1
|
Hong J, Park Y. Microvascular Function and Exercise Training: Functional Implication of Nitric Oxide Signaling and Ion Channels. Pulse (Basel) 2024; 12:27-33. [PMID: 38572498 PMCID: PMC10987185 DOI: 10.1159/000538271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Background Exercise training elicits indubitable positive adaptation in microcirculation in health and disease populations. An inclusive overview of the current knowledge regarding the effects of exercise on microvascular function consolidates an in-depth understanding of microvasculature. Summary The main physiological function of microvasculature is to maintain optimal blood flow regulation to supply oxygen and nutrition during elevated physical demands in the cardiovascular system. There are several cellular and molecular alterations in resistance vessels in response to exercise intervention, an increase in nitric oxide-mediated vasodilation through the regulation of oxidative stress, inflammatory response, and ion channels in endothelial cells, thus increasing myogenic tone via voltage-gated Ca2+ channels in smooth muscle cells. Key Messages In the review, we postulate that exercise should be considered a medicine for people with diverse diseases through a comprehensive understanding of the cellular and molecular underlying mechanisms in microcirculation through exercise training.
Collapse
Affiliation(s)
- Junyoung Hong
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, TX, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yoonjung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, TX, USA
| |
Collapse
|
2
|
Sarlak Z, Eidi A, Ghorbanzadeh V, Moghaddasi M, Mortazavi P. miR-34a/SIRT1/HIF-1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise. Biofactors 2023; 49:1085-1098. [PMID: 37560982 DOI: 10.1002/biof.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders worldwide. Recent research has indicated that sodium butyrate (NaB) affects glucose metabolism and exercise has an anti-hyperglycemic effect in diabetes. This study aimed to evaluate the effects of NaB and treadmill exercise on heart angiogenesis through the miR-34a/SIRT1/FOXO1-HIF-1α pathway. Diabetic animals received NaB (400 mg/kg daily, orally) and treadmill exercise for 6 weeks. The effect of NaB and treadmill exercise, alone or combined, on miR-34a expression, SIRT1, FOXO1, HIF-1α levels, and angiogenesis in diabetic heart tissue was measured. Diabetes caused increased miR-34a (p < 0.01) and FOXO1 (p < 0.001) expression levels. Also, SIRT1 (p < 0.001) and HIF-1α (not significant) expression levels were reduced in diabetic rats. NaB and treadmill exercise decreased miR-34a (respectively p < 0.05 and not significant) and FOXO1 (both p < 0.001) expression levels and improved SIRT1 (both not significant) and HIF-1α (respectively p < 0.01 and p < 0.001) levels. Also, NaB combined with treadmill exercise decreased miR-34a (p < 0.001) and FOXO1 (p < 0.001) expression levels, and elevated SIRT1 (p < 0.05) and HIF-1α (p < 0.001) levels in comparison with the diabetic group. NaB and treadmill exercises modulate the expression of miR-34a and the levels of SIRT1, FOXO1, and HIF-1α proteins, thus increasing angiogenesis in the heart tissue of diabetic rats. It can be concluded that NaB and treadmill exercise, alone or combined, may be useful in the treatment of diabetes through the miR-34a/SIRT1/FOXO1-HIF-1α pathway.
Collapse
Affiliation(s)
- Zeynab Sarlak
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Rahbarghazi A, Alamdari KA, Rahbarghazi R, Salehi-Pourmehr H. Co-administration of exercise training and melatonin on the function of diabetic heart tissue: a systematic review and meta-analysis of rodent models. Diabetol Metab Syndr 2023; 15:67. [PMID: 37005639 PMCID: PMC10067225 DOI: 10.1186/s13098-023-01045-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
PURPOSE Diabetes mellitus (DM), a hyperglycemic condition, occurs due to the failure of insulin secretion and resistance. This study investigated the combined effects of exercise training and melatonin (Mel) on the function of heart tissue in diabetic rodent models. METHODS A systematic search was conducted in Embase, ProQuest, Cochrane library, Clinicaltrial.gov, WHO, Google Scholar, PubMed, Ovid, Scopus, Web of Science, Ongoing Trials Registers, and Conference Proceedings in July 2022 with no limit of date or language. All trials associated with the effect of Mel and exercise in diabetic rodent models were included. Of the 962 relevant publications, 58 studies met our inclusion criteria as follows; Mel and type 1 DM (16 studies), Mel and type 2 DM (6 studies), exercise and type 1 DM (24 studies), and exercise and type 2 DM (12 studies). Meta-analysis of the data was done using the Mantel Haenszel method. RESULTS In most of these studies, antioxidant status and oxidative stress, inflammatory response, apoptosis rate, lipid profiles, and glucose levels were monitored in diabetic heart tissue. According to our findings, both Mel and exercise can improve antioxidant capacity by activating antioxidant enzymes compared to the control diabetic groups (p < 0.05). The levels of pro-inflammatory cytokines, especially TNF-α were reduced in diabetic rodents after being treated with Mel and exercise. Apoptotic changes were diminished in diabetic rodents subjected to the Mel regime and exercise in which p53 levels and the activity of Caspases reached near normal levels (p < 0.05). Based on the data, both Mel and exercise can change the lipid profile in diabetic rodents, especially rats, and close it to near-to-control levels. CONCLUSION These data showed that exercise and Mel can reduce the harmful effects of diabetic conditions on the heart through the regulation of lipid profile, antioxidant capacity, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Afshin Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, Daneshgah Street, Ardabil, 56199-11367 Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Bartlett CW, Bossenbroek J, Ueyama Y, McCallinhart P, Peters OA, Santillan DA, Santillan MK, Trask AJ, Ray WC. Invasive or More Direct Measurements Can Provide an Objective Early-Stopping Ceiling for Training Deep Neural Networks on Non-invasive or Less-Direct Biomedical Data. SN COMPUTER SCIENCE 2023; 4:161. [PMID: 36647373 PMCID: PMC9836982 DOI: 10.1007/s42979-022-01553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Early stopping is an extremely common tool to minimize overfitting, which would otherwise be a cause of poor generalization of the model to novel data. However, early stopping is a heuristic that, while effective, primarily relies on ad hoc parameters and metrics. Optimizing when to stop remains a challenge. In this paper, we suggest that for some biomedical applications, a natural dichotomy of invasive/non-invasive measurements, or more generally proximal vs distal measurements of a biological system can be exploited to provide objective advice on early stopping. We discuss the conditions where invasive measurements of a biological process should provide better predictions than non-invasive measurements, or at best offer parity. Hence, if data from an invasive measurement are available locally, or from the literature, that information can be leveraged to know with high certainty whether a model of non-invasive data is overfitted. We present paired invasive/non-invasive cardiac and coronary artery measurements from two mouse strains, one of which spontaneously develops type 2 diabetes, posed as a classification problem. Examination of the various stopping rules shows that generalization is reduced with more training epochs and commonly applied stopping rules give widely different generalization error estimates. The use of an empirically derived training ceiling is demonstrated to be helpful as added information to leverage early stopping in order to reduce overfitting.
Collapse
Affiliation(s)
- Christopher W. Bartlett
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Jamie Bossenbroek
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
- Department of Computer Science and Engineering, The Ohio State University College of Engineering, Columbus, OH USA
| | - Yukie Ueyama
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Patricia McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Olivia A. Peters
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Donna A. Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Mark K. Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA USA
| | - Aaron J. Trask
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - William C. Ray
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
- The Interdisciplinary Graduate Program in Biophysics, The Ohio State University Graduate School, Columbus, OH USA
| |
Collapse
|
5
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
6
|
Anti-Inflammatory and Antioxidant Properties of Tart Cherry Consumption in the Heart of Obese Rats. BIOLOGY 2022; 11:biology11050646. [PMID: 35625374 PMCID: PMC9138407 DOI: 10.3390/biology11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for cardiovascular diseases, frequently related to oxidative stress and inflammation. Dietary antioxidant compounds improve heart health. Here, we estimate the oxidative grade and inflammation in the heart of dietary-induced obese (DIO) rats after exposure to a high-fat diet compared to a standard diet. The effects of tart cherry seed powder and seed powder plus tart cherries juice were explored. Morphological analysis and protein expressions were performed in the heart. The oxidative status was assessed by the measurement of protein oxidation and 4-hydroxynonenal in samples. Immunochemical and Western blot assays were performed to elucidate the involved inflammatory markers as proinflammatory cytokines and cellular adhesion molecules. In the obese rats, cardiomyocyte hypertrophy was accompanied by an increase in oxidative state proteins and lipid peroxidation. However, the intake of tart cherries significantly changed these parameters. An anti-inflammatory effect was raised from tart cherry consumption, as shown by the downregulation of analyzed endothelial cell adhesion molecules and cytokines compared to controls. Tart cherry intake should be recommended as a dietary supplement to prevent or counteract heart injury in obese conditions.
Collapse
|
7
|
de Melo Yamamoto AP, Chiba FY, Astolphi RD, de Oliveira da Mota MS, Louzada MJQ, de Lima Coutinho Mattera MS, Garbin CAS, Ervolino E, Tsosura TVS, Belardi BE, Dos Santos RM, Okamoto MM, Machado UF, Matsushita DH. Effect of resistance training on osteopenic rat bones in neonatal streptozotocin-induced diabetes: Analysis of GLUT4 content and biochemical, biomechanical, densitometric, and microstructural evaluation. Life Sci 2021; 287:120143. [PMID: 34785192 DOI: 10.1016/j.lfs.2021.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the effect of resistance training-RT on glycemia, expression of the glucose transporter-GLUT4, bone mineral density-BMD, and microstructural and biomechanical properties of osteopenic rat bones in neonatal streptozotocin-induced diabetes. MAIN METHODS Sixty-four 5-day-old male rats were divided into two groups: control and diabetic rats injected with vehicle or streptozotocin, respectively. After 55 days, densitometric analysis-DA of the tibia was performed. These groups were subdivided into four subgroups: non-osteopenic control-CN, osteopenic control-OC, non-osteopenic diabetic-DM, and osteopenic diabetic-OD. The OC and OD groups were suspended by their tails for 21 days to promote osteopenia in the hindlimb; subsequently, a second DA was performed. The rats were subdivided into eight subgroups: sedentary control-SC, sedentary osteopenic control-SOC, exercised control-EC, exercised osteopenic control-EOC, sedentary diabetic-SD, sedentary osteopenic diabetic-SOD, exercised diabetic-ED, and exercised osteopenic diabetic-EOD. For RT, the rats climbed a ladder with weights secured to their tails for 12 weeks. After RT, a third DA was performed, and blood samples, muscles, and tibias were assessed to measure glycemia, insulinemia, GLUT4 content, bone maximum strength, fracture energy, extrinsic stiffness, BMD, cancellous bone area, trabecular number, and trabecular width. KEY FINDINGS After RT, glycemia, GLUT4 content, BMD, and bone microstructural and biomechanical properties were improved in diabetic rats (osteopenic and non-osteopenic). However, RT had no effect on these parameters in the EC and SC groups. SIGNIFICANCE These results suggest that RT improves GLUT4 content, BMD, and microstructural and biomechanical properties of bone in osteopenic and non-osteopenic diabetic rats and is effective in controlling glycemia.
Collapse
Affiliation(s)
- Aline Pedro de Melo Yamamoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Fernando Yamamoto Chiba
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Rafael Dias Astolphi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Max Sander de Oliveira da Mota
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Mário Jefferson Quirino Louzada
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Maria Sara de Lima Coutinho Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Cléa Adas Saliba Garbin
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Edilson Ervolino
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Thaís Verônica Saori Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Bianca Elvira Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Rodrigo Martins Dos Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, São Paulo Institute of Biomedical Sciences, USP, Brazil.
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, São Paulo Institute of Biomedical Sciences, USP, Brazil.
| | - Doris Hissako Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
9
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Li JC, Velagic A, Qin CX, Li M, Leo CH, Kemp-Harper BK, Ritchie RH, Woodman OL. Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Front Pharmacol 2021; 11:585740. [PMID: 33716721 PMCID: PMC7944142 DOI: 10.3389/fphar.2020.585740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial dysfunction is a major risk factor for several of the vascular complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction in the carotid artery remains unknown. Aim: To assess how diabetes affects the role of endogenous NO• and HNO in endothelium-dependent relaxation in rat isolated carotid arteries. Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD was continued for a further 12 weeks. Sham rats were fed standard chow and administered with citrate vehicle. After 14 weeks total, rats were anesthetized and carotid arteries collected to assess responses to the endothelium-dependent vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to assess the contribution of endothelium-dependent hyperpolarization to relaxation. The corresponding contribution of NOS-derived nitrogen oxide species to relaxation was assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger, were used to distinguish between NO• and HNO-mediated relaxation. Results: At study end, diabetic rats exhibited significantly retarded body weight gain and elevated blood glucose levels compared to sham rats. The sensitivity and the maximal relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats, indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating that NOS-derived nitrogen oxide species are the predominant endothelium-derived vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact. Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved. The potential for preserved HNO activity under pathological conditions that are associated with oxidative stress indicates that HNO donors may represent a viable therapeutic approach to the treatment of vascular dysfunction.
Collapse
Affiliation(s)
- Jasmin Chendi Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Anida Velagic
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Mandy Li
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chen Huei Leo
- Science, Maths and Technology Cluster, Singapore University of Technology & Design, Singapore, Singapore
| | - Barbara K. Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rebecca H. Ritchie
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Owen L. Woodman
- Drug, Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Dariushnejad H, Chodari L, Ghorbanzadeh V. The Combination Effect of Voluntary Exercise and Crocin on Angiogenic miRNAs in High-Fat Diet/Low-Dose STZ-Induced Type2 Diabetes in Rats: miR-126 and miR-210. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: As one of the major complications of diabetes, cardiovascular disease might result in early death in people with diabetes. miR-126 and 210 expressions undergo alterations in cardiac disease and cause heart failure. Methods: Animals were divided into the 5 groups of control (Con), diabetes (Dia), diabeticcrocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), and diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by the use of a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received crocin orally (50 mg/kg), and voluntary exercise was performed alone or together for 8 weeks. QRT–PCR method was used to determine the levels of miR-210 and miR-126 in cardiac tissue. Results: The levels of miR-210 and miR-126 in the cardiac tissue augmented in both the crocin and voluntary exercise groups in comparison with the non-treated group (p<0.001). The use of combination therapy with exercise and crocin magnified their effects on miR-210 and miR-126 levels (p<0.001). Moreover, MiR-210 levels were lower in the crocin group compared to the exercise group (p<0.001). Conclusion: The results indicated that voluntary exercise combined with crocin might provide a novel therapeutic plan for cardiovascular disease through increasing miR-210 and miR-126 expression.
Collapse
Affiliation(s)
- Hassan Dariushnejad
- Department of Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Medical Physiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Vajihe Ghorbanzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Immunomodulator Drug (IMODTM) and Exercise Improve Cardiac Oxidative Stress and Antioxidant Balance in Diabetic Rats. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.62898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
: Diabetes is a common metabolic disease that increases the risk of cardiovascular disease. It seems that the reduction of oxidative stress or increasing antioxidant levels improves diabetic cardiomyopathy. Antioxidant effects of immunomodulatory drug (IMODTM) and also beneficial influences of exercise on diabetic complications have been shown. The present study examined the effects of IMODTM and exercise on cardiac oxidative stress and antioxidants in diabetes. For this purpose, 64 rats were divided into 8 groups: control (C), exercise (E), IMODTM (20 mg/kg) (I), exercise plus IMODTM (E + I), diabetes (D), diabetic rats treated with exercise (D + E), diabetic rats treated with IMODTM (D + I), and diabetic rats treated with exercise plus IMODTM (D + E + I). Treatments with exercise and/or IMODTM were performed for 8 weeks. Type 1 diabetes was induced by intraperitoneal injection of 60 mg/kg streptozotocin. After the treatment period, all rats were anesthetized, and blood and heart samples were gathered for measurement of malondialdehyde (MDA) as an oxidative stress marker, lactate dehydrogenase (LDH) as a cardiac injury marker, total antioxidant capacity (TAC), and superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) as antioxidant enzymes. The present study, for the first time, showed that IMODTM alone or in combination with exercise had positive effects on alleviating hyperglycemia, MDA, and LDH along with elevation of antioxidant enzymes activities in type 1 diabetic rats.
Collapse
|
13
|
Tripathi P, Agarwal S, Sarangi AN, Tewari S, Mandal K. Genetic Variation in SOD1 Gene Promoter Ins/Del and Its Influence on Oxidative Stress in Beta Thalassemia Major Patients. Int J Hematol Oncol Stem Cell Res 2020; 14:110-117. [PMID: 32461794 PMCID: PMC7231791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: A genetic polymorphism of 50 bp insertion/deletion (Ins/Del) (rs 36232792) in the promoter region of the SOD1 was reported to influence the enzyme activity. The present study aimed to evaluate the status of this polymorphism of human peripheral blood cells and its association with SOD enzyme activity in beta-thalassemia major patients. Material and Methods: The study was carried out on 200 thalassemia major patients and 200 healthy controls healthy. The SOD1 genotypes were determined using a polymerase chain reaction (PCR)-based method. Serum SOD activity were assessed using SOD assay kit. In-silico analysis was assessed using loss-of-function (LoFtool) (PMID: 27563026). Results: No association was found between the insertion/deletion (Ins/Del) polymorphism and SOD enzyme activity in thalassemia major patients Conclusion: The results of this study indicated that the SOD enzyme activity is not affected by the 50 bp Ins/Del polymorphism of SOD1in thalassemia major patients. Further research with larger sample size and with other genes of antioxidant system is required.
Collapse
Affiliation(s)
- Poonam Tripathi
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India ,Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India,Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Aditya Narayan Sarangi
- Department of Biomedical Informatics Center, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
14
|
Broderick TL, Sennott JM, Gutkowska J, Jankowski M. Anti-inflammatory and angiogenic effects of exercise training in cardiac muscle of diabetic mice. Diabetes Metab Syndr Obes 2019; 12:565-573. [PMID: 31118719 PMCID: PMC6499146 DOI: 10.2147/dmso.s197127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Improved glycemic control and cardiovascular function are major benefits of regular exercise training (ET) in type 2 diabetes. Recent work has demonstrated that ET improves cardiac and vascular functions independent of obesity, inflammation, and glucose control in the diabetic db/db mouse. In this study, we determined whether ET can overcome the effects of elevated inflammatory cytokines and hyperglycemia on markers of cardiac angiogenesis and inflammation in the diabetic mouse. Methods: Male diabetic db/db mice were assigned to a sedentary and exercise-trained group. Sedentary lean control littermates were used as controls. ET was performed at moderate intensity on a treadmill 5 days a week for a period of 8 weeks. After ET, blood was collected for assay of glucose, hemoglobin (HB and HB1AC), C-reactive protein (CRP), and IL-6. Markers of inflammation and insulin resistance (IL-6, IL-1β, and tumor necrosis factor-alpha [TNF-α]) and angiogenesis (endothelial nitric oxide synthase [eNOS], vascular endothelial growth factor-A [VEGF-A], and hypoxia-inducible factor-1α [HIF-1α]) were measured in hearts. Results: Diabetic db/db mice remained obese and hyperglycemic after ET. Percent total HB and HB1AC were significantly higher in ET db/db mice compared to sedentary db/db mice, indicating further deterioration of glucose control with ET. Plasma levels of CRP and IL-6 were higher in sedentary db/db mice compared to control mice and were unaffected by ET. However, in the presence of hyperglycemia and elevated plasma cytokines, protein expression of eNOS, mRNA expression of VEGF-A, and HIF-1α was increased in db/db hearts after ET. On the other hand, protein expression of TNF-α and mRNA expression IL-6 and IL-1β was significantly decreased by ET in hearts of db/db mice. Conclusion: Our results indicate that ET improves cardiac markers of angiogenesis, insulin resistance, and endothelial dysfunction in the db/db mouse. This was observed independently of obesity, hyperglycemia, and the systemic inflammatory state.
Collapse
Affiliation(s)
- Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- Correspondence: Tom L BroderickLaboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, 19555 North 59 Avenue, Glendale, AZ85308, USATel +1 623 572 3664Fax +1 623 572 3673Email
| | - Jacqueline M Sennott
- Department of Cardiology, Medical Education H23, Saint-Joseph Mercy Health System, Pontiac, MI, USA
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
de Las Heras N, Klett-Mingo M, Ballesteros S, Martín-Fernández B, Escribano Ó, Blanco-Rivero J, Balfagón G, Hribal ML, Benito M, Lahera V, Gómez-Hernández A. Chronic Exercise Improves Mitochondrial Function and Insulin Sensitivity in Brown Adipose Tissue. Front Physiol 2018; 9:1122. [PMID: 30174613 PMCID: PMC6107710 DOI: 10.3389/fphys.2018.01122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present work was to study the consequences of chronic exercise training on factors involved in the regulation of mitochondrial remodeling and biogenesis, as well as the ability to produce energy and improve insulin sensitivity and glucose uptake in rat brown adipose tissue (BAT). Male Wistar rats were divided into two groups: (1) control group (C; n = 10) and (2) exercise-trained rats (ET; n = 10) for 8 weeks on a motor treadmill (five times per week for 50 min). Exercise training reduced body weight, plasma insulin, and oxidized LDL concentrations. Protein expression of ATP-independent metalloprotease (OMA1), short optic atrophy 1 (S-OPA1), and dynamin-related protein 1 (DRP1) in BAT increased in trained rats, and long optic atrophy 1 (L-OPA1) and mitofusin 1 (MFN1) expression decreased. BAT expression of nuclear respiratory factor type 1 (NRF1) and mitochondrial transcription factor A (TFAM), the main factors involved in mitochondrial biogenesis, was higher in trained rats compared to controls. Exercise training increased protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and AMP-activated protein kinase (pAMPK/AMPK ratio) in BAT. In addition, training increased carnitine palmitoyltransferase II (CPT II), mitochondrial F1 ATP synthase α-chain, mitochondrial malate dehydrogenase 2 (mMDH) and uncoupling protein (UCP) 1,2,3 expression in BAT. Moreover, exercise increased insulin receptor (IR) ratio (IRA/IRB ratio), IRA-insulin-like growth factor 1 receptor (IGF-1R) hybrids and p42/44 activation, and decreased IGF-1R expression and IR substrate 1 (p-IRS-1) (S307) indicating higher insulin sensitivity and favoring glucose uptake in BAT in response to chronic exercise training. In summary, the present study indicates that chronic exercise is able to improve the energetic profile of BAT in terms of increased mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Natalia de Las Heras
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mercedes Klett-Mingo
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Óscar Escribano
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Marta L Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Vicente Lahera
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| |
Collapse
|
16
|
Lee J, Lee Y, LaVoy EC, Umetani M, Hong J, Park Y. Physical activity protects NLRP3 inflammasome-associated coronary vascular dysfunction in obese mice. Physiol Rep 2018; 6:e13738. [PMID: 29932503 PMCID: PMC6014451 DOI: 10.14814/phy2.13738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome mediates the release of pro-inflammatory cytokine interleukin (IL)-1β and thereby plays a pivotal role in the inflammatory response in vascular pathology. An active lifestyle has beneficial effects on inflammation-associated vascular dysfunction in obesity. However, it remains unclear how physical activity regulates NLRP3 inflammasome-mediated vascular dysfunction in obesity. Therefore, we explored the protective effect of physical activity on NLRP3 inflammasome-associated vascular dysfunction in mouse hearts, and the potential underlying mechanisms. C57BL/6J male mice were randomly divided into four groups: (1) control low-fat diet (LF-SED), (2) LF diet with free access to a voluntary running wheel (LF-RUN), (3) high-fat diet (HF-SED; 45% of calories from fat), and (4) HF-RUN. We examined NLRP3 inflammasome-related signaling pathways, nitric oxide (NO) signaling, and oxidative stress in coronary arterioles to test effects of HFD and physical activity. Voluntary running reduced NLRP3 inflammasome and its downstream effects, caspase-1 and IL-1β in coronary arteriole endothelium of obese mice in immunofluorescence staining. HF-RUN attenuated HFD-dependent endothelial NO synthase (eNOS) reduction and thus increased NO production compared to HF-SED. HFD elevated intracellular superoxide production in coronary arterioles while voluntary running ameliorated oxidative stress. Our findings provide the first evidence that voluntary running attenuates endothelial NLRP3 inflammasome activation in coronary arterioles of HFD feeding mice. Results further suggest that voluntary running improves obesity-induced vascular dysfunction by preserved NO bioavailability via restored expression of eNOS and reduced oxidative stress.
Collapse
Affiliation(s)
- Jonghae Lee
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Yang Lee
- Texas A&M Health Science College of MedicineCollege StationTexas
| | - Emily C. LaVoy
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Michihisa Umetani
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas
| | - Junyoung Hong
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| | - Yoonjung Park
- Laboratory of Integrated PhysiologyDepartment of Health and Human PerformanceUniversity of HoustonHoustonTexas
| |
Collapse
|
17
|
Couto GK, Paula SM, Gomes-Santos IL, Negrão CE, Rossoni LV. Exercise training induces eNOS coupling and restores relaxation in coronary arteries of heart failure rats. Am J Physiol Heart Circ Physiol 2018; 314:H878-H887. [DOI: 10.1152/ajpheart.00624.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exercise training (ET) has emerged as a nonpharmacological therapy for cardiovascular diseases because of its helpful milieu for improving vascular function. The aim of the present study was to assess whether ET reverses the alterations in vascular reactivity observed in heart failure (HF)-related coronary arteries and to elucidate the molecular mechanisms involved in these adjustments. Male Wistar rats were subjected to either coronary artery ligation or sham operation. Four weeks after the surgery, rats were divided into two groups: untrained HF (UHF) and exercise-trained HF (THF). ET was conducted on a treadmill for 8 wk. An untrained SO group was included in the study as a normal control. ET restored the impaired acetylcholine (ACh)- and sodium nitroprusside-induced relaxation in coronary arteries to levels of the control. Oxidative stress and reduced nitric oxide (NO) production were observed in UHF, whereas ET restored both parameters to the levels of the control. Expression levels of endothelial NO synthase (eNOS) and soluble guanylyl cyclase subunits were increased in coronary arteries of UHF rats but reduced in THF rats. Tetrahydrobiopterin restored ACh-induced NO production in the UHF group, indicating that eNOS was uncoupled. ET increased the eNOS dimer-to-monomer ratio and expression of GTP cyclohydrolase 1, thus increasing NO bioavailability. Taken together, these findings demonstrate that ET reverses the dysfunction of the NO/soluble guanylyl cyclase pathway present in coronary arteries of HF rats. These effects of ET are associated with increased GTP cyclohydrolase 1 expression, restoration of NO bioavailability, and reduced oxidative stress through eNOS coupling. NEW & NOTEWORTHY The present study provides a molecular basis for the exercise-induced improvement in coronary arteries function in heart failure. Increasing the expression of GTP cyclohydrolase 1, the rate-limiting enzyme in the de novo biosynthesis of tetrahydrobiopterin, exercise training couples endothelial nitric oxide synthase, reduces oxidative stress, and increases nitric oxide bioavailability and sensitivity in coronary arteries of heart failure rats.
Collapse
Affiliation(s)
- Gisele K. Couto
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Suliana M. Paula
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Eduardo Negrão
- Heart Institute (InCor-HCFMUSP), University of São Paulo, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luciana V. Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Abstract
Prehypertension (pHTN) and metabolic syndrome (MetS) are both lifestyle diseases that are potentiated by increased adiposity, as both disease processes are closely related to weight. In the case of pHTN, increased adiposity causes dysregulation of the renin-angiotensin-aldosterone-system (RAAS) as well as adipokine- and leptin-associated increases in adrenergic tone. In MetS, excess weight potentiates hyperglycemia and insulin resistance which causes positive feedback into the RAAS system, activates an inflammatory cascade that potentiates atherosclerosis, and causes lipid dysregulation which together contribute to cardiovascular disease, especially coronary heart disease (CHD) and heart failure (HF). The relationship with all-cause mortality is not as clear-cut in part because of some protective effects associated with the obesity paradox in chronic diseases such as CHD and HF. However, in healthy populations, the absence of excess weight and its associated effects on prehypertension and MetS are associated with a longer absolute and disease-free lifespan.
Collapse
|
19
|
Voluntary exercise training restores anticontractile effect of NO in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide 2018; 74:10-18. [PMID: 29307633 DOI: 10.1016/j.niox.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/19/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Our recent study showed that NO-mediated anticontractile effect of endothelium is absent in coronary arteries of adult rats, which suffered from antenatal/early postnatal hypothyroidism. This study tested the hypothesis that exercise training would improve such detrimental consequences of early thyroid deficiency. DESIGN AND METHODS Wistar dams received propylthiouracil (PTU, 7 ppm) in drinking water during gestation and two weeks postpartum; control dams received tap water. Six-week-old male offspring of control (CON) and PTU dams was divided into sedentary (CON-Sed, n = 12; PTU-Sed, n = 10) and trained (CON-Tr, n = 12; PTU-Tr, n = 10) groups; the latter had 24-h access to running wheels. Eight weeks later coronary arteries were studied by wire myography. Anticontractile effect of NO was assessed by the effects of NOS inhibitor L-NNA on the basal tone and contractile response to U46619. Oxidative phosphorylation complexes and eNOS were estimated by Western blotting. RESULTS T3/T4 and TSH levels (ELISA) were normalized in the progeny of PTU-treated dams at the age of 6 weeks and were not affected by training. Total running distance did not differ between CON-Tr and PTU-Tr. The contents of oxidative phosphorylation complexes were increased post-training in triceps brachii muscle from CON-Tr and PTU-Tr and in heart from PTU-Tr. Coronary arteries of PTU-Sed compared to CON-Sed demonstrated higher basal tone and contractile response to U46619, which were not further increased by L-NNA. The effects of L-NNA on the basal tone and contractile response to U46619 did not differ in CON-Tr and PTU-Tr groups, but were elevated in PTU-Tr compared to PTU-Sed group. PTU-Tr rats in comparison to PTU-Sed group had higher eNOS content in heart. Responses of coronary arteries to DEA/NO did not differ among all experimental groups. CONCLUSIONS Long-lasting coronary endothelial dysfunction resulted from transient thyroid deficiency during the antenatal/early postnatal period can be corrected by voluntary exercise training.
Collapse
|
20
|
Xing Y, Sun W, Wang Y, Gao F, Ma H. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart. Aging (Albany NY) 2017; 8:873-88. [PMID: 27019292 PMCID: PMC4931841 DOI: 10.18632/aging.100933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/29/2016] [Indexed: 01/04/2023]
Abstract
Insulin protects cardiomyocytes from myocardial ischemia/reperfusion (MI/R) injury through activating Akt. However, phosphatase PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) dephosphorylates and inactivates Akt. The balanced competitive interaction of insulin and PHLPP-1 has not been directly examined. In this study, we have identified the effect of mutual inhibition of insulin signaling and PHLPP-1 on the cardioprotective efficiency of Akt in aged heart. Young (3 mon) and aged (20 mon) Sprague Dawley (SD) rats were subjected to MI/R in vivo. The PHLPP-1 level was higher in aged vs. young hearts at base. But, insulin treatment failed to decrease PHLPP-1 level during reperfusion in the aged hearts. Consequently, the cardioprotection of insulin-induced Akt activation was impaired in aged hearts, resulting in more susceptible to MI/R injury. In cultured rat ventricular myocytes, PHLPP-1 knockdown significantly enhanced insulin-induced Akt phosphorylation and reduced simulated hypoxia/reoxygenation-induced apoptosis. Contrary, PHLPP-1 overexpression terminated Akt phosphorylation and deteriorated myocytes apoptosis. Using in vivo aged animal models, we confirmed that cardiac PHLPP-1 knockdown or enhanced insulin sensitivity by exercise training dramatically increased insulin-induced Akt phosphorylation. Specifically, MI/R-induced cardiomyocyte apoptosis and infarct size were decreased and cardiac function was increased. More importantly, we found that insulin regulated the degradation of PHLPP-1 and insulin treatment could enhance the binding between PHLPP-1 and β-transducin repeat-containing protein (β-TrCP) to target for ubiquitin-dependent degradation. Altogether, we have identified a new mechanism by which insulin suppresses PHLPP-1 to enhance Akt activation. But, aged heart possesses lower insulin effectiveness and fails to decrease PHLPP-1 during MI/R, which subsequently limited Akt activity and cardioprotection. PHLPP-1 could be a promising therapeutic interventional target for elderly ischemic heart disease patients.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Wanqing Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yishi Wang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.,Department of Pathophysiology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Labazi H, Trask AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol Res 2017; 123:114-121. [PMID: 28700893 DOI: 10.1016/j.phrs.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MetS) is a group of cardio-metabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia; these are also a combination of independent coronary artery disease (CAD) risk factors. Alarmingly, the prevalence of MetS risk factors are increasing and a leading cause for mortality. In the vasculature, complications from MetS and type 2 diabetes (T2D) can be divided into microvascular (retinopathy and nephropathy) and macrovascular (cardiovascular diseases and erectile dysfunction). In addition to vascular and endothelial dysfunction, vascular remodeling and stiffness are also hallmarks of cardiovascular disease (CVD), and well-characterized vascular changes that are observed in the early stages of hypertension, T2D, and obesity [1-3]. In the heart, the link between obstructive atherosclerosis of coronary macrovessels and myocardial ischemia (MI) is well established. However, recent studies show that abnormalities in the coronary microcirculation are associated with functional and structural changes in coronary microvessels (classically defined as being ≤150-200μm internal diameter), which may cause or contribute to MI even in the absence of obstractive CAD. This suggests a prognostic value of an abnormal coronary microcirculation as an early sub-clinical culprit in the pathogenesis and progression of heart disease in T2D and MetS. The aim of this review is to summarize recent studies investigating the coronary microvascular remodeling in an early pre-atherosclerotic phase of MetS and T2D, and to explore potential mechanisms associated with the timing of coronary microvascular remodeling relative to that of the macrovasculature.
Collapse
Affiliation(s)
- Hicham Labazi
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States; Department of Pediatrics, The Ohio State University Columbus, OH, United States.
| |
Collapse
|
22
|
Impact of cardiac rehabilitation and exercise training programs in coronary heart disease. Prog Cardiovasc Dis 2017; 60:103-114. [PMID: 28689854 DOI: 10.1016/j.pcad.2017.07.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
Cardiovascular rehabilitation (CR) is the process of developing and maintaining an optimal level of physical, social, and psychological well-being in order to promote recovery from cardiovascular (CV) illness. It is a multi-disciplinary approach encompassing supervised exercise training, patient counseling, education and nutritional guidance that may also enhance quality of life. Beneficial CV effects may include improving coronary heart disease risk factors; particularly exercise capacity, reversing cardiac remodeling, and favorably modifying metabolism and systemic oxygen transport. We review the historical basis for contemporary CR, the indications and critical components of CR, as well as the potential salutary physiological and clinical effects of exercise-based CR.
Collapse
|
23
|
Ghorbanzadeh V, Mohammadi M, Mohaddes G, Dariushnejad H, Chodari L, Mohammadi S. Protective effect of crocin and voluntary exercise against oxidative stress in the heart of high-fat diet-induced type 2 diabetic rats. Physiol Int 2017; 103:459-468. [PMID: 28229629 DOI: 10.1556/2060.103.2016.4.6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Oxidative stress plays a critical role in the pathogenesis and progression of type 2 diabetes and diabetic-associated cardiovascular complications. This study investigated the impact of crocin combined with voluntary exercise on heart oxidative stress indicator in high-fat diet-induced type 2 diabetic rats. Materials and methods Rats were divided into four groups: diabetes, diabetic-crocin, diabetic-voluntary exercise, diabetic-crocin-voluntary exercise. Type 2 diabetes was induced by high-fat diet (4 weeks) and injection of streptozotocin (intraperitoneally, 35 mg/kg). Animals received crocin orally (50 mg/kg); voluntary exercise was performed alone or combined with crocin treatment for 8 weeks. Finally, malondialdehyde (MDA), activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured spectrophotometrically. Results Treatment of diabetic rats with crocin and exercise significantly decreased the levels of MDA (p < 0.001) and increased the activity of SOD, GPx, and CAT compared with the untreated diabetic group. In addition, combination of exercise and crocin amplified their effect on antioxidant levels in the heart tissue of type 2 diabetic rats. Conclusion We suggest that a combination of crocin with voluntary exercise treatment may cause more beneficial effects in antioxidant defense system of heart tissues than the use of crocin or voluntary exercise alone.
Collapse
Affiliation(s)
- V Ghorbanzadeh
- 1 Student Research Committee, Tabriz University of Medical Sciences , Tabriz, Iran
| | - M Mohammadi
- 2 Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - G Mohaddes
- 3 Neuroscience Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - H Dariushnejad
- 2 Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - L Chodari
- 1 Student Research Committee, Tabriz University of Medical Sciences , Tabriz, Iran
| | - S Mohammadi
- 2 Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
24
|
Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep 2017; 7:204. [PMID: 28303003 PMCID: PMC5427962 DOI: 10.1038/s41598-017-00276-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Physical activity is known as an effective strategy for prevention and treatment of Type 2 Diabetes. The aim of this work was to compare the effects of a traditional Moderate Intensity Continuous Training (MICT) with a High Intensity Interval Training (HIIT) on glucose metabolism and mitochondrial function in diabetic mice. Diabetic db/db male mice (N = 25) aged 6 weeks were subdivided into MICT, HIIT or control (CON) group. Animals in the training groups ran on a treadmill 5 days/week during 10 weeks. MICT group ran for 80 min (0° slope) at 50-60% of maximal speed (Vmax) reached during an incremental test. HIIT group ran thirteen times 4 minutes (20° slope) at 85-90% of Vmax separated by 2-min-rest periods. HIIT lowered fasting glycaemia and HbA1c compared with CON group (p < 0.05). In all mitochondrial function markers assessed, no differences were noted between the three groups except for total amount of electron transport chain proteins, slightly increased in the HIIT group vs CON. Western blot analysis revealed a significant increase of muscle Glut4 content (about 2 fold) and higher insulin-stimulated Akt phosphorylation ratios in HIIT group. HIIT seems to improve glucose metabolism more efficiently than MICT in diabetic mice by mechanisms independent of mitochondrial adaptations.
Collapse
|
25
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O. Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010 New Zealand
| |
Collapse
|
26
|
Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Chodari L, Mohaddes G. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats. J Endocrinol Invest 2016; 39:1179-86. [PMID: 27094045 DOI: 10.1007/s40618-016-0456-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. MATERIALS AND METHODS Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. RESULTS Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. DISCUSSION Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Carotenoids/pharmacology
- Combined Modality Therapy
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Glucose/administration & dosage
- Glucose Tolerance Test
- Heart/drug effects
- Heart/physiopathology
- Insulin Resistance
- Male
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- V Ghorbanzadeh
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mohammadi
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Dariushnejad
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - L Chodari
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - G Mohaddes
- Neuroscience Research Centre of Tabriz University of Medical Sciences, 5166614766, Tabriz, Iran.
| |
Collapse
|
27
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
28
|
Rodríguez-Núñez I, Romero F, Saavedra MJ. [Exercise-induced shear stress: Physiological basis and clinical impact]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:244-54. [PMID: 27118039 DOI: 10.1016/j.acmx.2016.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 11/30/2022] Open
Abstract
The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Laboratorio de Biología del Ejercicio, Escuela de Kinesiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile; Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Concepción, Chile; Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Universidad de la Frontera. Laboratorio de Neurociencia y Biología de péptidos CEBIOR-CEGIN BIOREN, Depto. Ciencias Preclínicas, Facultad Medicina, UFRO, Temuco, Chile; Programa de Magíster en Kinesiología Cardiorrespiratoria, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Universidad de la Frontera. Laboratorio de Neurociencia y Biología de péptidos CEBIOR-CEGIN BIOREN, Depto. Ciencias Preclínicas, Facultad Medicina, UFRO, Temuco, Chile
| | - María Javiera Saavedra
- Programa de Magíster en Kinesiología Cardiorrespiratoria, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
29
|
Hypertension and physical exercise: The role of oxidative stress. MEDICINA-LITHUANIA 2016; 52:19-27. [PMID: 26987496 DOI: 10.1016/j.medici.2016.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress.
Collapse
|
30
|
Assar ME, Angulo J, Rodríguez-Mañas L. Diabetes and ageing-induced vascular inflammation. J Physiol 2015; 594:2125-46. [PMID: 26435167 DOI: 10.1113/jp270841] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the ageing process independently increase the risk for cardiovascular disease (CVD). Since incidence of diabetes increases as people get older, the diabetic older adults represent the largest population of diabetic subjects. This group of patients would potentially be threatened by the development of CVD related to both ageing and diabetes. The relationship between CVD, ageing and diabetes is explained by the negative impact of these conditions on vascular function. Functional and clinical evidence supports the role of vascular inflammation induced by the ageing process and by diabetes in vascular impairment and CVD. Inflammatory mechanisms in both aged and diabetic vasculature include pro-inflammatory cytokines, vascular hyperactivation of nuclear factor-кB, increased expression of cyclooxygenase and inducible nitric oxide synthase, imbalanced expression of pro/anti-inflammatory microRNAs, and dysfunctional stress-response systems (sirtuins, Nrf2). In contrast, there are scarce data regarding the interaction of these mechanisms when ageing and diabetes co-exist and its impact on vascular function. Older diabetic animals and humans display higher vascular impairment and CVD risk than those either aged or diabetic, suggesting that chronic low-grade inflammation in ageing creates a vascular environment favouring the mechanisms of vascular damage driven by diabetes. Further research is needed to determine the specific inflammatory mechanisms responsible for exacerbated vascular impairment in older diabetic subjects in order to design effective therapeutic interventions to minimize the impact of vascular inflammation. This would help to prevent or delay CVD and the specific clinical manifestations (cognitive decline, frailty and disability) promoted by diabetes-induced vascular impairment in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain.,Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| |
Collapse
|
31
|
Sonobe T, Tsuchimochi H, Schwenke DO, Pearson JT, Shirai M. Treadmill running improves hindlimb arteriolar endothelial function in type 1 diabetic mice as visualized by X-ray microangiography. Cardiovasc Diabetol 2015; 14:51. [PMID: 25964060 PMCID: PMC4430879 DOI: 10.1186/s12933-015-0217-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/18/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vascular function is impaired in patients with diabetes, however diabetic vascular dysfunction is ameliorated by exercise training. We aimed to clarify which hindlimb arterial segments are affected by treadmill running in the hindlimbs of streptozocin-induced type 1 diabetic mice in vivo. METHODS Mice were divided into 3 groups; healthy control, diabetic control, and diabetic-running groups. The exercise regimen was performed by treadmill level running mice for 60 min/day, for 4 weeks. Thereafter, we examined the vascular response to systemic acetylcholine administration in the left hindlimb of anesthetized-ventilated mice using either 1) X-ray microangiography to visualize the arteries or 2) ultrasonic flowmetry to record the femoral arterial blood flow. RESULTS X-ray imaging clearly visualized the hindlimb arterial network (~70-250 μm diameter). The vasodilator response to acetylcholine was significantly attenuated locally in the arterioles <100 μm diameter in the diabetic group of mice compared to the control group of mice. Post-acetylcholine administration, all groups showed an increase in hindlimb vascular conductance, but the diabetic mice showed the smallest increase. Overall, compared to the diabetic mice, the treadmill-running mice exhibited a significant enhancement of the vasodilator response within the arterioles with diabetes-induced vasodilator dysfunction. CONCLUSIONS Diabetes impaired acetylcholine-induced vasodilator function locally in the arteries <100 μm diameter and decreased hindlimb vascular conductance responded to acetylcholine, while regular treadmill running significantly ameliorated the impaired vasodilator function, and enhanced the decreased conductance in the diabetic mice.
Collapse
Affiliation(s)
- Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Daryl O Schwenke
- Department of Physiology-Heart Otago, University of Otago, Dunedin, New Zealand.
| | - James T Pearson
- Department of Physiology, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia. .,Australian Synchrotron, Clayton, Australia.
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
32
|
Phillips SA, Mahmoud AM, Brown MD, Haus JM. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog Cardiovasc Dis 2014; 57:521-34. [PMID: 25529367 DOI: 10.1016/j.pcad.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Physical inactivity is a major risk factor for the development of obesity and other cardiovascular (CV) disease (CVD). Vascular endothelial dysfunction is a key event in the development of CVD and is associated with a sedentary lifestyle in otherwise healthy adults. In addition, vascular endothelial dysfunction may be exacerbated in sedentary individuals who are obese and insulin resistant, since excess body fat is associated with elevated levels of pro-atherogenic inflammatory adipokines and cytokines that reduce the nitric oxide (NO) and other upstream paracrine signaling substances which reduces vascular health. Since blood flow-related shear stress is a major stimulus to NO release from the endothelium, disturbed flow or low shear stress is the likely mechanism by which vascular endothelial function is altered with inactivity. Evidence shows that regular physical exercise has beneficial effects on CVD and the risk factors that promote peripheral arterial function and health. Both aerobic and resistance exercise training are generally believed to improve endothelial function and are commonly recommended for CV health, including the management of obesity, hypertension, and insulin resistance. However, many factors including age, disease status, and race appear to influence these outcomes. Although evidence supporting the health benefits of exercise is compelling, the optimum prescription (volume and intensity) and the exact mechanism underlying the effects of exercise training on arterial function and cardiometabolic risk has yet to be identified. The focus of this review will be on the evidence supporting exercise interventions for peripheral arterial function.
Collapse
Affiliation(s)
- Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL.
| | - Abeer M Mahmoud
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Michael D Brown
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Jacob M Haus
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
33
|
Rodríguez I, González M. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol 2014; 5:209. [PMID: 25278895 PMCID: PMC4165280 DOI: 10.3389/fphar.2014.00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life.
Collapse
Affiliation(s)
- Iván Rodríguez
- Faculty of Health Science, Universidad San Sebastián Concepción, Chile ; PhD Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera Temuco, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile ; Group of Research and Innovation in Vascular Health Chillán, Chile
| |
Collapse
|
34
|
Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab 2014; 39:1205-13. [PMID: 25203141 DOI: 10.1139/apnm-2014-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.
Collapse
Affiliation(s)
- Jason P Myslicki
- a Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
35
|
Roque FR, Hernanz R, Salaices M, Briones AM. Exercise training and cardiometabolic diseases: focus on the vascular system. Curr Hypertens Rep 2013; 15:204-14. [PMID: 23519745 DOI: 10.1007/s11906-013-0336-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The regular practice of physical activity is a well-recommended strategy for the prevention and treatment of several cardiovascular and metabolic diseases. Physical exercise prevents the progression of vascular diseases and reduces cardiovascular morbidity and mortality. Exercise training also ameliorates vascular changes including endothelial dysfunction and arterial remodeling and stiffness, usually present in type 2 diabetes, obesity, hypertension and metabolic syndrome. Common to these diseases is excessive oxidative stress, which plays an important role in the processes underlying vascular changes. At the vascular level, exercise training improves the redox state and consequently NO availability. Moreover, growing evidence indicates that other mediators such as prostanoids might be involved in the beneficial effects of exercise. The purpose of this review is to update recent findings describing the adaptation response induced by exercise in cardiovascular and metabolic diseases, focusing more specifically on the beneficial effects of exercise in the vasculature and the underlying mechanisms.
Collapse
Affiliation(s)
- Fernanda R Roque
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Nevelsteen I, Van den Bergh A, Van der Mieren G, Vanderper A, Mubagwa K, Bult H, Herijgers P. NO-dependent endothelial dysfunction in type II diabetes is aggravated by dyslipidemia and hypertension, but can be restored by angiotensin-converting enzyme inhibition and weight loss. J Vasc Res 2013; 50:486-97. [PMID: 24192582 DOI: 10.1159/000355221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Insulin resistance, dyslipidemia and hypertension are independent mediators of endothelial dysfunction. It is incompletely defined whether dyslipidemia and hypertension in addition to diabetes mellitus type II (DMII), as seen in the metabolic syndrome (MS), worsen diabetes-induced endothelial dysfunction. Furthermore, it is unclear whether treatment influences endothelial dysfunction similarly in MS and DMII. Therefore, we studied vascular reactivity and the effect of in vivo treatment with angiotensin-converting enzyme inhibition (ACE-I) or hypocaloric diet in LDL receptor- and leptin-deficient (ob/ob), double knockout mice (DKO), featuring MS and in ob/ob mice with DMII. METHODS AND RESULTS Vascular reactivity was studied in isolated aortic ring segments. Maximum vasorelaxant response to acetylcholine (Ach) was more depressed in DKO than in ob/ob mice, whereas response to bradykinin (BK) was equally attenuated in both genotypes (52 ± 3 and 23 ± 9% reversal of preconstriction induced by 10(-7) M phenylephrine in DKO vs. 76 ± 3 and 23 ± 8% reversal of preconstriction in ob/ob mice, respectively). ACE-I and hypocaloric diet improved ACh-induced vasorelaxation significantly (89 ± 2 and 59 ± 2% reversal of preconstriction in DKO vs. 80 ± 3 and 84 ± 4% in ob/ob mice, respectively), but not the response to BK. CONCLUSION These results indicate a differential impact of DMII and MS on endothelial function. ACE-I and hypocaloric diet improved ACh-, but not BK-induced vasorelaxation in these mouse models of DMII and MS.
Collapse
Affiliation(s)
- Ines Nevelsteen
- Department of Cardiovascular Sciences, Research Unit of Experimental Cardiac Surgery, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Cox EJ, Marsh SA. Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 2013; 12:101. [PMID: 23835259 PMCID: PMC3708830 DOI: 10.1186/1475-2840-12-101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/30/2013] [Indexed: 01/08/2023] Open
Abstract
Background Exercise causes physiological cardiac hypertrophy and benefits the diabetic heart. Mammalian switch-independent 3A (mSin3A) and histone deacetylases (HDACs) 1 and 2 regulate hypertrophic genes through associations with the DNA binding proteins repressor element-1 silencing transcription factor (REST) and O-linked β-N-acetylglucosamine transferase (OGT). O-linked β-N-acetylglucosamine (O-GlcNAc) is a glucose derivative that is chronically elevated in diabetic hearts, and a previous study showed that exercise reduces cardiac O-GlcNAc. We hypothesized that O-GlcNAc and OGT would physically associate with mSin3A/HDAC1/2 in the heart, and that this interaction would be altered by diabetes and exercise. Methods 8-week-old type 2 diabetic db/db (db) and non-diabetic C57 mice were randomized to treadmill exercise or sedentary groups for 1 or 4 weeks. Results O-GlcNAc was significantly higher in db hearts and increased with exercise. Db hearts showed lower levels of mSin3A, HDAC1, and HDAC2 protein, but higher levels of HDAC2 mRNA and HDAC1/2 deacetylase activity. Elevated HDAC activity was associated with significantly blunted expression of α-actin and brain natriuretic peptide in db hearts. In sedentary db hearts, co-immunoprecipitation assays showed that mSin3A and OGT were less associated with HDAC1 and HDAC2, respectively, compared to sedentary C57 controls; however, exercise removed these differences. Conclusions These data indicate that diabetes and exercise oppositely affect interactions between pro-hypertrophic transcription factors, and suggest that an increase in total cardiac O-GlcNAc is a mechanism by which exercise benefits type 2 diabetic hearts.
Collapse
|
38
|
Colombo R, Siqueira R, Becker CU, Fernandes TG, Pires KM, Valença SS, Souza-Rabbo MP, Araujo AS, Belló-Klein A. Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol 2013; 91:38-44. [DOI: 10.1139/cjpp-2012-0261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) is an experimental protocol of right heart failure. We analyzed the role of exercise training on the right ventricle structure and function, pulmonary artery remodeling, and GSK-3β expression. Rats were divided among the following groups: sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), and trained monocrotaline (TM). Rats underwent exercise training for a period of 5 weeks, with 3 weeks post-MCT injection. Rats in the SM and TM groups presented with an increase in right ventricle hypertrophy indexes and lung congestion. The right ventricular end diastolic pressure (RVEDP), right ventricular systolic pressure (RVSP), and its minimum and maximal pressure derivates were increased in the SM and TM groups. The right ventricle interstitial volume pulmonary artery thickness and p-GSK-3β/GSK-3β were increased in the MCT groups as compared with the control groups. The TM group had a reduction in interstitial volume, p-GSK-3β/GSK-3β ratio, pulmonary artery thickness, RVEDP, and an increase in intramyocardial vessels volume as compared with the SM group. The overall results have shown that the exercise protocol used promoted positive changes in right ventricle and pulmonary artery remodeling. These observations also suggest that structural remodeling may be influenced by signaling proteins, such as GSK-3β.
Collapse
Affiliation(s)
- Rafael Colombo
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| | - Rafaela Siqueira
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| | - Cristiano Urbano Becker
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| | - Tânia Gatelli Fernandes
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| | - Karla Maria Pires
- Laboratório de Inflamação, Estresse Oxidativo e Câncer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samuel Santos Valença
- Laboratório de Inflamação, Estresse Oxidativo e Câncer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Alex Sander Araujo
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, Brasil
| |
Collapse
|
39
|
Laher I, Beam J, Botta A, Barendregt R, Sulistyoningrum D, Devlin A, Rheault M, Ghosh S. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione. Free Radic Res 2012; 47:44-54. [PMID: 23039789 DOI: 10.3109/10715762.2012.737463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.
Collapse
Affiliation(s)
- Ismail Laher
- Department of Pharmacology and Therapeutics, University of British Columbia, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Trask AJ, Delbin MA, Katz PS, Zanesco A, Lucchesi PA. Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: impact of exercise training. Vascul Pharmacol 2012; 57:187-93. [PMID: 22885305 DOI: 10.1016/j.vph.2012.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022]
Abstract
The goals of the present study were to compare coronary resistance microvessel (CRM) remodeling between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mice, and to determine the impact of aerobic exercise training on CRM remodeling in diabetes. Eight week old male mice were divided into T1DM: control sedentary (Control-SD), T1DM sedentary (T1DM-SD) induced by streptozotocin, and T1DM exercise trained (T1DM-TR); T2DM: control sedentary (Db/db-SD), T2DM sedentary (db/db-SD), and T2DM trained (db/db-TR). Aerobic exercise training (TR) was performed on a mouse treadmill for 8weeks. CRMs were isolated and mounted on a pressure myograph to measure and record vascular remodeling and mechanics. CRM diameters, wall thickness, stress-strain, incremental modulus remained unchanged in T1DM-SD mice compared to control, and exercise training showed no effect. In contrast, CRMs isolated from db/db-SD mice exhibited decreased luminal diameter with thicker microvascular walls, which significantly increased the wall:lumen ratio (Db/db-SD: 5.8±0.3 vs. db/db-SD: 8.9±0.7, p<0.001). Compared to db/db-SD mice, coronary arterioles isolated from db/db-TR mice had similar internal diameter and wall thickness, while wall:lumen ratio (6.8±0.2, p<0.05) and growth index (db/db-SD: 16.2 vs. db/db-TR: 4.3, % over Db/db) were reduced. These data show that CRMs undergo adverse inward hypertrophic remodeling only in T2DM, but not T1DM, and that aerobic exercise training can partially mitigate this process.
Collapse
Affiliation(s)
- Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | | | | | | | |
Collapse
|
41
|
Vasoprotection by dietary supplements and exercise: role of TNFα signaling. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:972679. [PMID: 22110483 PMCID: PMC3206370 DOI: 10.1155/2012/972679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/18/2011] [Accepted: 08/24/2011] [Indexed: 01/23/2023]
Abstract
Vascular dysfunction contributes to the pathogenesis of various cardiovascular diseases. Dietary supplements, including fish oil, dietary fibers, and various natural products, and exercise training exert vasoprotective effects. However, the mechanisms underlying the vasoprotective benefits of dietary supplements and physical activity demand extensive investigation. Accumulating evidence suggests that inflammatory cytokine tumor necrosis factor-alpha (TNFα) plays a pivotal role in the dysregulation of macrovascular and microvascular function. TNFα induces vascular inflammation, monocyte adhesion to endothelial cells, vascular oxidative stress, apoptosis, and atherogenic response and participates in the regulation of thrombosis and coagulation through multiple signaling pathways involving NFκB, Sp1, activator protein 1, JNK, p38, STAT3, and so forth. Dietary supplements and exercise training decrease TNFα production and ameliorate TNFα-mediated pathological changes in vasculature. Thus, the inhibitory effects of dietary supplements and physical exercise on TNFα production and TNFα signaling may contribute to their vasoprotective properties.
Collapse
|