1
|
Moscoso I, Rodríguez-Mañero M, Cebro-Márquez M, Vilar-Sánchez ME, Serrano-Cruz V, Vidal-Abeijón I, Martínez-Monzonís MA, Mazón-Ramos P, Pedreira M, González-Juanatey JR, Lage R. Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers. Int J Mol Sci 2024; 25:11910. [PMID: 39595980 PMCID: PMC11593668 DOI: 10.3390/ijms252211910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiotoxicity (CDTX) is a critical side effect of many cancer therapies, leading to increased morbidity and mortality if not addressed. Early detection of CDTX is essential, and while echocardiographic measures like global longitudinal strain offer promise in identifying early myocardial dysfunction, the search for reliable biomarkers continues. MicroRNAs (miRNAs) are emerging as important non-coding RNA molecules that regulate gene expression post-transcriptionally, influencing key biological processes such as the cell cycle, apoptosis, and stress responses. In cardiovascular diseases, miRNAs have demonstrated potential as biomarkers due to their stability in circulation and specific expression patterns that reflect pathological changes. Certain miRNAs have been linked to CDTX and hold promise for early detection, prognosis, and therapeutic targeting. These miRNAs not only assist in identifying early cardiac injury, but also offer opportunities for personalized interventions by modulating their expression to influence disease progression. As research advances, integrating miRNA profiling with traditional diagnostic methods could enhance the management of CDTX in cancer patients, paving the way for improved patient outcomes and more tailored therapeutic strategies. Further clinical studies are essential to validate the clinical utility of miRNAs in managing CDTX.
Collapse
Affiliation(s)
- Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Marta E. Vilar-Sánchez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - Valentina Serrano-Cruz
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - Iria Vidal-Abeijón
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Pilar Mazón-Ramos
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Milagros Pedreira
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Ramón González-Juanatey
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.C.-M.); (M.E.V.-S.); (V.S.-C.); (I.V.-A.)
- Department of Cardiology and Coronary Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (M.R.-M.); (M.A.M.-M.); (P.M.-R.); (M.P.); (J.R.G.-J.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Zheng YB, Jin X. Evidence for the Contribution of the miR-206/BDNF Pathway in the Pathophysiology of Depression. Int J Neuropsychopharmacol 2024; 27:pyae039. [PMID: 39219169 PMCID: PMC11461769 DOI: 10.1093/ijnp/pyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation, microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and recently were proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex. Until now, only a few studies have been conducted on rodents to understand the role of miR-206 in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviors remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
3
|
Llorente A, Brokāne A, Mlynska A, Puurand M, Sagini K, Folkmane S, Hjorth M, Martin‐Gracia B, Romero S, Skorinkina D, Čampa M, Cešeiko R, Romanchikova N, Kļaviņa A, Käämbre T, Linē A. From sweat to hope: The role of exercise-induced extracellular vesicles in cancer prevention and treatment. J Extracell Vesicles 2024; 13:e12500. [PMID: 39183543 PMCID: PMC11345496 DOI: 10.1002/jev2.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
The benefits of regular physical exercise on cancer prevention, as well as reducing fatigue, treatment side effects and recurrence, and improving quality of life and overall survival of cancer patients, are increasingly recognised. Initial studies showed that the concentration of extracellular vesicles (EVs) increases during physical activity and that EVs carry biologically active cargo. These EVs are released by blood cells, skeletal muscle and other organs involved in exercise, thus suggesting that EVs may mediate tissue crosstalk during exercise. This possibility triggered a great interest in the study of the roles of EVs in systemic adaptation to exercise and in their potential applications in the prevention and treatment of various diseases, including cancer. This review presents studies exploring the concentration and molecular cargo of EVs released during exercise. Furthermore, we discuss putative stimuli that may trigger EV release from various cell types, the biological functions and the impact of exercise-induced EVs on cancer development and progression. Understanding the interplay between exercise, EVs, and cancer biology may offer insights into novel therapeutic strategies and preventive measures for cancer.
Collapse
Affiliation(s)
- Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
- Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Agnese Brokāne
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Agata Mlynska
- Laboratory of ImmunologyNational Cancer InstituteVilniusLithuania
- Department of Chemistry and BioengineeringVilnius Gediminas Technical UniversityVilniusLithuania
| | - Marju Puurand
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Signe Folkmane
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Beatriz Martin‐Gracia
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway
| | - Diana Skorinkina
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| | - Mārtiņš Čampa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | - Rūdolfs Cešeiko
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
| | | | - Aija Kļaviņa
- Latvian Academy of Sport Education, Riga Stradins UniversityRigaLatvia
- Department of Health Promotion and RehabilitationLithuanian Sports UniversityKaunasLithuania
| | - Tuuli Käämbre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Aija Linē
- Cancer Biomarker groupLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
4
|
Srivastava S, Mondal S, Rathor R, Srivastava S, Suryakumar G. Increased Expression of MiRNA-1 Contributes to Hypobaric Hypoxia-Induced Skeletal Muscle Loss. Adv Biol (Weinh) 2024; 8:e2300573. [PMID: 38149527 DOI: 10.1002/adbi.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The present study aims to analyze the role of microRNA-1 in the regulation of skeletal muscle loss under hypobaric hypoxia (HH). Male Sprague Dawley rats (n = 10) weighing 230-250 g are divided into two groups, control and HH exposure for 7 days at 25 000 ft. After the hypoxia exposure, the animals are sacrificed and hindlimb skeletal muscles are excised for further analysis. Studies found the potential role of miR-1 (myomiR) as a biomarker under different atrophic conditions. Prolonged exposure to HH leads to enhanced expression of miR-1 in skeletal muscle as compared to unexposed controls. The Bioinformatics approach is used to identify the validated targets and the biological processes of miR-1. The target prediction tools identify PAX3 and HSP70 as major targets for miR-1. Exposure to HH significantly reduces PAX3 and HSP70 expression during 7 days of HH exposure, which further enhances the activity of FOXO3, MSTN, and ATROGIN known for the progression of skeletal muscle atrophy in relation to control rats. This study indicates the increased expressions of miR-1 and reduced expression of PAX3 and HSP70 lead to impaired myogenesis in skeletal muscle under HH. Further, enhanced expression of muscle degradation genes such as FOXO3, MSTN, and ATROGIN under HH exposure causes skeletal muscle protein loss.
Collapse
Affiliation(s)
- Sukanya Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Samrita Mondal
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
5
|
Cheng YC, Fan Z, Liang C, Peng CJ, Li Y, Wang LN, Luo JS, Zhang XL, Liu Y, Zhang LD. miR-133a and miR-135a Regulate All-Trans Retinoic Acid-Mediated Differentiation in Pediatric Acute Myeloid Leukemia by Inhibiting CDX2 Translation and Serve as Prognostic Biomarkers. Technol Cancer Res Treat 2024; 23:15330338241248576. [PMID: 38693824 PMCID: PMC11067685 DOI: 10.1177/15330338241248576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is a type of blood cancer characterized by excessive growth of immature myeloid cells. Unfortunately, the prognosis of pediatric AML remains unfavorable. It is imperative to further our understanding of the mechanisms underlying leukemogenesis and explore innovative therapeutic approaches to enhance overall disease outcomes for patients with this condition. Methods: Quantitative reverse-transcription PCR was used to quantify the expression levels of microRNA (miR)-133a and miR-135a in 68 samples from 59 pediatric patients with AML. Dual-luciferase reporter transfection assay, Cell Counting Kit-8 assay, and western blot analysis were used to investigate the functions of miR-133a and miR-135a. Results: Our study found that all-trans-retinoic acid (ATRA) promoted the expression of miR-133a and miR-135a in AML cells, inhibited caudal type homeobox 2 (CDX2) expression, and subsequently inhibited the proliferation of AML cells. Additionally, miR-133a and miR-135a were highly expressed in patients with complete remission and those with better survival. Conclusions: miR-133a and miR-135a may play an antioncogenic role in pediatric AML through the ATRA-miRNA133a/135a-CDX2 pathway. They hold promise as potentially favorable prognostic indicators and novel therapeutic targets for pediatric AML.
Collapse
MESH Headings
- Adolescent
- Child
- Child, Preschool
- Female
- Humans
- Infant
- Male
- Biomarkers, Tumor/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Leukemic/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- Prognosis
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
- Yu-Cai Cheng
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhong Fan
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Liang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chun-Jin Peng
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Li
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li-Na Wang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie-Si Luo
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Li Zhang
- Department of Pediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Li-Dan Zhang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Qi W, Guan W. A Comprehensive Review on the Importance of MiRNA-206 in the Animal Model and Human Diseases. Curr Neuropharmacol 2024; 22:1064-1079. [PMID: 37032500 PMCID: PMC10964108 DOI: 10.2174/1570159x21666230407124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
MicroRNA-206 (miR-206) is a microRNA that is involved in many human diseases, such as myasthenia gravis, osteoarthritis, depression, cancers, etc. Both inhibition effects and progression roles of miR-206 have been reported for the past few years. High expression of miR-206 was observed in patients with osteoarthritis, gastric cancer and epithelial ovarian cancer compared to normal people. The study also showed that miR-206 promotes cancer progression in breast cancer patients and avascular necrosis of the femoral head. Meanwhile, several studies have shown that expression levels of miR-206 were down-regulated in laryngeal carcinoma cell multiplication, as well as in hepatocellular carcinoma, non-small lung cancer and infantile hemangioma. Moreover, miR-206 was up-regulated in the mild stage of amyotrophic lateral sclerosis patients and then down-regulated in the moderate and severe stages, indicating that miR-206 has the double effects of starting and aggravating the disease. In neuropsychiatric disorders, such as depression, miR-206 also plays an important role in the progression of the disease; the level of miR-206 is most highly expressed in the brains of patients with depression. In the current review, we summarize the role of miR-206 in various diseases, and miR-206 may be developed as a new biomarker for diagnosing diseases in the near future.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, 226001, Jiangsu, China
- School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
7
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
8
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
9
|
Heinrichs-Caldas W, Ikert H, Almeida-Val VMF, Craig PM. Sex matters: Gamete-specific contribution of microRNA following parental exposure to hypoxia in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101090. [PMID: 37267726 DOI: 10.1016/j.cbd.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Oxygen availability varies among aquatic environments, and oxygen concentration has been demonstrated to drive behavioral, metabolic, and genetic adaptations in numerous aquatic species. MicroRNAs (miRNAs) are epigenetic modulators that act at the interface of the environment and the transcriptome and are known to drive plastic responses following environmental stressors. An area of miRNA that has remained underexplored is the sex specific action of miRNAs following hypoxia exposure and its effects as gene expression regulator in fishes. This study aimed to identify differences in mRNA and miRNA expression in the F1 generation of zebrafish (Danio rerio) at 1 hpf after either F0 parental male or female were exposed to 2 weeks of continuous (45 %) hypoxia. In general, F1 embryos at 1 hpf demonstrated differences in mRNA and miRNAs expression related to the stressor and to the specific sex of the F0 that was exposed to hypoxia. Bioinformatic pathway analysis of predicted miRNA:mRNA relationships indicated responses in known hypoxia signaling and mitochondrial bioenergetic pathways. This research demonstrates the importance of examining the specific male and female contributions to phenotypic variation in subsequent generations and provides evidence that there is both maternal and paternal contribution of miRNA through eggs and sperm.
Collapse
Affiliation(s)
- Waldir Heinrichs-Caldas
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil.
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Vera Maria Fonseca Almeida-Val
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
10
|
Angrisano T, Varrone F, Ragozzino E, Fico A, Minchiotti G, Brancaccio M. Cripto Is Targeted by miR-1a-3p in a Mouse Model of Heart Development. Int J Mol Sci 2023; 24:12251. [PMID: 37569627 PMCID: PMC10419258 DOI: 10.3390/ijms241512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
During cardiac differentiation, numerous factors contribute to the development of the heart. Understanding the molecular mechanisms underlying cardiac development will help combat cardiovascular disorders, among the leading causes of morbidity and mortality worldwide. Among the main mechanisms, we indeed find Cripto. Cripto is found in both the syncytiotrophoblast of ampullary pregnancies and the inner cell mass along the primitive streak as the second epithelial-mesenchymal transformation event occurs to form the mesoderm and the developing myocardium. At the same time, it is now known that cardiac signaling pathways are intimately intertwined with the expression of myomiRNAs, including miR-1. This miR-1 is one of the muscle-specific miRs; aberrant expression of miR-1 plays an essential role in cardiac diseases. Given this scenario, our study aimed to evaluate the inverse correlation between Cripto and miR-1 during heart development. We used in vitro models of the heart, represented by embryoid bodies (EBs) and embryonic carcinoma cell lines derived from an embryo-derived teratocarcinoma in mice (P19 cells), respectively. First, through a luciferase assay, we demonstrated that Cripto is a target of miR-1. Following this result, we observed that as the days of differentiation increased, the Cripto gene expression decreased, while the level of miR-1 increased; furthermore, after silencing miR-1 in P19 cells, there was an increase in Cripto expression. Moreover, inducing damage with a cobra cardiotoxin (CTX) in post-differentiation cells, we noted a decreased miR-1 expression and increased Cripto. Finally, in mouse cardiac biopsies, we observed by monitoring gene expression the distribution of Cripto and miR-1 in the right and left ventricles. These results allowed us to detect an inverse correlation between miR-1 and Cripto that could represent a new pharmacological target for identifying new therapies.
Collapse
Affiliation(s)
- Tiziana Angrisano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Elvira Ragozzino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 26100 Rome, Italy;
| | - Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, “A. Buzzati-Traverso”, CNR, 80131 Naples, Italy; (A.F.); (G.M.)
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, “A. Buzzati-Traverso”, CNR, 80131 Naples, Italy; (A.F.); (G.M.)
| | - Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
11
|
Subramaniam R, Vijakumaran U, Shanmuganantha L, Law JX, Alias E, Ng MH. The Role and Mechanism of MicroRNA 21 in Osteogenesis: An Update. Int J Mol Sci 2023; 24:11330. [PMID: 37511090 PMCID: PMC10379984 DOI: 10.3390/ijms241411330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. This paper discusses the studies conducted on the role and mechanism of human miR21 (hsa-miR21) in the regulation of bones and the various pathways mediated by miR21, and explores the feasibility of employing exogenous miR21 as a strategy for promoting osteogenesis. From the literature review, it was clear that miR21 plays a dual role in bone metabolism by regulating both bone formation and bone resorption. There is substantial evidence to date from both in vitro and in vivo studies that exogenous miR21 can successfully accelerate new bone synthesis in the context of bone loss due to injury or osteoporosis. This supports the exploration of applications of exogenous miR21 in bone regenerative therapy in the future.
Collapse
Affiliation(s)
- Revatyambigai Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Lohashenpahan Shanmuganantha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Jia-Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Min-Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
12
|
Zhuang X, Xie F, Lin Z, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Effect of miR-493-5p on proliferation and differentiation of myoblast by targeting ANKRD17. Cell Tissue Res 2023:10.1007/s00441-023-03777-3. [PMID: 37178193 DOI: 10.1007/s00441-023-03777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The hypertrophy and conversion of postnatal muscle fibers largely determine the yield and quality of meat, which is closely related to the economic value of pigs. MicroRNA (miRNA), as a kind of endogenous noncoding RNA molecule, is widely involved in myogenesis of livestock and poultry. The longissimus dorsi tissues of Lantang pigs at 1 and 90 days (LT1D and LT90D) were collected and profiled by miRNA-seq. We found 1871 and 1729 miRNA candidates in LT1D and LT90D samples, and 794 miRNAs were shared. We identified 16 differentially expressed miRNAs between two tested groups and explored the function of miR-493-5p inmyogenesis. The miR-493-5p promoted the proliferation and inhibited the differentiation of myoblasts. Using GO and KEGG analyses of 164 target genes of miR-493-5p, we found that ATP2A2, PPP3CA, KLF15, MED28, and ANKRD17 genes were related to muscle development. RT-qPCR detection showed that the expression level of ANKRD17 was highly expressed in LT1D libraries, and the double luciferase report test preliminarily proved that miR-493-5p and ANKRD17 have a directly targeting relationship. We established miRNA profiles for the longissimus dorsi tissues of 1-day-old and 90-day-old Lantang pigs and found that miR-493-5p was differentially expressed and associated with myogenesis by targeting ANKRD17 gene. Our results should serve as a reference for future studies on pork quality.
Collapse
Affiliation(s)
- Xiaona Zhuang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fang Xie
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zekun Lin
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
13
|
Sæther JC, Vesterbekkmo EK, Taraldsen MD, Gigante B, Follestad T, Røsjø HR, Omland T, Wiseth R, Madssen E, Bye A. Associations between circulating microRNAs and lipid-rich coronary plaques measured with near-infrared spectroscopy. Sci Rep 2023; 13:7580. [PMID: 37165064 PMCID: PMC10172303 DOI: 10.1038/s41598-023-34642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Lipid-rich coronary atherosclerotic plaques often cause myocardial infarction (MI), and circulating biomarkers that reflect lipid content may predict risk of MI. We investigated the association between circulating microRNAs (miRs) are lipid-rich coronary plaques in 47 statin-treated patients (44 males) with stable coronary artery disease undergoing percutaneous coronary intervention. We assessed lipid content in non-culprit coronary artery lesions with near-infrared spectroscopy and selected the 4 mm segment with the highest measured lipid core burden index (maxLCBI4mm). Lipid-rich plaques were predefined as a lesion with maxLCBI4mm ≥ 324.7. We analyzed 177 circulating miRs with quantitative polymerase chain reaction in plasma samples. The associations between miRs and lipid-rich plaques were analyzed with elastic net. miR-133b was the miR most strongly associated with lipid-rich coronary plaques, with an estimated 18% increase in odds of lipid-rich plaques per unit increase in miR-133b. Assessing the uncertainty by bootstrapping, miR-133b was present in 82.6% of the resampled dataset. Inclusion of established cardiovascular risk factors did not attenuate the association. No evidence was found for an association between the other analyzed miRs and lipid-rich coronary plaques. Even though the evidence for an association was modest, miR-133b could be a potential biomarker of vulnerable coronary plaques and risk of future MI. However, the prognostic value and clinical relevance of miR-133b needs to be assessed in larger cohorts.
Collapse
Affiliation(s)
- Julie Caroline Sæther
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway.
| | - Elisabeth Kleivhaug Vesterbekkmo
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
- National Advisory Unit on Exercise Training as Medicine for Cardiopulmonary Conditions, Trondheim, Norway
| | - Maria Dalen Taraldsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Turid Follestad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinical Research Unit Central Norway, St. Olavs Hospital, Trondheim, Norway
| | - Helge Rørvik Røsjø
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Torbjørn Omland
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
- K. G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
- Department of Cardiology, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Rune Wiseth
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Erik Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Anja Bye
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
14
|
Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res Bull 2023; 194:82-89. [PMID: 36681253 DOI: 10.1016/j.brainresbull.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNAs) exhibit a crucial role in the pathogenesis and progress of neurodegenerative disorders. Recent studies have shown abnormal levels of miRNA expression in patients with amyotrophic lateral sclerosis (ALS). Clinical data also confirmed that miRNAs in these patients are inconsistent across studies. A comprehensive systematic review and meta-analysis of current studies can help recognize the important roles of miRNAs during ALS development. Therefore, we initially aimed to perform a systematic literature review on the muscle or serum miRNAs in patients with ALS and healthy individuals. Subsequently, we quantitatively summarized the clinical data of muscle or serum miRNA of patients with ALS and healthy individuals using a meta-analytical technique. 11 studies comprising 281 patients with ALS and 244 healthy control (HC) controls were identified from PubMed and Web of Science for meta-analysis. A systematic review revealed that miRNA levels are closely associated with the occurrence of ALS disease. The expression levels of the most relevant miRNAs were either increased or decreased. The random-effects meta-analysis indicated that the levels of miR-206, miR-133b, and miR-338-3p were significantly elevated in patients with ALS than in HC subjects. By contrast, there was no significant differences in the miR-133a levels between patients with ALS and HC subjects. Collectively, our outcomes demonstrated that serum miR-206, miR-133b, and miR-338-3p were significantly increased in patients with ALS. We speculated that the increased expression levels of miR-206, miR-133b and miR-338-3p are potential promising biomarkers for ALS.
Collapse
|
15
|
Mildeberger L, Bueto J, Wilmes V, Scheiper-Welling S, Niess C, Gradhand E, Verhoff MA, Kauferstein S. Suitable biomarkers for post-mortem differentiation of cardiac death causes: Quantitative analysis of miR-1, miR-133a and miR-26a in heart tissue and whole blood. Forensic Sci Int Genet 2023; 65:102867. [PMID: 37178622 DOI: 10.1016/j.fsigen.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Cardiovascular diseases are the most common causes of death worldwide. Cardiac death can occur as reaction to myocardial infarction (MI). A diagnostic challenge arises for sudden unexpected death (SUD) cases with structural abnormalities (SA) or without any structural abnormalities (without SA). Therefore, the identification of reliable biomarkers to differentiate cardiac cases from each other is necessary. In the current study, the potential of different microRNAs (miRNAs) as biomarkers in tissue and blood samples of cardiac death cases was analyzed. Blood and tissue samples of 24 MI, 21 SUD and 5 control (C) cases were collected during autopsy. Testing for significance and receiver operating characteristic analysis (ROC) were performed. The results show that miR-1, miR-133a and miR-26a possess a high diagnostic power to discriminate between different cardiac death causes in whole blood and in tissue.
Collapse
|
16
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
17
|
Farsani MA, Banitalebi E, Faramarzi M, Bakhtiari N, Rahimi M, Duque G. Bone-muscle crosstalk following exercise plus Ursolic acid by myomiR-133a/Cx43-Runx2 axis in aged type 2 diabetes rat models. Chem Biol Interact 2023; 370:110315. [PMID: 36535313 DOI: 10.1016/j.cbi.2022.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Natural bioactive compound, Ursolic acid (UA), plus different types of exercise may exert the action on glycemic control, leading to clinical benefits in the prevention and treatment of aging/diabetes-associated complications. So, this study examined the effects of eight weeks combination of 250 mg of UA per day per kilogram of body weight of rat as well as resistance/endurance training on miR-133a expression across serum, bone marrow, skeletal muscle, and Connexin 43 (Cx43)-Runt-related transcription factor 2 (Runx2) signaling axis in high-fat diet and low-dose streptozotocin-induced T2D (here, HFD/STZ-induced T2D). The study was conducted on 56 male Wistar rats (427 ± 44 g, 21 months old), having HFD/STZ-induced T2D randomly assigned into 7 groups of 8 including (1) sedentary non-diabetic old rats (C); (2) sedentary type 2 diabetes animal model (D); (3) sedentary type 2 diabetes animal model + UA (DU); (4) endurance-trained type 2 diabetes animal model (DE); (5) resistance-trained type 2 diabetes animal model (DR); (6) endurance-trained type 2 diabetes animal model + UA (DEU); and (7) resistance-trained type 2 diabetes animal model + UA (DRU). Resistance training included a model of eight weeks of ladder resistance training at 60-80% maximal voluntary carrying capacity (MVCC) for five days/week. Treadmill endurance exercise protocol included eight weeks of repetitive bouts of low-/high-intensity training with 30%-40% and 60%-75% maximal running speed for five days/week, respectively. UA Supplementary groups were treated with 500 mg of UA per kg of high-fat diet per day. The results revealed significant supplement and exercise interaction effects for the BM miR-133a (p = 0.001), the bone marrow Runx2 (p = 0.002), but not the serum miR-133a (p = 0.517), the skeletal muscle miR-133a (p = 0.097) and the Cx43 (p = 0.632). In conclusion, only eight weeks of resistance-type exercise could affect miR-133a profile in muscles and osteoblast differentiation biomarker RUNX2 in aged T2D model of rats. 250 mg of UA per kilogram of body weight rat per day was administered orally, less than the sufficient dose for biological and physiological impacts on osteoblast differentiation biomarkers in aged T2D model of rats following eight weeks.
Collapse
Affiliation(s)
| | | | - Mohammad Faramarzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Nuredin Bakhtiari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Rahimi
- Department of Sport Sciences, Shahrekord University, Shahrekord, Iran
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Tomaz da Silva M, Santos AR, Koike TE, Nascimento TL, Rozanski A, Bosnakovski D, Pereira LV, Kumar A, Kyba M, Miyabara EH. The fibrotic niche impairs satellite cell function and muscle regeneration in mouse models of Marfan syndrome. Acta Physiol (Oxf) 2023; 237:e13889. [PMID: 36164969 DOI: 10.1111/apha.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 01/03/2023]
Abstract
AIM It has been suggested that the proliferation and early differentiation of myoblasts are impaired in Marfan syndrome (MFS) mice during muscle regeneration. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we investigated muscle regeneration in MFS mouse models by analyzing the influence of the fibrotic niche on satellite cell function. METHODS In vivo, ex vivo, and in vitro experiments were performed. In addition, we evaluated the effect of the pharmacological inhibition of fibrosis using Ang-(1-7) on regenerating skeletal muscles of MFS mice. RESULTS The skeletal muscle of MFS mice shows an increased accumulation of collagen fibers (81.2%), number of fibroblasts (157.1%), and Smad2/3 signaling (110.5%), as well as an aberrant number of fibro-adipogenic progenitor cells in response to injury compared with wild-type mice. There was an increased number of proinflammatory and anti-inflammatory macrophages (3.6- and 3.1-fold, respectively) in regenerating muscles of wild-type mice, but not in the regenerating muscles of MFS mice. Our data show that proliferation and differentiation of satellite cells are altered (p ≤ 0.05) in MFS mice. Myoblast transplantation assay revealed that the regenerating muscles from MFS mice have reduced satellite cell self-renewal capacity (74.7%). In addition, we found that treatment with Ang-(1-7) reduces fibrosis (71.6%) and ameliorates satellite cell dysfunction (p ≤ 0.05) and muscle contractile function (p ≤ 0.05) in MFS mice. CONCLUSION The fibrotic niche, caused by Fbn1 mutations, reduces the myogenic potential of satellite cells, affecting structural and functional muscle regeneration. In addition, the fibrosis inhibitor Ang-(1-7) partially counteracts satellite cell abnormalities and restores myofiber size and contractile force in regenerating muscles.
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Audrei R Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tabata L Nascimento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Darko Bosnakovski
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Chi Y, Gong Z, Xin H, Wang Z, Liu Z. microRNA-206 prevents hepatocellular carcinoma growth and metastasis via down-regulating CREB5 and inhibiting the PI3K/AKT signaling pathway. Cell Cycle 2022; 21:2651-2663. [PMID: 36003063 PMCID: PMC9704407 DOI: 10.1080/15384101.2022.2108275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/22/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and has continued to increase in incidence worldwide. Moreover, the involvement of microRNAs (miRs) has been reported in the development and progression of HCC. Here, we investigated the role of miR-206 in HCC growth and metastasis. HCC-related microarray datasets were harvested to screen differentially expressed miRNAs in HCC samples followed by prediction of downstream target genes. The dual-luciferase reporter assay verified the target-binding relationship between miR-206 and CREB5. The human HCC cell line MHCC97-H was cultured in vitro and transfected with miR-206 mimic/inhibitor or sh-/oe-CREB5 for analyzing MHCC97-H cell biological functions. The orthotopic xenograft model of HCC mice was constructed to observe the tumorigenic ability of HCC cells in vivo. Bioinformatics analysis found that miR-206 may be involved in HCC growth and metastasis by targeting CREB5 and regulating PI3K/AKT signaling pathway. In vivo animal experiments found that CREB5 was significantly overexpressed in mouse HCC tissues. In HCC cells, miR-206 can target down-regulate the expression of CREB5, thereby inhibiting the activation of PI3K/AKT signaling pathway. Furthermore, in vitro cell experiments confirmed that overexpression of miR-206 could inhibit the PI3K/AKT signaling pathway by down-regulating CREB5 expression, thereby inhibiting the proliferation, migration and invasion of HCC cells. In conclusion, our results revealed that miR-206 could down-regulate the expression of CREB5 and inhibit the activation of PI3K/AKT signaling pathway, thereby preventing HCC growth and metastasis.Abbreviations: HCC: hepatocellular carcinoma; HBV or HCV: hepatitis B or C virus; miRNAs: microRNAs; CREB: cAMP response element-binding protein; CRE: cAMP response elements.
Collapse
Affiliation(s)
- Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Zheng Gong
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| |
Collapse
|
20
|
Duca RB, Massillo C, Farré PL, Graña KD, Moro J, Gardner K, Lacunza E, De Siervi A. Hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP combination results in a good biomarker to distinguish between prostate cancer and non-prostate cancer patients. Front Oncol 2022; 12:997457. [PMID: 36387263 PMCID: PMC9641240 DOI: 10.3389/fonc.2022.997457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2023] Open
Abstract
The incidence and mortality of Prostate Cancer (PCa) worldwide correlate with age and bad dietary habits. Previously, we investigated the mRNA/miRNA role on PCa development and progression using high fat diet (HFD) fed mice. Here our main goal was to investigate the effect of HFD on the expression of PCa-related miRNAs and their relevance in PCa patients. We identified 6 up- and 18 down-regulated miRNAs in TRAMP-C1 mice prostate tumors under HFD conditions using miRNA microarrays. Three down-regulated miRNAs: mmu-miR-133a-3p, -1a-3p and -29c-3p were validated in TRAMP-C1 mice prostate tumor by stem-loop RT-qPCR. Hsa-miR-133a-3p/1-3p expression levels were significantly decreased in PCa compared to normal tissues while hsa-miR-133a-3p was found to be further decreased in metastatic prostate cancer tumors compared to non-metastatic PCa. We examined the promoter region of hsa-miR-133a-3p/1-3p genes and compared methylation at these loci with mature miRNA expression. We found that hsa-miR-1-2/miR-133a-1 cluster promoter hypermethylation decreased hsa-miR-133a-3p/1-3p expression in PCa. GOLPH3 and JUP, two hsa-miR-133a-3p and miR-1-3p predicted target genes, were up-regulated in PCa. ROC analysis showed that the combination of hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP is a promising panel biomarker to distinguish between PCa and normal adjacent tissue (NAT). These results link PCa aggressiveness to the attenuation of hsa-miR-133a-3p and miR-1-3p expression by promoter hypermethylation. Hsa-miR-133a-3p and miR-1-3p down-regulation may enhance PCa aggressiveness in part by targeting GOLPH3 and JUP.
Collapse
Affiliation(s)
- Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juana Moro
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Ramberg S, Krasnov A, Colquhoun D, Wallace C, Andreassen R. Expression Analysis of Moritella viscosa-Challenged Atlantic Salmon Identifies Disease-Responding Genes, MicroRNAs and Their Predicted Target Genes and Pathways. Int J Mol Sci 2022; 23:ijms231911200. [PMID: 36232504 PMCID: PMC9569996 DOI: 10.3390/ijms231911200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.
Collapse
Affiliation(s)
- Sigmund Ramberg
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), 1430 Ås, Norway
| | | | | | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
22
|
Sun D, Li C, Zhang F. MicroRNA-206 suppresses growth and metastasis of breast cancer stem cells via blocking EVI-1-mediated CALR expression. PLoS One 2022; 17:e0274919. [PMID: 36136972 PMCID: PMC9498949 DOI: 10.1371/journal.pone.0274919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Aim to investigate the effect of miR-206 on the growth and metastasis of breast cancer stem cells and clarify the precise mechanism of miR-206 on EVI-1-mediated CALR expression in driving malignant phenotype. Our results showed that miR-206 mimics suppressed CALR expression, inhibited the proliferation and metastasis ability of breast cancer stem cells and finally induced cellular apoptosis. Over-expression of CALR could effectively attenuate the cytotoxic effect of miR-206. Further studies demonstrated that EVI-1 could be served as a key regulator of miR206-mediated CALR expression. Elevation of EVI-1 can reverse the function of miR-206 on induction of CALR.
Collapse
Affiliation(s)
- Dapeng Sun
- Department of Clinical Pharmaceutics, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
- * E-mail: (FZ); (DS)
| | - Chenguang Li
- Department of Clinical Pharmaceutics, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
| | - Fengxiang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of JINZHOU Medical University, Jinzhou, China
- * E-mail: (FZ); (DS)
| |
Collapse
|
23
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
24
|
Gagliardi D, Rizzuti M, Brusa R, Ripolone M, Zanotti S, Minuti E, Parente V, Dioni L, Cazzaniga S, Bettica P, Bresolin N, Comi GP, Corti S, Magri F, Velardo D. MicroRNAs as serum biomarkers in Becker muscular dystrophy. J Cell Mol Med 2022; 26:4678-4685. [PMID: 35880500 PMCID: PMC9443944 DOI: 10.1111/jcmm.17462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Becker muscular dystrophy (BMD) is an X‐linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle‐specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age‐matched healthy controls. We found a significant upregulation of serum miR‐1, miR‐133a, miR‐133b and miR‐206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut‐off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR‐133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR‐133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Zanotti
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Minuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- EPIGET Lab, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | - Nereo Bresolin
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Francesca Magri
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Tanno B, Novelli F, Leonardi S, Merla C, Babini G, Giardullo P, Kadhim M, Traynor D, Medipally DKR, Meade AD, Lyng FM, Tapio S, Marchetti L, Saran A, Pazzaglia S, Mancuso M. MiRNA-Mediated Fibrosis in the Out-of-Target Heart following Partial-Body Irradiation. Cancers (Basel) 2022; 14:cancers14143463. [PMID: 35884524 PMCID: PMC9323333 DOI: 10.3390/cancers14143463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Caterina Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University (OBU), Oxford OX3 0BP, UK;
| | - Damien Traynor
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Dinesh K. R. Medipally
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Aidan D. Meade
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Technological University Dublin, D02 HW71 Dublin, Ireland; (D.T.); (D.K.R.M.); (A.D.M.); (F.M.L.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, D-85764 Neuherberg, Germany;
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Agricultural and Forestry Sciences, Università della Tuscia, 01100 Viterbo, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Department of Radiation Physics, Guglielmo Marconi University, 00193 Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (F.N.); (S.L.); (C.M.); (P.G.); (L.M.); (A.S.); (S.P.)
- Correspondence: (B.T.); (M.M.)
| |
Collapse
|
26
|
Wang S, Dong L, Ma L, Yang S, Zheng Y, Zhang J, Wu C, Zhao Y, Hou Y, Li H, Wang T. SQLE facilitates the pancreatic cancer progression via the lncRNA-TTN-AS1/miR-133b/SQLE axis. J Cell Mol Med 2022; 26:3636-3647. [PMID: 35638462 PMCID: PMC9258714 DOI: 10.1111/jcmm.17347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Studies have shown that SQLE is highly expressed in a variety of tumours and promotes tumour progression. However, the role of SQLE in pancreatic cancer (PC) has not been reported. Here, we aim to study the role and molecular mechanism of SQLE in PC. Immunohistochemistry and functional experiments showed that SQLE was highly expressed in PC tissues and promoted the proliferation and invasion of PC cells. Terbinafine, an inhibitor of SQLE, inhibited this effect. In order to further study the upstream mechanism that regulates SQLE, we used bioinformatics technology to lock miR-133b and lncRNA-TTN-AS. In situ hybridization was used to detect the expression of miR-133b and lncRNA-TTN-AS1 in PC tissues. The luciferase reporter gene experiment was used to confirm the binding of miR-133b and lncRNA-TTN-AS1. The results showed that miR-133b was down-regulated in PC tissues and negatively correlated with the expression of SQLE. LncRNA-TTN-AS1 was upregulated in pancreatic cancer tissues and positively correlated with the expression of SQLE. Luciferase gene reporter gene analysis confirmed lncRNA-TTN-AS1 directly binded to miR-133b. Therefore, we propose that targeting the lncRNA-TTN-AS1/miR-133b/SQLE axis is expected to provide new ideas for the clinical treatment of PC patients.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Department of Infectious DiseasesShenzhen Nanshan District Shekou People’s HospitalShenzhenChina
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Lin Ma
- Department of GastroenterologyShaanxi Provincial People’s HospitalXi’anChina
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Jing Zhang
- Department of Kidney TransplantationNephropathy HospitalThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi’anChina
| | - Chuanghong Wu
- Department of Infectious DiseasesShenzhen Nanshan District Shekou People’s HospitalShenzhenChina
| | - Yidi Zhao
- Emergency DepartmentThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yangfan Hou
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Hong Li
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Ting Wang
- Department of Digestive Disease and Gastrointestinal Motility Research RoomThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
27
|
Han Y, Zhou Y. Comprehensive Identification of Human Cell Type Chromatin Activity-Specific and Cell Type Expression-Specific MicroRNAs. Int J Mol Sci 2022; 23:ijms23137324. [PMID: 35806329 PMCID: PMC9266980 DOI: 10.3390/ijms23137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression landscape of a cell. Information about miRNA expression and distribution across cell types is crucial for the understanding of miRNAs’ functions and their translational applications as biomarkers or therapeutic targets. In this study, we identify cell-type-specific miRNAs by combining multiple correspondence analysis and Gini coefficients to dissect miRNAs’ expression profiles and chromatin activity score profiles, which results in collections of chromatin activity-specific miRNAs in 91 cell types and expression-specific miRNAs in 124 cell types. Moreover, we find that cell-type-specific miRNAs are closely associated with disease miRNAs, such as T-cell-specific miRNAs, which are closely associated with cancer prognosis. Finally, we constructed mirCellType, an online tool based on cell-type-specific miRNA signatures, to dissect the cell type composition of complex samples with miRNA expression profiles.
Collapse
|
28
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
29
|
Telles GD, Conceição MS, Vechin FC, Libardi CA, Mori MADS, Derchain S, Ugrinowitsch C. Exercise-Induced Circulating microRNAs: Potential Key Factors in the Control of Breast Cancer. Front Physiol 2022; 13:800094. [PMID: 35784874 PMCID: PMC9244175 DOI: 10.3389/fphys.2022.800094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Losses in skeletal muscle mass, strength, and metabolic function are harmful in the pathophysiology of serious diseases, including breast cancer. Physical exercise training is an effective non-pharmacological strategy to improve health and quality of life in patients with breast cancer, mainly through positive effects on skeletal muscle mass, strength, and metabolic function. Emerging evidence has also highlighted the potential of exercise-induced crosstalk between skeletal muscle and cancer cells as one of the mechanisms controlling breast cancer progression. This intercellular communication seems to be mediated by a group of skeletal muscle molecules released in the bloodstream known as myokines. Among the myokines, exercise-induced circulating microRNAs (c-miRNAs) are deemed to mediate the antitumoral effects produced by exercise training through the control of key cellular processes, such as proliferation, metabolism, and signal transduction. However, there are still many open questions regarding the molecular basis of the exercise-induced effects on c-miRNA on human breast cancer cells. Here, we present evidence regarding the effect of exercise training on c-miRNA expression in breast cancer, along with the current gaps in the literature and future perspectives.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Miguel Soares Conceição
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB—Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Alves da Silva Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), Campinas, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
- *Correspondence: Carlos Ugrinowitsch,
| |
Collapse
|
30
|
Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat Commun 2022; 13:3180. [PMID: 35676269 PMCID: PMC9178026 DOI: 10.1038/s41467-022-30778-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/07/2022] [Indexed: 11/08/2022] Open
Abstract
Formation and maintenance of neuromuscular junctions (NMJs) are essential for skeletal muscle function, allowing voluntary movements and maintenance of the muscle tone, thereby preventing atrophy. Generation of NMJs depends on the interaction of motor neurons with skeletal muscle fibers, which initiates a cascade of regulatory events that is essential for patterning of acetylcholine receptor (AChR) clusters at specific sites of the sarcolemma. Here, we show that muscle-specific miRNAs of the miR-1/206/133 family are crucial regulators of a signaling cascade comprising DOK7-CRK-RAC1, which is critical for stabilization and anchoring of postsynaptic AChRs during NMJ development and maintenance. We describe that posttranscriptional repression of CRK by miR-1/206/133 is essential for balanced activation of RAC1. Failure to adjust RAC1 activity severely compromises NMJ function, causing respiratory failure in neonates and neuromuscular symptoms in adult mice. We conclude that miR-1/206/133 serve a specific function for NMJs but are dispensable for skeletal muscle development. The miR-1/133/206 gene family codes for the most abundant microRNAs in striated muscles. Here, Klockner et al show that inactivation of all family members in skeletal muscle prevents formation of normal neuromuscular junctions due to increased expression of the adaptor protein CRK.
Collapse
|
31
|
Romano V, Belviso I, Sacco AM, Cozzolino D, Nurzynska D, Amarelli C, Maiello C, Sirico F, Di Meglio F, Castaldo C. Human Cardiac Progenitor Cell-Derived Extracellular Vesicles Exhibit Promising Potential for Supporting Cardiac Repair in Vitro. Front Physiol 2022; 13:879046. [PMID: 35669580 PMCID: PMC9163838 DOI: 10.3389/fphys.2022.879046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Although human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into ischemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, and proliferation of recipient cells. We hypothesize that EVs are involved in the paracrine effects elicited by hCPCs and held accountable for the response of the infarcted myocardium to hCPC-based cell therapy. To test this theory, we collected EVs released by hCPCs isolated from healthy myocardium and evaluated the effects they elicited when administered to resident hCPC and cardiac fibroblasts (CFs) isolated from patients with post-ischemic end-stage heart failure. Evidence emerging from our study indicated that hCPC-derived EVs impacted upon proliferation and survival of hCPCs residing in the ischemic heart and regulated the synthesis and deposition of extracellular-matrix by CFs. These findings suggest that beneficial effects exerted by hCPC injection are, at least to some extent, ascribable to the delivery of signals conveyed by EVs.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Domenico Cozzolino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"/DIPMED, University of Salerno, Baronissi, Italy
| | - Cristiano Amarelli
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Huang Y, Chen H, Gao X, Ren H, Gao S. Identification and functional analysis of miRNAs in skeletal muscle of juvenile and adult largemouth bass, Micropterus salmoides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100985. [PMID: 35381488 DOI: 10.1016/j.cbd.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are considered key regulators to post-transcriptionally regulate gene expression affecting multiple biological activities. However, the developmental process of fish skeletal muscles is regulated by complicated molecular mechanism that has not been completely well-described. In this study, two small RNAs libraries from skeletal muscle of juvenile as well as adult largemouth bass (LMB) were obtained and sequenced using deep sequencing to investigate the development-related miRNAs. We identified an overall number of 486 already recognized miRNAs in addition to 43 novel miRNAs. Comparison of two different skeletal muscle development stages led to the identification of 220 differently expressed miRNAs between juvenile and adult LMB containing 116 up-regulated as well as 104 down-regulated miRNAs. Of them, confirmation of some differently expressed miRNAs was performed via a stem-loop qRT-PCR, which exhibited differently expressed level in juvenile and adult LMB. Furthermore, GO and KEGG enrichment analyses of targets of differently-expressed miRNAs were carried out. Additionally, the analysis of miRNAs-targets interaction network showed that miR-181b-5p_R-1, miR-725 and miR-103 as the nodal miRNAs has over 20 target genes. Moreover, miR-103 could bind the 3'-UTR of actr8, which was validated via dual-luciferase reporter assay. It has been reasonably hypothesized that miR-103 may play a crucial role, which regulate skeletal muscle development of LMB. The present study provides the first identification of miRNA expression profiles at two different skeletal muscle development stages in LMB. Results may be valuable in interpreting the regulatory role miRNAs plays in the growth and developmental process of skeletal muscle and its possible use in LMB breeding.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Haigang Chen
- Guangdong Province Key Laboratory of Fish Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
33
|
Finke D, Heckmann MB, Frey N, Lehmann LH. Cancer-A Major Cardiac Comorbidity With Implications on Cardiovascular Metabolism. Front Physiol 2021; 12:729713. [PMID: 34899373 PMCID: PMC8662519 DOI: 10.3389/fphys.2021.729713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases have multifactorial causes. Classical cardiovascular risk factors, such as arterial hypertension, smoking, hyperlipidemia, and diabetes associate with the development of vascular stenoses and coronary heart disease. Further comorbidities and its impact on cardiovascular metabolism have gotten more attention recently. Thus, also cancer biology may affect the heart, apart from cardiotoxic side effects of chemotherapies. Cancer is a systemic disease which primarily leads to metabolic alterations within the tumor. An emerging number of preclinical and clinical studies focuses on the interaction between cancer and a maladaptive crosstalk to the heart. Cachexia and sarcopenia can have dramatic consequences for many organ functions, including cardiac wasting and heart failure. These complications significantly increase mortality and morbidity of heart failure and cancer patients. There are concurrent metabolic changes in fatty acid oxidation (FAO) and glucose utilization in heart failure as well as in cancer, involving central molecular regulators, such as PGC-1α. Further, specific inflammatory cytokines (IL-1β, IL-6, TNF-α, INF-β), non-inflammatory cytokines (myostatin, SerpinA3, Ataxin-10) and circulating metabolites (D2-HG) may mediate a direct and maladaptive crosstalk of both diseases. Additionally, cancer therapies, such as anthracyclines and angiogenesis inhibitors target common metabolic mechanisms in cardiomyocytes and malignant cells. This review focuses on cardiovascular, cancerous, and cancer therapy-associated alterations on the systemic and cardiac metabolic state.
Collapse
Affiliation(s)
- Daniel Finke
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Markus B Heckmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H Lehmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Deutsches Krebsfoschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
34
|
Srivastava S, Rathor R, Singh SN, Suryakumar G. Emerging role of MyomiRs as biomarkers and therapeutic targets in skeletal muscle diseases. Am J Physiol Cell Physiol 2021; 321:C859-C875. [PMID: 34586896 DOI: 10.1152/ajpcell.00057.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several chronic diseases lead to skeletal muscle loss and a decline in physical performance. MicroRNAs (miRNAs) are small, noncoding RNAs, which have exhibited their role in the development and diseased state of the skeletal muscle. miRNA regulates gene expression by binding to the 3' untranslated region of its target mRNA. Due to the robust stability in biological fluids, miRNAs are ideal candidate as biomarker. These miRNAs provide a novel avenue in strengthening our awareness and knowledge about the factors governing skeletal muscle functions such as development, growth, metabolism, differentiation, and cell proliferation. It also helps in understanding the therapeutic strategies in improving or conserving skeletal muscle health. This review outlines the evidence regarding the present knowledge on the role miRNA as a potential biomarker in skeletal muscle diseases and their exploration might be a unique and potential therapeutic strategy for various skeletal muscle disorders.
Collapse
Affiliation(s)
| | - Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Som Nath Singh
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
35
|
Zhang M, Lan X, Chen Y. MiR-133b suppresses the proliferation, migration and invasion of lung adenocarcinoma cells by targeting SKA3. Cancer Biol Ther 2021; 22:571-578. [PMID: 34711122 DOI: 10.1080/15384047.2021.1973819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spindle and Kinetochore Associated Complex Subunit 3 (SKA3) is crucial for anaphase mitosis. However, the relationship between SKA3 and lung adenocarcinoma (LUAD) has not been fully clarified. Differentially expressed genes were first identified by analyzing data from TCGA. It was found that miR-133b was significantly lowly expressed in LUAD, while SKA3 was remarkably highly expressed. Cell Counting Kit-8 (CCK8), wound healing assay and Transwell assay uncovered that overexpressing miR-133b could inhibit the proliferation, invasion and migration of LUAD cells. In addition, the targeting relationship between miR-133b and SKA3 was also verified by dual-luciferase analysis. Moreover, it was proved by the rescue assay that the overexpression of miR-133b significantly downregulated SKA3 in LUAD cells. All in all, these findings revealed the role of miR-133b and SKA3 in regulating the proliferation, migration, and invasion of LUAD cells. This study could yield new information about the mechanisms of LUAD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, Zhejiang PR China
| | - Xiang Lan
- Department of Radiation Oncology, Lishui City People's Hospital, Lishui, Zhejiang PR China
| | - Yong Chen
- Department of Radiation Oncology, Lishui City People's Hospital, Lishui, Zhejiang PR China
| |
Collapse
|
36
|
Greer JB, Magnuson JT, McGruer V, Qian L, Dasgupta S, Volz DC, Schlenk D. miR133b Microinjection during Early Development Targets Transcripts of Cardiomyocyte Ion Channels and Induces Oil-like Cardiotoxicity in Zebrafish ( Danio rerio) Embryos. Chem Res Toxicol 2021; 34:2209-2215. [PMID: 34558284 DOI: 10.1021/acs.chemrestox.1c00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that altered expression of a family of small noncoding RNAs (microRNAs, or miRs) regulates the expression of downstream mRNAs and is associated with diseases and developmental disorders. miR133b is highly expressed in mammalian cardiac and skeletal muscle, and aberrant expression is associated with cardiac disorders and electrophysiological changes in cardiomyocytes. Similarly, cardiac dysfunction has been observed in early life-stage mahi-mahi (Coryphaena hippurus) exposed to crude oil, a phenotype that has been associated with an upregulation of miR133b as well as subsequent downregulation of a delayed rectifier potassium channel (IKr) and calcium signaling genes that are important for proper heart development during embryogenesis. To examine the potential role of miR133b in oil-induced early life-stage cardiotoxicity in fish, cleavage-stage zebrafish (Danio rerio) embryos were either (1) microinjected with ∼3 nL of negative control miR (75 μM) or miR133b (75 μM) or (2) exposed to a treatment solution containing 5 μM benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, as a positive control. At 72 h post fertilization (hpf), miR133b-injected fish exhibited BaP-like cardiovascular malformations, including a significantly increased pericardial area relative to negative control miR-injected embryos, as well as a significantly reduced eye area. qPCR revealed that miR133b microinjection decreased the abundance of cardiac-specific IKr kcnh6 at 5 hpf, which may contribute to action potential elongation in oil-exposed cardiomyocytes. Additionally, ryanodine receptor 2, a crucial calcium receptor in the sarcoplasmic reticulum, was also downregulated by miR133b. These results indicate that an oil-induced increase in miR133b may contribute to cardiac abnormalities in oil-exposed fish by targeting cardiac-specific genes essential for proper heart development.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,College of Sciences, China Agricultural University, Beijing 100083, China
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
38
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
39
|
Iannolo G, Sciuto MR, Cuscino N, Carcione C, Coronnello C, Chinnici CM, Raffa GM, Pilato M, Conaldi PG. miRNA expression analysis in the human heart: Undifferentiated progenitors vs. bioptic tissues-Implications for proliferation and ageing. J Cell Mol Med 2021; 25:8687-8700. [PMID: 34390171 PMCID: PMC8435455 DOI: 10.1111/jcmm.16824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
In developed countries, cardiovascular diseases are currently the first cause of death. Cardiospheres (CSs) and cardiosphere-derived cells (CDCs) have been found to have the ability to regenerate the myocardium after myocardial infarction (MI). In recent years, much effort has been made to gain insight into the human heart repair mechanisms, in which miRNAs have been shown to play an important role. In this regard, to elucidate the involvement of miRNAs, we evaluated the miRNA expression profile across human heart biopsy, CSs and CDCs using microarray and next-generation sequencing (NGS) technologies. We identified several miRNAs more represented in the progenitors, where some of them can be responsible for the proliferation or the maintenance of an undifferentiated state, while others have been found to be downregulated in the undifferentiated progenitors compared with the biopsies. Moreover, we also found a correlation between downregulated miRNAs in CSs/CDCs and patient age (eg miR-490) and an inverse correlation among miRNAs upregulated in CSs/CDCs (eg miR-31).
Collapse
Affiliation(s)
- Gioacchin Iannolo
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Cuscino
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | | | | | - Cinzia Maria Chinnici
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy.,Fondazione Ri.MED, Palermo, Italy
| | - Giuseppe Maria Raffa
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Michele Pilato
- Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT-IRCCS), Palermo, Italy
| |
Collapse
|
40
|
Schiffer I, Gerisch B, Kawamura K, Laboy R, Hewitt J, Denzel MS, Mori MA, Vanapalli S, Shen Y, Symmons O, Antebi A. miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact proteotoxicity and muscle function during aging. eLife 2021; 10:e66768. [PMID: 34311841 PMCID: PMC8315803 DOI: 10.7554/elife.66768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Muscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also plastic, and remodeled in response to stress, growth, neural and metabolic inputs. The conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle development, but whether it plays a role during aging is unknown. Here we investigated Caenorhabditis elegans miR-1 in muscle function in response to proteostatic stress. mir-1 deletion improved mid-life muscle motility, pharyngeal pumping, and organismal longevity upon polyQ35 proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6V1A as a direct target downregulated via its 3'UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. Our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during aging.
Collapse
Affiliation(s)
| | - Birgit Gerisch
- Max Planck Institute for Biology of AgeingCologneGermany
| | | | - Raymond Laboy
- Max Planck Institute for Biology of AgeingCologneGermany
| | - Jennifer Hewitt
- Max Planck Institute for Biology of AgeingCologneGermany
- Department of Chemical Engineering, Texas Tech UniversityLubbockUnited States
| | - Martin Sebastian Denzel
- Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP)CampinasBrazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP)CampinasBrazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP)CampinasBrazil
| | - Siva Vanapalli
- Department of Chemical Engineering, Texas Tech UniversityLubbockUnited States
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | | | - Adam Antebi
- Max Planck Institute for Biology of AgeingCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| |
Collapse
|
41
|
Trochet D, Bitoun M. A review of Dynamin 2 involvement in cancers highlights a promising therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:238. [PMID: 34294140 PMCID: PMC8296698 DOI: 10.1186/s13046-021-02045-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
Dynamin 2 (DNM2) is an ubiquitously expressed large GTPase well known for its role in vesicle formation in endocytosis and intracellular membrane trafficking also acting as a regulator of cytoskeletons. During the last two decades, DNM2 involvement, through mutations or overexpression, emerged in an increasing number of cancers and often associated with poor prognosis. A wide panel of DNM2-dependent processes was described in cancer cells which explains DNM2 contribution to cancer pathomechanisms. First, DNM2 dysfunction may promote cell migration, invasion and metastasis. Second, DNM2 acts on intracellular signaling pathways fostering tumor cell proliferation and survival. Relative to these roles, DNM2 was demonstrated as a therapeutic target able to reduce cell proliferation, induce apoptosis, and reduce the invasive phenotype in a wide range of cancer cells in vitro. Moreover, proofs of concept of therapy by modulation of DNM2 expression was also achieved in vivo in several animal models. Consequently, DNM2 appears as a promising molecular target for the development of anti-invasive agents and the already provided proofs of concept in animal models represent an important step of preclinical development.
Collapse
Affiliation(s)
- Delphine Trochet
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, UMRS 974, Institut de Myologie, F-75013, Paris, France
| | - Marc Bitoun
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, UMRS 974, Institut de Myologie, F-75013, Paris, France.
| |
Collapse
|
42
|
The FibromiR miR-214-3p Is Upregulated in Duchenne Muscular Dystrophy and Promotes Differentiation of Human Fibro-Adipogenic Muscle Progenitors. Cells 2021; 10:cells10071832. [PMID: 34360002 PMCID: PMC8303294 DOI: 10.3390/cells10071832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFβ1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several “FibromiRs”, was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFβ1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFβ1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR » miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFβ axis, opening new avenues for the treatment of DMD.
Collapse
|
43
|
Banitalebi E, Ghahfarrokhi MM, Dehghan M. Effect of 12-weeks elastic band resistance training on MyomiRs and osteoporosis markers in elderly women with Osteosarcopenic obesity: a randomized controlled trial. BMC Geriatr 2021; 21:433. [PMID: 34284726 PMCID: PMC8290586 DOI: 10.1186/s12877-021-02374-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Interorgan communication networks established during exercise in several different tissues can be mediated by several exercise-induced factors. Therefore, the present study aimed to investigate the effects of resistance-type training using elastic band-induced changes of myomiRs (i.e., miR-206 and miR-133), vitamin D, CTX-I, ALP, and FRAX® score in elderly women with osteosarcopenic obesity (OSO). Methods In this randomized controlled trial, 63 women (aged 65–80 years) with Osteosarcopenic Obesity were recruited and assessed, using a dual-energy X-ray absorptiometry instrument. The resistance-type training via elastic bands was further designed three times per week for 12-weeks. The main outcomes were Fracture Risk Assessment Tool score, bone mineral content, bone mineral density, vitamin D, alkaline phosphatase, C-terminal telopeptides of type I collagen, expression of miR-206 and miR-133. Results There was no significant difference between the study groups in terms of the Fracture Risk Assessment Tool score (p = 0.067), vitamin D (p = 0.566), alkaline phosphatase (p = 0.334), C-terminal telopeptides of type I collagen (p = 0.067), microR-133 (p = 0.093) and miR-206 (p = 0.723). Conclusion Overall, the results of this study illustrated 12-weeks of elastic band resistance training causes a slight and insignificant improvement in osteoporosis markers in women affected with Osteosarcopenic Obesity. Trial registration Randomized controlled trial (RCT) (Iranian Registry of Clinical Trials, trial registration number: IRCT20180627040260N1. Date of registration: 27/11/2018. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02374-9.
Collapse
Affiliation(s)
| | | | - Mortaza Dehghan
- Clinical Research Development Unit, Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
44
|
Ma Z, Yang J, Zhang Q, Xu C, Wei J, Sun L, Wang D, Tao W. miR-133b targets tagln2 and functions in tilapia oogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110637. [PMID: 34147671 DOI: 10.1016/j.cbpb.2021.110637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) are important components of non-coding RNAs that participate in diverse life activities by regulating gene expression at the post transcriptional level through base complementary pairing with 3'UTRs of target mRNAs. miR-133b is a member of the miR-133 family, which play important roles in muscle differentiation and tumorigenesis. Recently, miR-133b was reported to affect estrogen synthesis by targeting foxl2 in mouse, while its role in fish reproduction remains to be elucidated. In the present study, we isolated the complete sequence of miR-133b, which was highly expressed in tilapia ovary at 30 and 90 dah (days after hatching) and subsequently decreased at 120 to 150 dah by qPCR. Interestingly, only a few oogonia were remained in the antagomir-133b treated tilapia ovary, while phase I and II oocytes were observed in the ovaries of the control group. Unexpectedly, the expression of foxl2 and cyp19a1a, as well as estradiol levels in serum were increased in the treated group. Furthermore, tagln2, an important factor for oogenesis, was predicted as the target gene of miR-133b, which was confirmed by dual luciferase reporter vector experiments. miR-133b and tagln2 were co-expressed in tilapia ovaries. Taken together, miR-133b may be involved in the early oogenesis of tilapia by regulating tagln2 expression. This study enriches the understanding of miR-133b function during oogenesis and lays a foundation for further study of the regulatory network during oogenesis.
Collapse
Affiliation(s)
- Zhisheng Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Parvand M, Rankin CH. Is There a Shared Etiology of Olfactory Impairments in Normal Aging and Neurodegenerative Disease? J Alzheimers Dis 2021; 73:1-21. [PMID: 31744002 DOI: 10.3233/jad-190636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As we age, our olfactory function declines. In addition to occurring in normal aging, more rapid decrement of olfactory decline has been associated with several neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). It has been argued that since olfactory deficits occur less frequently or are absent in diseases such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy, olfactory deficits can be used for differential diagnoses of AD and PD. The purpose of this review is to provide a survey of current knowledge about the molecular bases and differential patterns of olfactory deficits present in normal aging, AD, and PD. As substantial research has been conducted in this area, the majority of the content of this review focuses on articles published in the past decade. We hypothesize that olfactory deficits in normal aging, AD, and PD may have different underlying causes, and propose the use of model organisms with small, tractable nervous systems and/or easy to manipulate genomes to further investigate the cellular mechanisms responsible for these deficits.
Collapse
Affiliation(s)
- Mahraz Parvand
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Shanazari Z, Hemati Farsani Z, Faramarzi M, Banitalebi E. MyomiR-OsteomiR crosstalk induced by different modes and intensities of exercise training and its role in controlling osteogenic differentiation in old male Wistar rats. Exp Gerontol 2021; 149:111305. [PMID: 33713736 DOI: 10.1016/j.exger.2021.111305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 11/26/2022]
Abstract
The crosstalk between skeletal muscles and other tissues such as bones is typically established via the secretion of myokines and myomiRs induced by exercise training (ET). The present study aimed at evaluating the relationship between changes made by different ET modes and intensities in myomiRs, osteomiRs, and other myogenic and osteogenic biomarkers in old male Wistar rats. To this end, a total number of 50 old (23 months of age) male Wistar rats were randomly assigned to four experimental groups, namely, moderate-intensity endurance training (MIET), high-intensity endurance training (HIET), moderate-intensity resistance training (MIRT), high-intensity resistance training (HIRT), and control (CON), each one comprised of 10 subjects. The study findings revealed positive correlations between myomiRs (i.e., miR-1) and myomiR-204a (r = 0.725; p = 0.042), myomiR-1, and runt-related transcription factor 2 (RUNX2) osteogenic marker (r = 0.869; p = 0.025) in the HIET group, myomiR-206 and peroxisome proliferator-activated receptor gamma (PPARγ) (r = 0.908; p = 0.012) in the MIRT group, myomiR-133a and osteomiR-133a (r = 0.971; p = 0.005) in the MIET group, myomiR-133a and osteomiR-204a in the MIRT group (r = 0.971; p = 0.004), and myomiR-133a and RUNX2 gene expression in the HIET group (r = 0.861; p = 0.027). It was concluded that myomiRs involved in myoblast-osteoblast differentiation might not alone regulate the myogenic and osteogenic targets in response to different modes and intensities of ET treatments.
Collapse
Affiliation(s)
- Zohreh Shanazari
- Department of Sport Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Mohammad Faramarzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
47
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Al-Kafaji G, Al-Muhtaresh HA, Salem AH. Expression and clinical significance of miR-1 and miR-133 in pre-diabetes. Biomed Rep 2021; 14:33. [PMID: 33585035 DOI: 10.3892/br.2021.1409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pre-diabetes represents an intermediate state of altered glucose metabolism between normal glucose levels and type 2 diabetes mellitus (T2D), and is considered a significant risk factor for the development of T2D and related complications. Early detection of pre-diabetes may allow for the use of timely and effective treatment strategies to prevent its progression. Circulating microRNAs (miRNAs/miRs) that reflect changes in diabetes-related tissues, including the pancreas, liver, skeletal and heart muscle, and adipose tissue are promising biomarkers of disease progression. In our previous study, it was demonstrated that the cardiac and skeletal muscle specific miR-1 and miR-133 are upregulated in the blood of patients with T2D and cardiovascular disease. Since both miRNAs have been shown to be implicated in insulin resistance, an important feature of pre-diabetes, we hypothesised that their expression may be increased prior to clinical diagnosis of T2D, and may thus serve as biomarkers for pre-diabetes. The expression levels of circulating miRNAs were evaluated by reverse transcription-quantitative PCR in whole blood samples from 55 subjects, including 28 pre-diabetes individuals with impaired fasting glucose (FG) and impaired glucose tolerance, and 27 healthy controls. The individuals with pre-diabetes exhibited significantly higher expression levels of miR-1 and miR-133 compared with the controls (P<0.05). Target prediction search revealed that both miR-1 and miR-133 target several pathways involved in the pathophysiology of diabetes. Pearson's correlation analysis revealed that the two miRNAs were positively correlated with blood glucose parameters, including FG, 2-h oral glucose tolerance test and glycated haemoglobin A1c levels, as well as with insulin resistance (P<0.05). Multivariate logistic regression analysis revealed that the two miRNAs were significantly and directly associated with pre-diabetes, and this association remained significant after adjustment for several confounding variables (P<0.05). Moreover, linear regression analysis showed that the Homeostatic Model Assessment-Insulin Resistance was the only significant predictor to be significantly associated with both miRNAs (P<0.05). In discriminating pre-diabetes individuals from healthy controls, the area under the curves (AUCs) of the receiver operating characteristic curves (ROCs) were 0.813 and 0.810 for miR-1 and miR-133 respectively (P<0.05). Despite the relatively small number of participants, the present study showed for the first time that circulating levels of miR-1 and miR-133 were increased in individuals with pre-diabetes, and they were associated with important features of pre-diabetes. Thus, they may serve as clinical biomarkers for the early-stages of T2D.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Haifa Abdulla Al-Muhtaresh
- Department of Molecular Medicine/Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
49
|
Guo M, Li R, Yang L, Zhu Q, Han M, Chen Z, Ruan F, Yuan Y, Liu Z, Huang B, Bai M, Wang H, Zhang C, Tang C. Evaluation of exosomal miRNAs as potential diagnostic biomarkers for acute myocardial infarction using next-generation sequencing. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:219. [PMID: 33708846 PMCID: PMC7940945 DOI: 10.21037/atm-20-2337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the most common global causes of death. Although considerable progress has been made in AMI diagnosis, there remains an urgent need for novel diagnostic biomarkers for its prevention and treatment. Functional exosomal microRNAs (miRNAs) are recognized as potential biomarkers in many diseases. This study's objective was to identify specific plasma exosomal miRNAs with biomarker potential for early AMI detection. METHODS Exosomes from the plasma of 26 coronary artery disease (CAD) patients, 55 AMI patients, and 37 healthy controls were isolated and characterized by transmission electron microcopy (TEM), western blotting, and nanoparticle tracking analysis (NTA). The miRNAs were purified from exosomes, and unique molecular identifier (UMI) small RNA sequencing was performed. The random forest (RF) model was trained to predict potential biomarkers. RESULTS NTA demonstrated that nanoparticle concentration did not change after AMI, while nanoparticle size distribution significantly decreased. The CAD and AMI groups' miRNA expression profiles significantly differed from the healthy group's profile. The RF classifier could be used to distinguish the healthy group from the AMI group, but could not be used to distinguish the CAD group from the other groups, which caused a high classification error rate. Eighteen miRNAs were selected as biomarkers based on their RF classifier significance. The diagnostic accuracy of 18 miRNAs was evaluated using AUC values of 0.93, 0.87, and 0.75 to detect healthy controls, AMI, and CAD, respectively. CONCLUSIONS Nanoparticle diameter and the 18 miRNAs may serve as simple and accessible fingerprints for early AMI diagnosis.
Collapse
Affiliation(s)
- Mei Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | - Mo Han
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Zhenni Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Tang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
50
|
Costa R, Rodia MT, Zini N, Pegoraro V, Marozzo R, Capanni C, Angelini C, Lattanzi G, Santi S, Cenacchi G. Morphological study of TNPO3 and SRSF1 interaction during myogenesis by combining confocal, structured illumination and electron microscopy analysis. Mol Cell Biochem 2021; 476:1797-1811. [PMID: 33452620 PMCID: PMC7940345 DOI: 10.1007/s11010-020-04023-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Transportin3 (TNPO3) shuttles the SR proteins from the cytoplasm to the nucleus. The SR family includes essential splicing factors, such as SRSF1, that influence alternative splicing, controlling protein diversity in muscle and satellite cell differentiation. Given the importance of alternative splicing in the myogenic process and in the maintenance of healthy muscle, alterations in the splicing mechanism might contribute to the development of muscle disorders. Combining confocal, structured illumination and electron microscopy, we investigated the expression of TNPO3 and SRSF1 during myogenesis, looking at nuclear and cytoplasmic compartments. We investigated TNPO3 and its interaction with SRSF1 and we observed that SRSF1 remained mainly localized in the nucleus, while TNPO3 decreased in the cytoplasm and was strongly clustered in the nuclei of differentiated myotubes. In conclusion, combining different imaging techniques led us to describe the behavior of TNPO3 and SRSF1 during myogenesis, showing that their dynamics follow the myogenic process and could influence the proteomic network necessary during myogenesis. The combination of different high-, super- and ultra-resolution imaging techniques led us to describe the behavior of TNPO3 and its interaction with SRSF1, looking at nuclear and cytoplasmic compartments. These observations represent a first step in understanding the role of TNPO3 and SRFSF1 in complex mechanisms, such as myogenesis.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Valentina Pegoraro
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Roberta Marozzo
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Cristina Capanni
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Corrado Angelini
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Giovanna Lattanzi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Spartaco Santi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy. .,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|