1
|
Hajhashemy Z, Golpour-Hamedani S, Eshaghian N, Sadeghi O, Khorvash F, Askari G. Practical supplements for prevention and management of migraine attacks: a narrative review. Front Nutr 2024; 11:1433390. [PMID: 39539367 PMCID: PMC11557489 DOI: 10.3389/fnut.2024.1433390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Migraine is one of the most debilitating neurological disorders that causes frequent attacks of headaches and affects approximately 11% of the global population. Deficient or even insufficient levels of vital nutrients would increase the severity and frequency of migraine attacks. Therefore, we aimed to examine the practical supplements for the prevention and management of migraine attacks. Method This narrative review study was conducted by searching PubMed, ISI web of science, EMBASE, Google Scholar, and Scopus using the keywords of "dietary supplement" and "migraine" plus their MeSH terms. Original articles published in English language from their inception to July 27th, 2024, studies that investigated adult population (aged >18 years), and those assessing the impact of intended nutrient supplementation on clinical symptoms of migraine were included in the study. Result Oxidative stress and low intake of antioxidants would be risk factors for migraine attacks by inducing inflammation. The secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-a, would lead to neuroinflammation and migraine episodes by increasing the cellular permeability and interactions. Evidence also indicated a direct association between phases of migraine attacks and calcitonin gene-related peptide (CGRP), mitochondrial disorders, monoaminergic pathway, disruption in brain energy metabolism, and higher serum levels of glutamate and homocysteine. Therefore, supplementation with nutrients involved in mitochondrial function, brain energy metabolism, and even methyl donors would relieve migraine attacks. Conclusion Evidence indicated that supplementation with riboflavin, omega-3 fatty acids, alpha lipoic acid, magnesium, probiotics, coenzyme Q10, ginger, and caffeine would have favorable effects on migraine patients. However, more prospective studies are required to evaluate the effect of other nutrients on migraine patients.
Collapse
Affiliation(s)
- Zahra Hajhashemy
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Chen QW, Meng RT, Ko CY. Modulating oxidative stress and neurogenic inflammation: the role of topiramate in migraine treatment. Front Aging Neurosci 2024; 16:1455858. [PMID: 39416954 PMCID: PMC11480567 DOI: 10.3389/fnagi.2024.1455858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a chronic, recurrent neurovascular disorder characterized by episodes closely associated with neurovascular hypersensitivity. Oxidative stress can worsen the hypersensitive state of the central nervous system, which in turn can trigger pro-inflammatory factors that result in neurogenic inflammation. Topiramate is frequently used as a preventative measure for migraines, but there is currently little empirical data to support its efficacy through pathways related to neurogenic inflammation and oxidative stress. This review provides an overview of current knowledge regarding the etiology, inducements, pathophysiology, and available treatments for migraine, with a focus on the clinical and experimental evidence of neurogenic inflammation and oxidative stress in migraine. It also delves into the antioxidant and anti-inflammatory qualities of topiramate, clarifying the possible ways in which topiramate affects these pathways to lessen migraine symptoms.
Collapse
Affiliation(s)
- Qiao-Wen Chen
- Department of Clinical Nutrition, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Run-Tian Meng
- Department of Clinical Nutrition, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Chih-Yuan Ko
- Department of Clinical Nutrition, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
3
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Bovenzi R, Noce A, Conti M, Di Lauro M, Chiaramonte B, Della Morte D, Stefani A, De Lorenzo A, Mercuri NB, Albanese M. Poor Adherence to the Mediterranean Diet and Sleep Disturbances Are Associated with Migraine Chronification and Disability among an Adult Population in the Lazio Region, Italy. Nutrients 2024; 16:2169. [PMID: 38999916 PMCID: PMC11243412 DOI: 10.3390/nu16132169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Lifestyle factors, such as diet and sleep quality, are receiving increasing interest as accessible therapeutic approaches to migraine. The Mediterranean diet (MD) has shown clear benefits in cardiovascular and metabolic diseases, as well as in sleep patterns. Here, our objective was to identify the impact of adherence to the MD and other lifestyle factors on the clinical burden of migraine. For this purpose, we enrolled 170 migraine patients and 100 controls, assessing the clinical disability of headache using standardized clinical scales (HIT-6 and MIDAS) in the migraineur cohort and lifestyle patterns in both groups through the PREDIMED score for MD adherence, the IPAQ scale for physical activity, and BMI. Subjects were also screened for sleep-wake disturbances based on the Pittsburgh Sleep Quality Index (PSQI). We found that migraine patients had lower adherence to the MD compared to the controls and that the HIT-6 scale had a significant negative relationship with MD adherence in patients with high-frequency episodic and chronic migraine. Additionally, in the same migraine patients, the presence of sleep-wake disturbances was correlated with greater migraine disability as assessed by the MIDAS score. In conclusion, this study found that among different lifestyle factors, poor adherence to the MD and the presence of sleep-wake disturbances were closely associated with migraine disability and chronification.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
- UOSD Nephrology and Dialysis, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Matteo Conti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
| | - Manuela Di Lauro
- UOSD Nephrology and Dialysis, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Barbara Chiaramonte
- Istituto Nazionale per l’Assicurazione Contro Gli Infortuni sul Lavoro (INAIL), Actuarial-Statistic Consultancy Office, Via Stefano Gradi, 55, 00143 Rome, Italy;
| | - David Della Morte
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (D.D.M.); (A.D.L.)
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
- Parkinson’s Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy
- Faculty of Medicine and Surgery, University of “Nostra Signora del Buonconsiglio” UnizKm, 1000 Tirana, Albania
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (D.D.M.); (A.D.L.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
- Regional Referral Headache Center, Neurology Unit, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Maria Albanese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (A.N.); (M.C.); (A.S.); (N.B.M.)
- Regional Referral Headache Center, Neurology Unit, Tor Vergata University Hospital, 00133 Rome, Italy
| |
Collapse
|
5
|
Zheng Y, Jin J, Wei C, Huang C. Association of dietary vitamin C consumption with severe headache or migraine among adults: a cross-sectional study of NHANES 1999-2004. Front Nutr 2024; 11:1412031. [PMID: 38962437 PMCID: PMC11221565 DOI: 10.3389/fnut.2024.1412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background An antioxidant-rich diet has been shown to protect against migraines in previous research. However, little has been discovered regarding the association between migraines and vitamin C (an essential dietary antioxidant). This study assessed the dietary vitamin C intake among adult migraineurs in the United States to determine if there is a correlation between migraine incidence and vitamin C consumption in adults. Methods This cross-sectional research encompassed adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004, providing detailed information on their dietary vitamin C intake as well as their history of severe headaches or migraines. The study used weighted multivariable and logistic regression analyses to find an independent connection between vitamin C consumption and severe headache or migraine. Tests of interactions and subgroup analysis were conducted. Results Among the 13,445 individuals in the sample, 20.42% had a severe headache or migraine. In fully adjusted models, dietary vitamin C consumption was substantially linked negatively with severe headache or migraine (odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.91-0.98, p = 0.0007). Compared to quartile 1, quartile 4 had 22% fewer odds of having a severe headache or migraine (OR = 0.78, 95% CI = 0.69-0.89, p = 0.0002). Subgroup analyses showed a significant difference between vitamin C intake and severe headaches or migraines by gender (p for interaction < 0.01). Conclusion Reduced risk of severe headaches or migraines may be associated with increased consumption of vitamin C.
Collapse
Affiliation(s)
| | | | | | - Chunyuan Huang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Shahouzehi B, Masoumi-Ardakani Y, Fallah H, Aminizadeh S. Evaluation of the effect of Exercise Trainings and CGRP receptor antagonist (BIBN 4096) on mitochondrial dynamic in the hippocampus of male Wistar rats. Neurosci Lett 2024; 828:137752. [PMID: 38552868 DOI: 10.1016/j.neulet.2024.137752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exercise training showed beneficial effects on brain. The purpose of the present study is to evaluate the effect of six weeks of high-intensity interval training (HIIT) and Endurance training (ET) with calcitonin gene-related peptide (CGRP) receptor antagonist on the expression of genes involved in mitochondrial dynamics and apoptosis in hippocampal tissue of male Wistar rats. METHODS In this study, forty-two healthymale Wistar rats (8-week) were randomly divided into 6 groups (n = 7) as follow; 1) Control; 2) HIIT which performed 6 weeks of HIIT; 3) ET which performed 6 weeks of endurance training; 4) CGRPi received 10 mg/kg CGRP receptor antagonist every day at the last 2 weeks; 5) CGRPi-HIIT performed HIIT and received CGRP receptor antagonist; 6) CGRPi-ET performed ET and received CGRP receptor antagonist. Real-time PCR (2-ΔΔCT) and western blotting were employedto measure the expression of genes and protein, respectively. RESULTS HIIT and ET significantly increased Bcl-2, Pgc-1α, Sirt3, and Nrf-1 gene expression in the hippocampal tissue (p < 0.05, p < 0.01, p < 0.01, and p < 0.001, respectively). ET-CGRPi and HIIT-CGRPi significantly increased Sirt3, Pgc-1α, and Nrf-1 gene expression compared to the control group (p < 0.05, p < 0.01, and p < 0.05, respectively). CONCLUSION ET and HIIT-induced physiological alterations in the hippocampus. In fact, this modulation showed protective properties in the hippocampusvia up regulation of Bcl-2, Pgc-1α, Nrf-1, and Sirt3 gene expression. CGRPi did not cause gene or protein changes harmful to mitochondrial dynamic balance and apoptosis in the hippocampus of rats.
Collapse
Affiliation(s)
- Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Soheil Aminizadeh
- Department of Physiology and Pharmacology, Afzalipour School of Medicine, and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Zhou Y, Pang M, Ma Y, Lu L, Zhang J, Wang P, Li Q, Yang F. Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Mol Neurobiol 2024; 61:1202-1220. [PMID: 37695471 DOI: 10.1007/s12035-023-03623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Migraine is a complex and multi-system dysfunction. The realization of its pathophysiology and diagnosis is developing rapidly. Migraine has been linked to gastrointestinal disorders such as irritable bowel syndrome and celiac disease. There is also direct and indirect evidence for a relationship between migraine and the gut-brain axis, but the exact mechanism is not yet explained. Studies have shown that this interaction appears to be influenced by a variety of factors, such as inflammatory mediators, gut microbiota, neuropeptides, and serotonin pathways. Recent studies suggest that immune cells can be the potential tertiary structure between migraine and gut-brain axis. As the hot interdisciplinary subject, the relationship between immunology and gastrointestinal tract is now gradually clear. Inflammatory signals are involved in cellular and molecular responses that link central and peripheral systems. The gastrointestinal symptoms associated with migraine and experiments associated with antibiotics have shown that the intestinal microbiota is abnormal during the attacks. In this review, we focus on the mechanism of migraine and gut-brain axis, and summarize the tertiary structure between immune cells, neural network, and gastrointestinal tract.
Collapse
Affiliation(s)
- Yichen Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Miaoyi Pang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingling Lu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiannan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. The kynurenine pathway of tryptophan metabolism in abdominal migraine in children - A therapeutic potential? Eur J Paediatr Neurol 2024; 48:1-12. [PMID: 37984006 DOI: 10.1016/j.ejpn.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Abdominal migraine (AM) is a clinical diagnosis specified by Rome IV and ICHD III as a functional gastrointestinal disease (FGID) and a migraine associated syndrome, respectively. Abdominal migraine in childhood and adolescence may continue with migraine headaches in adulthood. This disease is undiagnosed and undertreated, and thus far the FDA has not approved any drug for AM treatment. It was shown that changes in the kynurenine (KYN) pathway of tryptophan (TRP) metabolism played an important role in the pathogenesis and treatment of FIGDs and associated mood disorders. Changes in the KYN pathway were shown in migraine and therefore it may be involved in AM pathogenesis. FINDINGS Abdominal migraine reflects an impairment in the communication within the gut-brain axis. Treatment approaches in AM are based on the experience of physicians, presenting personal rather than evidence-based practice, including efficacy of some drugs in adult migraine. Non-pharmacological treatment of AM is aimed at preventing or ameliorating AM triggers and is based on the STRESS mnemonic. Metabolic treatments with riboflavin and coenzyme Q10 were effective in several cases of pediatric migraine, but in general, results on metabolic treatment in migraine in children are scarce and nonconclusive. Modulations within the KYN pathway of TRP metabolism induced by changes in TRP content in the diet, may ameliorate FGIDs and support their pharmacological treatment. Pharmacological manipulations of brain KYNs in animals have brought promising results for clinical applications. Obese children show a higher headache prevalence and may be especially predisposed to AM, and KYN metabolites showed an alternated distribution in obese individuals as compared with their normal-weight counterparts. CONCLUSIONS In conclusion, controlled placebo-based clinical trials with dietary manipulation to adjust the amount of the product of the KYN pathway of TRP metabolism are justified in children and adolescents with AM, especially those with coexisting obesity. Further preclinical studies are needed to establish details of these trials.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420 Plock, Poland.
| |
Collapse
|
9
|
Fila M, Chojnacki J, Pawlowska E, Sobczuk P, Chojnacki C, Blasiak J. The Ketogenic Diet in the Prevention of Migraines in the Elderly. Nutrients 2023; 15:4998. [PMID: 38068855 PMCID: PMC10707997 DOI: 10.3390/nu15234998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Migraines display atypical age dependence, as the peak of their prevalence occurs between the ages of 20-40 years. With age, headache attacks occur less frequently and are characterized by a lower amplitude. However, both diagnosis and therapy of migraines in the elderly are challenging due to multiple comorbidities and polypharmacy. Dietary components and eating habits are migraine triggers; therefore, nutrition is a main target in migraine prevention. Several kinds of diets were proposed to prevent migraines, but none are commonly accepted due to inconsistent results obtained in different studies. The ketogenic diet is featured by very low-carbohydrate and high-fat contents. It may replace glucose with ketone bodies as the primary source of energy production. The ketogenic diet and the actions of ketone bodies are considered beneficial in several aspects of health, including migraine prevention, but studies on the ketogenic diet in migraines are not standardized and poorly evidenced. Apart from papers claiming beneficial effects of the ketogenic diet in migraines, several studies have reported that increased levels of ketone bodies may be associated with all-cause and incident heart failure mortality in older adults and are supported by research on mice showing that the ketogenic diets and diet supplementation with a human ketone body precursor may cause life span shortening. Therefore, despite reports showing a beneficial effect of the ketogenic diet in migraines, such a diet requires further studies, including clinical trials, to verify whether it should be recommended in older adults with migraines.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.), (C.C.)
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Piotr Sobczuk
- Emergency Medicine and Disaster Medicine Department, Medical University of Lodz, 92-209 Lodz, Poland;
- Department of Orthopaedics and Traumatology, Polish Mother’s Memorial Hospital—Research Institute, Rzgowska 281, 93-338 Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.), (C.C.)
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, The Mazovian Academy in Plock, 09-402 Plock, Poland
| |
Collapse
|
10
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
11
|
Tereshko Y, Dal Bello S, Di Lorenzo C, Pittino A, Filippi F, Belgrado E, Lettieri C, Merlino G, Gigli GL, Valente M. The Effect of Three Different Ketogenic Diet Protocols on Migraine and Fatigue in Chronic and High-Frequency Episodic Migraine: A Pilot Study. Nutrients 2023; 15:4334. [PMID: 37892410 PMCID: PMC10609491 DOI: 10.3390/nu15204334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS We aimed to evaluate the efficacy of three different ketogenic diets on migraine and fatigue in chronic and high-frequency episodic migraineurs. METHODS 76 patients with migraine were treated with the KD for at least three months. Three different KD protocols were used (2:1 KD, LGID, and VLCKD). We evaluated the fatigue severity scale (FSS), migraine frequency, migraine intensity, MIDAS, and HIT-6 at the baseline and 3-month follow-up, and we compared the results. We also correlated the mean FSS reduction with the mean migraine frequency, migraine intensity, BMI, fat mass, free-fat mass, MIDAS, and HIT-6 reduction. RESULTS FSS improved from 4.977 ± 1.779 to 3.911 ± 1.779 at the 3-month follow-up (p < 0.001). This improvement was significant in both high-frequency and chronic migraineurs. Moreover, the three KD protocols effectively improved migraine intensity, frequency, MIDAS, and HIT-6. There was a mild correlation between mean FSS reduction (p < 0.001), mean MIDAS (p = 0.001), and HIT-6 (p = 0.002) reduction. CONCLUSIONS The VLCKD, LGID, and 2:1 KD may improve migraine intensity, frequency, and fatigue in chronic and high-frequency episodic migraineurs.
Collapse
Affiliation(s)
- Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Simone Dal Bello
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy
| | - Alice Pittino
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Francesca Filippi
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Enrico Belgrado
- Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy;
| | - Christian Lettieri
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Giovanni Merlino
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
| | - Gian Luigi Gigli
- Department of Medicine (DAME), University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy (F.F.); (G.M.); (M.V.)
- Department of Medicine (DAME), University of Udine, Via Colugna 50, 33100 Udine, Italy
| |
Collapse
|
12
|
Grodzka O, Słyk S, Domitrz I. The Role of MicroRNA in Migraine: A Systemic Literature Review. Cell Mol Neurobiol 2023; 43:3315-3327. [PMID: 37432603 PMCID: PMC10477106 DOI: 10.1007/s10571-023-01387-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Migraine is a common primary headache disorder, affecting about 14% of the population. Importantly, it was indicated as the second cause of disability globally and the leading cause among young women. Despite the widespread prevalence, migraine remains underdiagnosed and undertreated. The possible solution may be microRNAs-small, non-coding molecules. Until now, multiple studies have shown the great value of microRNA in both the diagnosis and treatment of different human diseases. Furthermore, a significant role in neurological disorders has been suggested. Little research regarding the utility of microRNA in migraine has been conducted, however, the results so far appear to be promising. We performed an electronic article search through PubMed and Embase Database to further explore the topic. After the analysis, according to PRISMA 2020 guidelines, we included 21 studies. The dysregulation was observed in migraine in general, as well as in different types and phases; thus, miRNAs emerge as promising diagnostic biomarkers. Additionally, some studies showed the influence of the intervention with miRNA levels on neuroinflammation and the expression of peptides, which are crucial in migraine pathogenesis. This review aims to summarize the current knowledge about the role of miRNAs in migraine and encourage to further research in this field.Kindly check and confirm the edit made in the title.I checked and confirm.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland.
| | - Stanisław Słyk
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Izabela Domitrz
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809, Warsaw, Poland
| |
Collapse
|
13
|
Spekker E, Nagy-Grócz G. All Roads Lead to the Gut: The Importance of the Microbiota and Diet in Migraine. Neurol Int 2023; 15:1174-1190. [PMID: 37755364 PMCID: PMC10536453 DOI: 10.3390/neurolint15030073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Migraine, a prevalent neurological condition and the third most common disease globally, places a significant economic burden on society. Despite extensive research efforts, the precise underlying mechanism of the disease remains incompletely comprehended. Nevertheless, it is established that the activation and sensitization of the trigeminal system are crucial during migraine attacks, and specific substances have been recognized for their distinct involvement in the pathomechanism of migraine. Recently, an expanding body of data indicates that migraine attacks can be prevented and treated through dietary means. It is important to highlight that the various diets available pose risks for patients without professional guidance. This comprehensive overview explores the connection between migraine, the gut microbiome, and gastrointestinal disorders. It provides insight into migraine-triggering foods, and discusses potential diets to help reduce the frequency and severity of migraine attacks. Additionally, it delves into the benefits of using pre- and probiotics as adjunctive therapy in migraine treatment.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
14
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Autophagy may protect the brain against prolonged consequences of headache attacks: A narrative/hypothesis review. Headache 2023; 63:1154-1166. [PMID: 37638395 DOI: 10.1111/head.14625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To assess the potential of autophagy in migraine pathogenesis. BACKGROUND The interplay between neurons and microglial cells is important in migraine pathogenesis. Migraine-related effects, such as cortical spreading depolarization and release of calcitonin gene-related peptide, may initiate adenosine triphosphate (ATP)-mediating pro-nociceptive signaling in the meninges causing headaches. Such signaling may be induced by the interaction of ATP with purinergic receptor P2X 7 (P2X7R) on microglial cells leading to a Ca2+ -mediated pH increase in lysosomes and release of autolysosome-like vehicles from microglial cells indicating autophagy impairment. METHODS A search in PubMed was conducted with the use of the terms "migraine," "autophagy," "microglia," and "degradation" in different combinations. RESULTS Impaired autophagy in microglia may activate secretory autophagy and release of specific proteins, including brain-derived neurotrophic factor (BDNF), which can be also released through the pores induced by P2X7R activation in microglial cells. BDNF may be likewise released from microglial cells upon ATP- and Ca2+ -mediated activation of another purinergic receptor, P2X4R. BDNF released from microglia might induce autophagy in neurons to clear cellular debris produced by oxidative stress, which is induced in the brain as the response to migraine-related energy deficit. Therefore, migraine-related signaling may impair degradative autophagy, stimulate secretory autophagy in microglia, and degradative autophagy in neurons. These effects are mediated by purinergic receptors P2X4R and P2X7R, BDNF, ATP, and Ca2+ . CONCLUSION Different effects of migraine-related events on degradative autophagy in microglia and neurons may prevent prolonged changes in the brain related to headache attacks.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Fissler P, Vandersmissen A, Filippi M, Mavioglu RN, Scholkmann F, Karabatsiakis A, Krähenmann R. Effects of serotonergic psychedelics on mitochondria: Transdiagnostic implications for mitochondria-related pathologies. J Psychopharmacol 2023:2698811231164707. [PMID: 37122193 DOI: 10.1177/02698811231164707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The use of serotonergic psychedelics has gained increasing attention in research, clinical practice and society. Growing evidence suggests fast-acting, transdiagnostic health benefits of these 5-hydroxytryptamine 2A receptor agonists. Here, we provide a brief overview of their benefits for psychological, cardiovascular, metabolic, neurodegenerative, and immunological pathologies. We then review their effect on mitochondria including mitochondrial biogenesis, functioning and transport. Mitochondrial dysregulation is a transdiagnostic mechanism that contributes to the aforementioned pathologies. Hence, we postulate that psychedelic-induced effects on mitochondria partially underlie their transdiagnostic benefits. Based on this assumption, we propose new treatment indications for psychedelics and that the health benefits induced by psychedelics depend on patient-specific mitochondrial dysregulation.
Collapse
Affiliation(s)
- Patrick Fissler
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Anja Vandersmissen
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marco Filippi
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Rainer Krähenmann
- Psychiatric Services Thurgau, Spital Thurgau AG, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University Salzburg, Salzburg, Austria
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
17
|
Alimajstorovic Z, Mollan SP, Grech O, Mitchell JL, Yiangou A, Thaller M, Lyons H, Sassani M, Seneviratne S, Hancox T, Jankevics A, Najdekr L, Dunn W, Sinclair AJ. Dysregulation of Amino Acid, Lipid, and Acylpyruvate Metabolism in Idiopathic Intracranial Hypertension: A Non-targeted Case Control and Longitudinal Metabolomic Study. J Proteome Res 2022; 22:1127-1137. [PMID: 36534069 PMCID: PMC10088035 DOI: 10.1021/acs.jproteome.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure occurring predominantly in women with obesity. The pathogenesis is not understood. We have applied untargeted metabolomic analysis using ultrahigh-performance liquid chromatography-mass spectrometry to characterize the cerebrospinal fluid (CSF) and serum in IIH compared to control subjects. Methods and findings: Samples were collected from IIH patients (n = 66) with active disease at baseline and again at 12 months following therapeutic weight loss. Control samples were collected from gender- and weight-matched healthy controls (n = 20). We identified annotated metabolites in CSF, formylpyruvate and maleylpyruvate/fumarylpyruvate, which were present at lower concentrations in IIH compared to control subjects and returned to values observed in controls following weight loss. These metabolites showed the opposite trend in serum at baseline. Multiple amino acid metabolic pathways and lipid classes were perturbed in serum and CSF in IIH alone. Serum lipid metabolite pathways were significantly increased in IIH. Conclusions: We observed a number of differential metabolic pathways related to amino acid, lipid, and acylpyruvate metabolism, in IIH compared to controls. These pathways were associated with clinical measures and normalized with disease remission. Perturbation of these metabolic pathways provides initial understanding of disease dysregulation in IIH.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2WB, U.K
| | - Olivia Grech
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - James L. Mitchell
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Andreas Yiangou
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Mark Thaller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Matilde Sassani
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
| | - Senali Seneviratne
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Thomas Hancox
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andris Jankevics
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
| | - Lukáš Najdekr
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, Hněvotínská 5, Olomouc 77900, Czech Republic
| | - Warwick Dunn
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
- Phenome Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Alexandra J. Sinclair
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, U.K
| |
Collapse
|
18
|
Nikolova S, Schwedt TJ. Magnetic resonance spectroscopy studies in migraine. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100102. [PMID: 36531616 PMCID: PMC9755026 DOI: 10.1016/j.ynpai.2022.100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 06/17/2023]
Abstract
This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased N-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.
Collapse
Affiliation(s)
| | - Todd J. Schwedt
- Corresponding author at: 5777 East Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
19
|
Bohra SK, Achar RR, Chidambaram SB, Pellegrino C, Laurin J, Masoodi M, Srinivasan A. CURRENT PERSPECTIVES ON MITOCHONDRIAL DYSFUNCTION IN MIGRAINE. Eur J Neurosci 2022; 56:3738-3754. [PMID: 35478208 DOI: 10.1111/ejn.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria is an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical Spreading Depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6 and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules, oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine, MELAS, TTH, CVS, ischemic stroke and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can in turn affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.
Collapse
Affiliation(s)
- Shraman Kumar Bohra
- Department of Life Sciences, Pooja Bhagavat Memorial Mahajana Education Center, Mysore
| | - Raghu Ram Achar
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education & Research. Mysore
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Jerome Laurin
- Aix-Marseille University. Sport Science Faculty. Marseille. Institut de Neurobiologie de la Méditerranée, INMED (INSERM- AMU)., France
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, University hospital Bern, Bern
| | - Asha Srinivasan
- Division of Nanoscience & Technology, School of Life Sciences & Centre for Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education & Research
| |
Collapse
|
20
|
Zambrano K, Barba D, Castillo K, Robayo P, Argueta-Zamora D, Sanon S, Arizaga E, Caicedo A, Gavilanes AWD. The war against Alzheimer, the mitochondrion strikes back! Mitochondrion 2022; 64:125-135. [PMID: 35337984 DOI: 10.1016/j.mito.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-β in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador
| | | | | | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
21
|
Nutritional factors associated with migraine. NUTR HOSP 2022; 39:69-73. [DOI: 10.20960/nh.04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients 2021; 13:nu13124433. [PMID: 34959985 PMCID: PMC8707228 DOI: 10.3390/nu13124433] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms of migraine pathogenesis are not completely clear, but 31P-nuclear magnetic resonance studies revealed brain energy deficit in migraineurs. As glycolysis is the main process of energy production in the brain, mitochondria may play an important role in migraine pathogenesis. Nutrition is an important aspect of migraine pathogenesis, as many migraineurs report food-related products as migraine triggers. Apart from approved anti-migraine drugs, many vitamins and supplements are considered in migraine prevention and therapy, but without strong supportive evidence. In this review, we summarize and update information about nutrients that may be important for mitochondrial functions, energy production, oxidative stress, and that are related to migraine. Additionally, we present a brief overview of caffeine and alcohol, as they are often reported to have ambiguous effects in migraineurs. The nutrients that can be considered to supplement the diet to prevent and/or ameliorate migraine are riboflavin, thiamine, magnesium ions, niacin, carnitine, coenzyme Q10, melatonin, lipoic acid, pyridoxine, folate, and cobalamin. They can supplement a normal, healthy diet, which should be adjusted to individual needs determined mainly by the physiological constitution of an organism. The intake of caffeine and alcohol should be fine-tuned to the history of their use, as withdrawal of these agents in regular users may become a migraine trigger.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
23
|
Genetic overlap and causality between blood metabolites and migraine. Am J Hum Genet 2021; 108:2086-2098. [PMID: 34644541 DOI: 10.1016/j.ajhg.2021.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
The availability of genome-wide association studies (GWASs) for human blood metabolome provides an excellent opportunity for studying metabolism in a heritable disease such as migraine. Utilizing GWAS summary statistics, we conduct comprehensive pairwise genetic analyses to estimate polygenic genetic overlap and causality between 316 unique blood metabolite levels and migraine risk. We find significant genome-wide genetic overlap between migraine and 44 metabolites, mostly lipid and organic acid metabolic traits (FDR < 0.05). We also identify 36 metabolites, mostly related to lipoproteins, that have shared genetic influences with migraine at eight independent genomic loci (posterior probability > 0.9) across chromosomes 3, 5, 6, 9, and 16. The observed relationships between genetic factors influencing blood metabolite levels and genetic risk for migraine suggest an alteration of metabolite levels in individuals with migraine. Our analyses suggest higher levels of fatty acids, except docosahexaenoic acid (DHA), a very long-chain omega-3, in individuals with migraine. Consistently, we found a causally protective role for a longer length of fatty acids against migraine. We also identified a causal effect for a higher level of a lysophosphatidylethanolamine, LPE(20:4), on migraine, thus introducing LPE(20:4) as a potential therapeutic target for migraine.
Collapse
|
24
|
Won L, Kraig RP. Insulin-like growth factor-1 inhibits nitroglycerin-induced trigeminal activation of oxidative stress, calcitonin gene-related peptide and c-Fos expression. Neurosci Lett 2021; 751:135809. [PMID: 33713748 DOI: 10.1016/j.neulet.2021.135809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023]
Abstract
Migraineurs experience increased oxidative stress which drives the initiation and maintenance of migraine-related pain in animal models and, by extension, migraine in humans. Oxidative stress augments calcitonin gene-related peptide (CGRP) levels, a mediator of migraine pain. Insulin-like growth factor-1 (IGF-1), a neuroprotective growth factor, reduces susceptibility to spreading depression, a preclinical model of migraine, in cultured brain slices by blocking oxidative stress and neuroinflammation from microglia. Similarly, nasal delivery of IGF-1 inhibits spreading depression in vivo. After recurrent cortical spreading depression, nasal administration of IGF-1 also significantly reduces trigeminal ganglion oxidative stress and CGRP levels as well as trigeminocervical c-Fos activation. Here, we probed for the impact of nasal IGF-1 pretreatment on trigeminal system activation using a second well-established preclinical model of migraine, systemic nitroglycerin injection. Adult male rats were treated with one of three doses of IGF-1 (37.5, 75 or 150 μg) and the optimal dose found in males was subsequently used for treatment of female rats. One day later, animals received an intraperitoneal injection of nitroglycerin. Measurements taken two hours later after nitroglycerin alone showed increased surrogate markers of trigeminal activation - oxidative stress and CGRP in the trigeminal ganglion and c-Fos in the trigeminocervical complex compared to vehicle control. These effects were significantly reduced at all doses of IGF-1 for trigeminal ganglion metrics of oxidative stress and CGRP and only at the lowest dose in both males and females for c-Fos. The latter inverted U-shaped or hormetic response is seen in enzyme-targeting drugs. While the specific mechanisms remain to be explored, our data here supports the ability of IGF-1 to preserve mitochondrial and antioxidant pathway homeostasis as means to prevent nociceptive activation in the trigeminal system produced by an experimental migraine model.
Collapse
Affiliation(s)
- Lisa Won
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Richard P Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Migraine and rare neurological disorders. Neurol Sci 2020; 41:439-446. [DOI: 10.1007/s10072-020-04645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Clemow DB, Johnson KW, Hochstetler HM, Ossipov MH, Hake AM, Blumenfeld AM. Lasmiditan mechanism of action - review of a selective 5-HT 1F agonist. J Headache Pain 2020; 21:71. [PMID: 32522164 PMCID: PMC7288483 DOI: 10.1186/s10194-020-01132-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 01/13/2023] Open
Abstract
Migraine is a leading cause of disability worldwide, but it is still underdiagnosed and undertreated. Research on the pathophysiology of this neurological disease led to the discovery that calcitonin gene-related peptide (CGRP) is a key neuropeptide involved in pain signaling during a migraine attack. CGRP-mediated neuronal sensitization and glutamate-based second- and third-order neuronal signaling may be an important component involved in migraine pain. The activation of several serotonergic receptor subtypes can block the release of CGRP, other neuropeptides, and neurotransmitters, and can relieve the symptoms of migraine. Triptans were the first therapeutics developed for the treatment of migraine, working through serotonin 5-HT1B/1D receptors. The discovery that the serotonin 1F (5-HT1F) receptor was expressed in the human trigeminal ganglion suggested that this receptor subtype may have a role in the treatment of migraine. The 5-HT1F receptor is found on terminals and cell bodies of trigeminal ganglion neurons and can modulate the release of CGRP from these nerves. Unlike 5-HT1B receptors, the activation of 5-HT1F receptors does not cause vasoconstriction.The potency of different serotonergic agonists towards 5-HT1F was correlated in an animal model of migraine (dural plasma protein extravasation model) leading to the development of lasmiditan. Lasmiditan is a newly approved acute treatment for migraine in the United States and is a lipophilic, highly selective 5-HT1F agonist that can cross the blood-brain barrier and act at peripheral nervous system (PNS) and central nervous system (CNS) sites.Lasmiditan activation of CNS-located 5-HT1F receptors (e.g., in the trigeminal nucleus caudalis) could potentially block the release of CGRP and the neurotransmitter glutamate, thus preventing and possibly reversing the development of central sensitization. Activation of 5-HT1F receptors in the thalamus can block secondary central sensitization of this region, which is associated with progression of migraine and extracephalic cutaneous allodynia. The 5-HT1F receptors are also elements of descending pain modulation, presenting another site where lasmiditan may alleviate migraine. There is emerging evidence that mitochondrial dysfunction might be implicated in the pathophysiology of migraine, and that 5-HT1F receptors can promote mitochondrial biogenesis. While the exact mechanism is unknown, evidence suggests that lasmiditan can alleviate migraine through 5-HT1F agonist activity that leads to inhibition of neuropeptide and neurotransmitter release and inhibition of PNS trigeminovascular and CNS pain signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | - Ann M Hake
- Eli Lilly and Company, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
27
|
Abstract
Migraine is characterized by recurrent attacks of disabling headaches, often accompanied by sensory and motor disturbances. Clinical manifestations of migraine are influenced by dietary behaviors and dietary elements. Several dietary triggers for migraine have been identified, leading to the definition of strategies such as elimination diets, ketogenic diets, and comprehensive diets, mainly to help prevent migraine. Although inconsistency is present in the literature and no consensus exists, the available data are promising in supporting beneficial dietary interventions for some migraine patients. Several factors influence the net outcome, including age, sex, genetics, and environmental factors. Advancement in understanding the underlying mechanisms of migraine pathogenesis and how dietary factors can interfere with those mechanisms has encouraged investigators to consider diet as a disease-modifying agent, which may also interfere with the gut–brain axis or the epigenetics of migraine. Future work holds potential for phenotyping migraine patients and offering personalized recommendations in line with biopsychosocial models for the management of migraine. Diet, as an important element of lifestyle, is a modifiable aspect that needs further attention. Well-designed, systematic, and mechanism-driven dietary research is needed to provide evidence-based dietary recommendations specific to migraine. This narrative review aims to present the current status and future perspective on diet and migraine, in order to stimulate further research and awareness.
Collapse
|
28
|
Børte S, Zwart JA, Skogholt AH, Gabrielsen ME, Thomas LF, Fritsche LG, Surakka I, Nielsen JB, Zhou W, Wolford BN, Vigeland MD, Hagen K, Kristoffersen ES, Nyholt DR, Chasman DI, Brumpton BM, Willer CJ, Winsvold BS. Mitochondrial genome-wide association study of migraine - the HUNT Study. Cephalalgia 2020; 40:625-634. [PMID: 32056457 PMCID: PMC7243449 DOI: 10.1177/0333102420906835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Variation in mitochondrial DNA (mtDNA) has been indicated in migraine pathogenesis, but genetic studies to date have focused on candidate variants, with sparse findings. We aimed to perform the first mitochondrial genome-wide association study of migraine, examining both single variants and mitochondrial haplogroups. METHODS In total, 71,860 participants from the population-based Nord-Trøndelag Health Study were genotyped. We excluded samples not passing quality control for nuclear genotypes, in addition to samples with low call rate and closely maternally related. We analysed 775 mitochondrial DNA variants in 4021 migraine cases and 14,288 headache-free controls, using logistic regression. In addition, we analysed 3831 cases and 13,584 controls who could be reliably assigned to a mitochondrial haplogroup. Lastly, we attempted to replicate previously reported mitochondrial DNA candidate variants. RESULTS Neither of the mitochondrial variants or haplogroups were associated with migraine. In addition, none of the previously reported mtDNA candidate variants replicated in our data. CONCLUSIONS Our findings do not support a major role of mitochondrial genetic variation in migraine pathophysiology, but a larger sample is needed to detect rare variants and future studies should also examine heteroplasmic variation, epigenetic changes and copy-number variation.
Collapse
Affiliation(s)
- Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anne Heidi Skogholt
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars G Fritsche
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Magnus D Vigeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Knut Hagen
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Advisory Unit on Headache, Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Espen Saxhaug Kristoffersen
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Lorenskog, Norway.,Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bendik S Winsvold
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an "Epigenetic Diet" for Migraines Justified? The Case of Folate and DNA Methylation. Nutrients 2019; 11:E2763. [PMID: 31739474 PMCID: PMC6893742 DOI: 10.3390/nu11112763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Migraines are a common disease with limited treatment options and some dietary factors are recognized to trigger headaches. Although migraine pathogenesis is not completely known, aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene, important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic action of the main dietary components. The application of epigenetic diets for migraines and other diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown. Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify this issue.
Collapse
Affiliation(s)
- Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|