which can gravely cause human health problems and food safety issues. This review deals with the occurrence of patulin in major food commodities from 2008 to date, including historical aspects, source, occurrence, regulatory limits and its toxicity. Most importantly, an overview of the recent research progress about the biodegradation strategies for contaminated food matrices is provided. The physical and chemical approaches have some drawbacks such as safety issues, possible losses in the nutritional quality, chemical hazards, limited efficacy, and high cost. The biological decontamination based on elimination or degradation of patulin using yeast, bacteria, and fungi has shown good results and it seems to be attractive since it works under mild and environment-friendly conditions. Further studies are needed to make clear the detoxification pathways by available potential biosorbents and to determine the practical applications of these methods at a commercial level to remove patulin from food products with special reference to their effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Marina Sajid
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Sajid Mehmood
- d State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection , Northwest A&F University , Yangling , China
| | - Yahong Yuan
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Tianli Yue
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| |
Collapse
|
21
|
Zhang Z, Li M, Wu C, Peng B. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. Journal of Food Science and Technology 2019; 56:2326-2331. [PMID: 30996467 DOI: 10.1007/s13197-019-03681-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022]
Abstract
Patulin (PAT), a mycotoxin mainly produced by various species of fungi, is frequently detected in moldy fruit- and vegetable-based products, which pose a health risk to the consumer. Over the past decades, a few studies reported that PAT content could be significantly decreased by microbial fermentation process. However, the physical adsorption mechanism between PAT and yeast during fermentation is still unclear. In this paper, we focused on the physical adsorption of PAT by Saccharomyces cerevisiae CCTCC 93161 during fermentation in aqueous solutions. Firstly, morphology of differently treated yeast cells were analyzed by scanning electron microscope, then the interactions between PAT and yeast cells were investigated by infrared absorption spectra of differently treated S. Cerevisiae cells before and after the adsorption of PAT. The results showed that the efficiency of PAT removal raised significantly with the increase of fermentation temperature and time, whereas it decreased significantly with the increase of initial PAT concentration in the fermentation system. The proteins and polysaccharides in the cell walls of yeast interacted with PAT and accounted for the physical adsorption. The current work would possibly provide some new insights on PAT control for fermented foods.
Collapse
Affiliation(s)
- Zhuo Zhang
- 1Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Min Li
- 1Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Caie Wu
- 2College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Bangzhu Peng
- 1Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
22
|
Diao E, Hou H, Hu W, Dong H, Li X. Removing and detoxifying methods of patulin: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Sajid M, Mehmood S, Niu C, Yuan Y, Yue T. Effective Adsorption of Patulin from Apple Juice by Using Non-Cytotoxic Heat-Inactivated Cells and Spores of Alicyclobacillus Strains. Toxins (Basel) 2018; 10:E344. [PMID: 30149638 PMCID: PMC6162514 DOI: 10.3390/toxins10090344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a major threat to many food products, especially apple and apple products, causing human health risks and economic losses. The aim of this study was to remove PAT from apple juice by using the heat-inactivated (HI) cells and spores of seven Alicyclobacillus strains under controlled conditions. The HI cells and spores of seven strains adsorbed PAT effectively, and the HI cells and spores of Alicyclobacillus acidocaldarius DSM 451 (A51) showed maximum PAT adsorption capacity of up to 12.621 μg/g by HI cells and 11.751 μg/g by HI spores at 30 °C and pH 4.0 for 24 h. Moreover, the PAT adsorption process followed the pseudo-first order kinetic model and the Freundlich isotherm model; thermodynamic parameters revealed that PAT adsorption is a spontaneous exothermic physisorption process. The results also indicated that PAT adsorption is strain-specific. The HI cells and spores of Alicyclobacillus strains are non-cytotoxic, and the bioadsorption of PAT did not affect the quality of the juice. Furthermore, the cell wall surface plays an important role in the adsorption process.
Collapse
Affiliation(s)
- Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Sajid Mehmood
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| | - Chen Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
24
|
Kim M, Shukla S, Oh Y, Chung SH, Kim M. Comparative Diminution of Patulin Content in Apple Juice With Food-Grade Additives Sodium Bicarbonate, Vinegar, Mixture of Sodium Bicarbonate and Vinegar, Citric Acid, Baking Powder, and Ultraviolet Irradiation. Front Pharmacol 2018; 9:822. [PMID: 30150932 PMCID: PMC6099155 DOI: 10.3389/fphar.2018.00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
This study aimed to determine an optimal method for patulin (PAT) reduction for application in apple juice production. PAT levels in spiked apple juice (100 μg/L) were measured after treatment with citric acid, sodium bicarbonate, vinegar, mixture of sodium bicarbonate and vinegar, baking powder, and ultraviolet (UV) irradiation. Treatments with sodium bicarbonate and UV irradiation were most effective in reducing PAT; however, UV irradiation reduced the yellowness (b∗) of apple juice. However, sodium bicarbonate treatment affected quality attributes including soluble solids, pH, and color of apple juice. The color and odor of apple juice treated with sodium bicarbonate could be recovered via addition of citric acid. The present results suggest that sodium bicarbonate could be considered an additive in apple juice for PAT reduction.
Collapse
Affiliation(s)
- Minkyeong Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Youngsook Oh
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Soo Hyun Chung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, South Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
25
|
Chiocchetti GM, Jadán-Piedra C, Monedero V, Zúñiga M, Vélez D, Devesa V. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Crit Rev Food Sci Nutr 2018; 59:1534-1545. [PMID: 29337587 DOI: 10.1080/10408398.2017.1421521] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical contaminants that are present in food pose a health problem and their levels are controlled by national and international food safety organizations. Despite increasing regulation, foods that exceed legal limits reach the market. In Europe, the number of notifications of chemical contamination due to pesticide residues, mycotoxins and metals is particularly high. Moreover, in many parts of the world, drinking water contains high levels of chemical contaminants owing to geogenic or anthropogenic causes. Elimination of chemical contaminants from water and especially from food is quite complex. Drastic treatments are usually required, which can modify the food matrix or involve changes in the forms of cultivation and production of the food products. These modifications often make these treatments unfeasible. In recent years, efforts have been made to develop strategies based on the use of components of natural origin to reduce the quantity of contaminants in foods and drinking water, and to reduce the quantity that reaches the bloodstream after ingestion, and thus, their toxicity. This review provides a summary of the existing literature on strategies based on the use of lactic acid bacteria or yeasts belonging to the genus Saccharomyces that are employed in food industry or for dietary purposes.
Collapse
Affiliation(s)
- Gabriela Matuoka Chiocchetti
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Carlos Jadán-Piedra
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicente Monedero
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Manuel Zúñiga
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Dinoraz Vélez
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicenta Devesa
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| |
Collapse
|
26
|
Immobilization of inactivated microbial cells on magnetic Fe3O4@CTS nanoparticles for constructing a new biosorbent for removal of patulin in fruit juice. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Öztürk S, Cerit İ, Mutlu S, Demirkol O. Enrichment of cookies with glutathione by inactive yeast cells ( Saccharomyces cerevisiae ): Physicochemical and functional properties. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Ioi JD, Zhou T, Tsao R, F Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins (Basel) 2017; 9:E157. [PMID: 28492465 PMCID: PMC5450705 DOI: 10.3390/toxins9050157] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.
Collapse
Affiliation(s)
- J David Ioi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
29
|
Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem 2017; 221:317-323. [DOI: 10.1016/j.foodchem.2016.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/29/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
|
30
|
Luo Y, Wang Z, Yuan Y, Zhou Z, Yue T. Patulin adsorption of a superior microorganism strain with low flavour-affection of kiwi fruit juice. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to isolate a microbial strain with higher patulin adsorption capability and lower flavour-affection on kiwi fruit juice, and study patulin adsorption behaviour effects on cell morphology and adsorption kinetics. Electronic-nose and physicochemical analysis methods were combined to evaluate the flavour and quality of treated kiwi fruit juice. The results showed that yeasts had a good performance on biomass, patulin adsorption and flavour maintenance. Besides, patulin adsorption behaviour and kinetic study of yeast strain N-10 was investigated, the results showed that patulin adsorption capability was influenced by cell morphology, its adsorption behaviour followed pseudo-first-order reaction kinetics, and equilibrium experiments fit the Langmuir isotherm model. The investigation revealed that patulin adsorption is a spontaneous endothermic physic-sorption behaviour. During adsorption, patulin moved from the liquid to the adsorbent surface and the capability of adsorbents was associated with their cell surface morphology. This study provides a basis for the selection of strains with improved patulin adsorption from kiwi fruit juice and provides the experimental foundation and theoretical basis for future studies of patulin adsorption in fruit juice, it has great potential application for the control of patulin in the juice processing industry.
Collapse
Affiliation(s)
- Y. Luo
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China P.R
| | - Z.L. Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China P.R
| | - Y.H. Yuan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China P.R
| | - Z.K. Zhou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China P.R
| | - T.L. Yue
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China P.R
| |
Collapse
|
31
|
Wang L, Wang Z, Yuan Y, Cai R, Niu C, Yue T. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB) Cells. PLoS One 2015; 10:e0143431. [PMID: 26581099 PMCID: PMC4651504 DOI: 10.1371/journal.pone.0143431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to identify the key factors involved in patulin adsorption by heat-inactivated lactic acid bacteria (LAB) cells. For preventing bacterial contamination, a sterilization process was involved in the adsorption process. The effects of various physical, chemical, and enzymatic pre-treatments, simultaneous treatments, and post-treatments on the patulin adsorption performances of six LAB strains were evaluated. The pre-treated cells were characterized by scanning electron microscopy (SEM). Results showed that the removal of patulin by viable cells was mainly based on adsorption or degradation, depending on the specific strain. The adsorption abilities were widely increased by NaOH and esterification pre-treatments, and reduced by trypsin, lipase, iodate, and periodate pre-treatments. Additionally, the adsorption abilities were almost maintained at pH 2.2-4.0, and enhanced significantly at pH 4.0-6.0. The effects of sodium and magnesium ions on the adsorption abilities at pH 4 were slight and strain-specific. A lower proportion of patulin was released from the strain with higher adsorption ability. Analyses revealed that the physical structure of peptidoglycan was not a principal factor. Vicinal OH and carboxyl groups were not involved in patulin adsorption, while alkaline amino acids, thiol and ester compounds were important for patulin adsorption. Additionally, besides hydrophobic interaction, electrostatic interaction also participated in patulin adsorption, which was enhanced with the increase in pH (4.0-6.0).
Collapse
Affiliation(s)
- Ling Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chen Niu
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Oh SY, Quinton VM, Boermans HJ, Swamy HVLN, Karrow NA. In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs). Mycotoxin Res 2015; 31:167-75. [PMID: 26358170 DOI: 10.1007/s12550-015-0227-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
Penicillium mycotoxins (PMs) are contaminants that are frequently found in grain or crop-based silage for animal feed. Previously, we have characterized the potential immunotoxicity of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), and penicillic acid (PA) by using a bovine macrophage cell line (BoMacs). In the present study, cell proliferation was used as a bioassay endpoint to evaluate the efficacy of a modified yeast cell wall extract (mYCW), for preventing PM toxicity under various in vitro conditions such as the following: pH (3, 5, 7), incubation time (1, 2, 4, 6 h), percentage of mYCW (0.05, 0.1, 0.2, 0.5, 1.0 %), and PM concentration. mYCW was most effective in preventing the toxicity of 12.88 and 25.8 μM OTA at pH 3.0 (p < 0.0001), regardless of incubation time (p < 0.0001) and the percentage of mYCW (p < 0.0001). An incubation time of 6 h (p < 0.05) or 0.5 and 1.0 % mYCW (p < 0.0001) significantly improved the efficacy of mYCW for preventing CIT toxicity. In contrast, 0.5 and 1.0 % of mYCW appeared to exacerbate the PAT toxicity (p < 0. 0001). This effect on PAT toxicity was constantly observed with higher PAT concentrations, and it reached significance at a concentration of 0.70 μM (p < 0.0001). mYCW had no effect on PA toxicity. These results suggest that mYCW may reduce OTA toxicity and, to some extent, CIT toxicity at pH 3.0. Although PAT toxicity was increased by mYCW treatment, PAT is readily degraded during heat treatment and may therefore be dealt with using other preventative measures.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Centre for Genetic Improvement of Livestock (CGIL), Department of Animal and Poultry Science, Department of Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - V Margaret Quinton
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Herman J Boermans
- Department of Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - H V L N Swamy
- Devenish Nutrition Ltd, Bengaluru, Karnataka, 560024, India
| | - Niel A Karrow
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Centre for Genetic Improvement of Livestock (CGIL), Department of Animal and Poultry Science, Department of Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
33
|
Luo Y, Wang J, Liu B, Wang Z, Yuan Y, Yue T. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption. PLoS One 2015; 10:e0136045. [PMID: 26295574 PMCID: PMC4546513 DOI: 10.1371/journal.pone.0136045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.
Collapse
Affiliation(s)
- Ying Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
34
|
A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol 2015; 55:805-18. [DOI: 10.1002/jobm.201400833] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Walter P. Pfliegler
- Department of Genetics and Applied Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA); Hungary
| | - Tünde Pusztahelyi
- Faculty of Agricultural and Food Sciences and Environmental Management; Central Laboratory; University of Debrecen; Debrecen Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
36
|
Dong X, Jiang W, Li C, Ma N, Xu Y, Meng X. Patulin biodegradation by marine yeastKodameae ohmeri. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:352-60. [DOI: 10.1080/19440049.2015.1007090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Yuan Y, Wang X, Hatab S, Wang Z, Wang Y, Luo Y, Yue T. Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Lett Appl Microbiol 2014; 59:604-9. [PMID: 25130934 DOI: 10.1111/lam.12315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED This study aimed to investigate the reduction of patulin (PAT) in apple juice by 12 inactivated Alicyclobacillus strains. The reduction rate of PAT by each strain was determined by high-performance liquid chromatography (HPLC). The results indicated that the removal of PAT was strain specific. Alicyclobacillus acidoterrestris 92 and A. acidoterrestris 96 were the most effective ones among the 12 tested strains in the removal of PAT. Therefore, these two strains were selected to study the effects of incubation time, initial PAT concentration and bacteria powder amount on PAT removal abilities of Alicyclobacillus. The highest PAT reduction rates of 88·8 and 81·6% were achieved after 24-h incubation with initial PAT concentration of 100 μg l(-1) and bacteria powder amount of 40 g l(-1) , respectively. Moreover, it was found that the treatment by these 12 inactivated Alicyclobacillus strains had no negative effect on the quality parameters of apple juice. Similar assays were performed in supermarket apple juice, where inactivated Alicyclobacillus cells could efficiently reduce PAT content. Taken together, these data suggest the possible application of this strategy as a means to detoxify PAT-contaminated juices. SIGNIFICANCE AND IMPACT OF THE STUDY Inactivated Alicyclobacillus cells can efficiently reduce patulin concentration in apple juice. It provides a theoretical foundation for recycling of Alicyclobacillus cells from spoiled apple juice to reduce the source of pollution and the cost of juice industry. This is the first report on the use of Alicyclobacillus to remove patulin from apple juice.
Collapse
Affiliation(s)
- Y Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Exposure to Penicillium mycotoxins alters gene expression of enzymes involved in the epigenetic regulation of bovine macrophages (BoMacs). Mycotoxin Res 2013; 29:235-43. [DOI: 10.1007/s12550-013-0174-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 11/26/2022]
|
39
|
Guo C, Yue T, Yuan Y, Wang Z, Guo Y, Wang L, Li Z. Biosorption of patulin from apple juice by caustic treated waste cider yeast biomass. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Guo C, Yuan Y, Yue T, Hatab S, Wang Z. Binding mechanism of patulin to heat-treated yeast cell. Lett Appl Microbiol 2012; 55:453-9. [PMID: 23066864 DOI: 10.1111/j.1472-765x.2012.03314.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/25/2012] [Accepted: 09/12/2012] [Indexed: 11/30/2022]
Abstract
AIMS This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. METHODS AND RESULTS In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P < 0·05) the ability of heat-treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. CONCLUSIONS Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. SIGNIFICANCE AND IMPACT OF THE STUDY Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation.
Collapse
Affiliation(s)
- C Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Y Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - T Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - S Hatab
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Z Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
41
|
Hatab S, Yue T, Mohamad O. Removal of patulin from apple juice using inactivated lactic acid bacteria. J Appl Microbiol 2012; 112:892-9. [DOI: 10.1111/j.1365-2672.2012.05279.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|