1
|
Adisuri DS, Madhavan P, Chong PP, Nathan S. Antifungal Activity of Piperine-based Nanoemulsion Against Candida spp. via In Vitro Broth Microdilution Assay. J Pharm Sci 2024; 113:2843-2850. [PMID: 39004416 DOI: 10.1016/j.xphs.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Candidemia leaves a trail of approximately 750,000 cases yearly, with a morbidity rate of up to 30%. While Candida albicans still ranks as the most predominantly isolated Candida species, C. glabrata comes in second, with a death rate of 40-50%. Although infections by Candida spp are commonly treated with azoles, the side effects and rise in resistance against it has significantly limited its clinical usage. The current study aims to address the insolubility of piperine and provide an alternative treatment to Candida infection by formulating a stable piperine-loaded O/W nanoemulsion, comprised of Cremophor RH40, Transcutol HP and Capryol 90 as surfactant, co-surfactant, and oil, respectively. Characterization with zetasizer showed the droplet size, polydispersity (PDI) and zetapotential value of the nanoemulsion to be 24.37 nm, 0.453 and -21.10 mV, respectively, with no observable physical changes such as phase separation from thermostability tests. FTIR peaks confirms presence of piperine within the nanoemulsion and TEM imaging visualized the droplet shape and further confirms the droplet size range of 20-24 nm. The MIC90 value of the piperine-loaded nanoemulsion determined with in vitro broth microdilution assay was approximately 20-50% lower than that of the pure piperine in DMSO, at a range of 0.8-2.0 mg/mL across all Candida spp. tested. Overall, the study showed that piperine can be formulated into a stable nanoemulsion, which significantly enhances its antifungal activity compared to piperine in DMSO.
Collapse
Affiliation(s)
- Diajeng Sekar Adisuri
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Taylor's University Lakeside Campus, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia.
| | - Pei Pei Chong
- School of Biosciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, No.1, Jalan Taylor's. Subang Jaya, 47500 Selangor, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
2
|
Grzywaczyk A, Smułek W, Kaczorek E. Saponaria officinalis saponins as a factor increasing permeability of Candida yeasts' biomembrane. World J Microbiol Biotechnol 2024; 40:152. [PMID: 38553646 DOI: 10.1007/s11274-024-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Saponins are a large group of compounds, produced mostly by plants as a side product of their metabolic activity. These compounds have attracted much attention over the years mostly because of their surface activity and antibacterial, anti-inflammatory and antifungal properties. On the other hand, most of the hitherto research has concerned the action of saponins against microbial cells as a whole. Therefore, knowing the possible interaction of saponins with biomembrane, we decided to check in-vitro the influence of saponin-rich extract of Saponaria officinalis on spheroplasts of two Candida sp. The obtained results show that 10 mg L- 1 of extract increased the permeability of spheroplasts up to 21.76% relative to that of the control sample. Moreover, the evaluation of surface potential has revealed a decrease by almost 10 mV relative to that of the untreated samples. Such results suggest its direct correlation to integration of saponins into the biomembrane structure. The obtained results have proved the antifungal potential of saponins and their ability of permeabilization of cells. This proves the high potential of saponins use as additives to antifungal pharmaceutics, which is expected to lead to improvement of their action or reduction of required dosage.
Collapse
Affiliation(s)
- Adam Grzywaczyk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan, 60-695, Poland
| |
Collapse
|
3
|
Rząd K, Gabriel I, Paluszkiewicz E, Kuplińska A, Olszewski M, Chylewska A, Dąbrowska AM, Kozłowska-Tylingo K. Targeting yeast topoisomerase II by imidazo and triazoloacridinone derivatives resulting in their antifungal activity. Sci Rep 2024; 14:3594. [PMID: 38351313 PMCID: PMC10864382 DOI: 10.1038/s41598-024-54252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
Fungal pathogens are considered as serious factors for deadly diseases and are a case of medical concern. Invasive fungal infections also complicate the clinical course of COVID-19, leading to a significant increase in mortality. Furthermore, fungal strains' multidrug resistance has increased the demand for antifungals with a different mechanism of action. The present study aimed to identify antifungal compounds targeting yeast topoisomerase II (yTOPOII) derived from well-known human topoisomerase II (hTOPOII) poisons C-1305 and C-1311. Two sets of derivatives: triazoloacridinones (IKE1-8) and imidazoacridinones (IKE9-14) were synthetized and evaluated with a specific emphasis on the molecular mechanism of action. Our results indicated that their effectiveness as enzyme inhibitors was not solely due to intercalation ability but also as a result of influence on catalytic activity by the formation of covalent complexes between plasmid DNA and yTOPOII. Lysine conjunction increased the strength of the compound's interaction with DNA and improved penetration into the fungal cells. Triazoloacridinone derivatives in contrast to starting compound C-1305 exhibited moderate antifungal activity and at least twice lower cytotoxicity. Importantly, compounds (IKE5-8) were not substrates for multidrug ABC transporters whereas a derivative conjugated with lysine (IKE7), showed the ability to overcome C. glabrata fluconazole-resistance (MIC 32-64 µg mL-1).
Collapse
Affiliation(s)
- Kamila Rząd
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland.
| | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland
| | - Aleksandra Kuplińska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Aleksandra M Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233, Gdansk, Poland
| |
Collapse
|
4
|
Rasool M, Mazhar D, Afzal I, Zeb A, Khan S, Ali H. In vitro and in vivo characterization of Miconazole Nitrate loaded transethosomes for the treatment of Cutaneous Candidiasis. Int J Pharm 2023; 647:123563. [PMID: 37907141 DOI: 10.1016/j.ijpharm.2023.123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to fabricate Miconazole Nitrate transethosomes (MCZN TESs) embedded in chitosan-based gel for the topical treatment of Cutaneous Candidiasis. A thin film hydration method was employed to formulate MCZN TESs. The prepared MCZN TESs were optimized and analyzed for their physicochemical properties including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (%EE), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), deformability, and Transmission electron microscopy (TEM). In vitro release, skin permeation and deposition, skin irritation, antifungal assay, and in vivo efficacy against infected rats were evaluated. The optimized MCZN TESs showed PS of 224.8 ± 5.1 nm, ZP 21.1 ± 1.10 mV, PDI 0.207 ± 0.009, and % EE 94.12 ± 0.101 % with sustained drug release profile. Moreover, MCZN TESs Gel exhibited desirable pH, spreadability, and viscosity. Notably, the penetration and deposition capabilities of MCZN TESs Gel showed a 4-fold enhancement compared to MCZN TESs. Importantly, in vitro antifungal assay elaborated MCZN TESs Gel anti-fungal activity was 2.38-fold more compared to MCZN Gel. In vivo, studies showed a 1.5 times reduction in the duration of treatment MCZN TESs Gel treated animal group. Therefore, studies demonstrated that MCZN TESs could be a suitable drug delivery system with higher penetration and good antifungal potential.
Collapse
Affiliation(s)
- Maryam Rasool
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Ahmad Zeb
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University Islamabad 45320, Pakistan.
| |
Collapse
|
5
|
Kaltsas A, Zachariou A, Markou E, Dimitriadis F, Sofikitis N, Pournaras S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J Pers Med 2023; 13:1491. [PMID: 37888102 PMCID: PMC10608462 DOI: 10.3390/jpm13101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The human microbiota in the genital tract is pivotal for maintaining fertility, but its disruption can lead to male infertility. This study examines the relationship between microbial dysbiosis and male infertility, underscoring the promise of precision medicine in this field. Through a comprehensive review, this research indicates microbial signatures associated with male infertility, such as altered bacterial diversity, the dominance of pathogenic species, and imbalances in the genital microbiome. Key mechanisms linking microbial dysbiosis to infertility include inflammation, oxidative stress, and sperm structural deterioration. Emerging strategies like targeted antimicrobial therapies, probiotics, prebiotics, and fecal microbiota transplantation have shown potential in adjusting the genital microbiota to enhance male fertility. Notably, the application of precision medicine, which customizes treatments based on individual microbial profiles and specific causes of infertility, emerges as a promising approach to enhance treatment outcomes. Ultimately, microbial dysbiosis is intricately linked to male infertility, and embracing personalized treatment strategies rooted in precision medicine principles could be the way forward in addressing infertility associated with microbial factors.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
6
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Negi P, Singh A, Pundir S, Parashar A, Upadhyay N, Agarwal S, Chauhan R, Tambuwala MM. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis. Ther Deliv 2023; 14:207-225. [PMID: 37191049 DOI: 10.4155/tde-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
An exclusive site for local drug delivery is the vagina, especially for vaginal infections. The fungus Candida albicans causes vaginal infection known as vulvovaginal candidiasis, a highly prevalent and recurrent gynaecological disease among women. Vaginal candidiasis affects over 75% of women at a certain point in their life and has a recurrence rate of 40-50%. Medicinal plants provide some very effective phytoconstituents which when delivered as nanosystems have enhanced therapeutic action and efficacy by alteration in their characteristics. Antifungal drugs are used to treat these conditions, alternative medicine is required for prophylaxis and improved prognosis. The current review focuses on the research carried out on various nanocarrier-based approaches and essential oil-based formulations for vaginal candidiasis.
Collapse
Affiliation(s)
- Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Akriti Singh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Navneet Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Shweta Agarwal
- L.R Institute of Pharmacy, Oachghat, Solan, 173212, India
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
8
|
Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986-1000. [PMID: 35981408 DOI: 10.1016/j.jiph.2022.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
With the widespread use of immunosuppressive agents and the increase in patients with severe infections, the incidence of fungal infections worldwide has increased year by year. The fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus cause a total of more than 1 million deaths each year. Long-term use of antifungal drugs can easily lead to fungal resistance, and the prevalence of drug-resistant fungi is a major global health challenge. In order to effectively control global fungal infections, there is an urgent need for new drugs that can exert effective antifungal activity and overcome drug resistance. We must promote the discovery of new antifungal targets and drugs, and find effective ways to control drug-resistant fungi through different ways, so as to reduce the threat of drug-resistant fungi to human life, health and safety. In the past few years, certain progress has been made in the research and development of antifungal drugs. In addition to summarizing some of the antifungal drugs currently approved by the FDA, this review also focuses on potential antifungal drugs, the repositioned drugs, and drugs that can treat drug-resistant bacteria and fungal infections, and provide new ideas for the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Lanlin Wang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
9
|
Morais MS, Bonfim DPF, Aguiar ML, Oliveira WP. Electrospun Poly (Vinyl Alcohol) Nanofibrous Mat Loaded with Green Propolis Extract, Chitosan and Nystatin as an Innovative Wound Dressing Material. J Pharm Innov 2022; 18:1-15. [PMID: 36061220 PMCID: PMC9427432 DOI: 10.1007/s12247-022-09681-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/29/2022]
Abstract
Purposes The objective of this work was to produce and characterise biodegradable poly (vinyl alcohol) (PVA) nanofibre loaded with green propolis extract (GPE), chitosan (CS) and nystatin (NYS) alone and in mixtures as a potential wound dressing material. Methods The GPE, NYS and CS1% were loaded in electrospinning compositions based on PVA 7%, 8% and 12% solubilised in milli-Q water or a mixture of water and glacial acetic acid. The electrospinning compositions without actives (blank) and those loaded with actives were characterised by determining the pH, electrical conductivity and rheological properties. An image analysis procedure applied to photomicrographs obtained by scanning electronic microscopy (SEM) allowed the determination of the nanofibres' diameter distribution and average surface porosity. The disintegration time and swelling ratio of the nanofibre mats were also determined. Results The physicochemical parameters of the electrospinning compositions (pH, electrical conductivity and rheology) and the incorporated active ingredients (GPE, CS and NYS) affected the electrospun nanofibre mats properties. The electrospun nanofibres' mean diameters and surface porosity ranged from 151.5 to 684.5 nm and from 0.29 ± 0.04 to 0.50 ± 0.05. The PVA/CS electrospun nanofibres fibres exhibited the smallest diameters, high surface porosity, water absorption capacity and disintegration time. The characteristics of the PVA/CS nanofibres mat associated with the biodegradability of the polymers make them a novel material with the potential to be applied as wound and burn dressings.
Collapse
Affiliation(s)
- Maria S. Morais
- Laboratory of Pharmaceutical Processes, LAPROFAR, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903 Brazil
| | - Daniela P. F. Bonfim
- Department of Chemical Engineering, University Federal of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP Brazil
| | - Mônica L. Aguiar
- Department of Chemical Engineering, University Federal of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP Brazil
| | - Wanderley P. Oliveira
- Laboratory of Pharmaceutical Processes, LAPROFAR, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903 Brazil
| |
Collapse
|
10
|
Jin L, Liu S, Tan S, Wang Y, Zhao Y, Yu S. Petrositis caused by fluconazole-resistant candida: case report and literature review. BMC Infect Dis 2022; 22:649. [PMID: 35896968 PMCID: PMC9327414 DOI: 10.1186/s12879-022-07637-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background Petrositis is a rare and fatal complication associated with otitis media. It is most likely caused by bacterial infections, but in some cases it is caused by fungal infections. Case study The case in this report is associated with fungal petrositis. The clinical symptoms are: ear pain from chronic otitis media, severe headache, peripheral facial palsy and diplopia. The case was finally confirmed through imaging of middle ear, bacterial culture, pathology, and blood Metagenomic next-generation sequencing (mNGS) test. The patient was treated with sensitive antifungal drugs. Conclusion Drug treatment is conservative but efficient method in this case. mNGS can provide pathogenic reference, when antibiotic is not efficient enough for fungal infections or drug-resistant fungal infections cases. This allows we to adjust drug use for the treatment.
Collapse
Affiliation(s)
- Ling Jin
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Shuangxi Liu
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Shiwang Tan
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Yang Wang
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Yumin Zhao
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Shaoqing Yu
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo, Shanghai, 200065, China.
| |
Collapse
|
11
|
Holzknecht J, Dubrac S, Hedtrich S, Galgóczy L, Marx F. Small, Cationic Antifungal Proteins from Filamentous Fungi Inhibit Candida albicans Growth in 3D Skin Infection Models. Microbiol Spectr 2022; 10:e0029922. [PMID: 35499318 PMCID: PMC9241769 DOI: 10.1128/spectrum.00299-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
The emerging resistance of human-pathogenic fungi to antifungal drugs urges the development of alternative therapeutic strategies. The small, cationic antifungal proteins (AFPs) from filamentous ascomycetes represent promising candidates for next-generation antifungals. These bio-molecules need to be tested for tolerance in the host and efficacy against fungal pathogens before they can be safely applied in humans. Testing of the efficacy and possible adverse effects of new drug candidates in three-dimensional (3D) human-cell based models represents an advantageous alternative to animal experiments. In, this study, as a proof-of-principle, we demonstrate the usefulness of 3D skin infection models for screening new antifungal drug candidates for topical application. We established a cutaneous infection with the opportunistic human-pathogenic yeast Candida albicans in a commercially available 3D full-thickness (FT) skin model to test the curative potential of distinct AFPs from Penicillium chrysogenum (PAFopt, PAFB, and PAFC) and Neosartorya (Aspergillus) fischeri (NFAP2) in vitro. All tested AFPs were comparably well tolerated by the skin models. The infected 3D models exhibited reduced epidermal permeability barriers, allowing C. albicans to colonize the epidermal and dermal layers, and showed increased secretion of the pro-inflammatory cytokine IL-6 and the chemokine IL-8. AFP treatment diminished the fungal burden and penetration depth of C. albicans in the infected models. The epidermal permeability barrier was restored and the secretion of IL-8 was decreased following AFP treatment. In summary, our study proves that the tested AFPs exhibit antifungal potential against cutaneous C. albicans infection in a 3D FT skin model. IMPORTANCE Candida albicans represents one of the most prevalent opportunistic fungal pathogens, causing superficial skin and mucosal infections in humans with certain predisposing health conditions and life-threatening systemic infections in immunosuppressed patients. The emerging drug resistance of this human-pathogenic yeast and the limited number of antifungal drugs for prevention and treatment of infections urgently demands the identification of new antifungal compounds with novel mechanisms of action. Small, cationic antifungal proteins (AFPs) from filamentous fungi represent promising candidates for next-generation antifungals for topical application. These bio-molecules need to be tested for tolerance by the host and efficacy in pathogen clearance prior to being involved in clinical trials. In a proof-of-principle study, we provide evidence for the suitability of 3D human-cell based models as advantageous alternatives to animal experiments. We document the tolerance of specific AFPs and their curative efficacy against cutaneous C. albicans infection in a 3D skin model.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
13
|
Does Systemic Methotrexate Therapy Induce Azole Resistance among Endogenous Candida Strains? Antibiotics (Basel) 2021; 10:antibiotics10111302. [PMID: 34827240 PMCID: PMC8615068 DOI: 10.3390/antibiotics10111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Research confirms that Candida spp. incubated with methotrexate develop multi-drug resistance to azoles, but it is not clear whether this phenomenon occurs in vivo in patients treated with cytostatics. The aim of the study was to assess whether systemic methotrexate therapy induces resistance to azoles among endogenous Candida strains in patients with rheumatological diseases. Methods: The test group consisted of 52 rheumatological patients on methotrexate therapy, who have never been exposed to fluconazole. The control group was composed of 49 individuals who have never been exposed to either methotrexate or fluconazole. Oral swab and clinical information were obtained from each participant. The acquired material was cultured, then each strain was isolated and identified (MALDI TOF). Subsequently, minimal inhibitory concentration (MIC) for fluconazole was determined. Results: MIC values ranged from <0.125 to 64 µg/mL with the most common result <0.125 µg/mL. Samples obtained from 4 patients of the test group and 2 patients of the control group contained strains resistant to fluconazole. Conclusions: Despite slightly higher incidence of fluconazole-resistant strains among patients on systemic methotrexate therapy, we found no solid evidence to support the hypothesis that methotrexate induces resistance to azoles among endogenous Candida strains in patients with rheumatological diseases.
Collapse
|
14
|
Synergistic effect of thymoquinone and nystatin in the treatment of oral candidiasis; an in vitro study. Odontology 2021; 110:330-337. [PMID: 34657217 PMCID: PMC8522115 DOI: 10.1007/s10266-021-00667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
Abstract
The effectiveness of antifungal agents may be insufficient against resistant strains in some cases of oral candidiasis. The aim of this study was to evaluate the antifungal effect of thymoquinone against Candidaalbicans, Candidatropicalis, Candidaglabrata and Candidakrusei strains and the synergistic antifungal activity of these strains in combination with nystatin. To evaluate in vitro antifungal activity and interactions between thymoquinone and nystatin, substances were tested against Candidaalbicans ATCC 10,231, C.tropicalis ATCC 750, C.krusei ATCC 6258 and C.glabrata ATCC 2001 standard strains both individually and combinationally via microdilution method. MIC and ΣFIC index value were analysed. The Kruskal Wallis test and Bonferroni test were used for statistical evaluations. Statistical significance was set at p < 0.05. A statistically significant difference was observed between the mean ranks of all Candida species and doses of thymoquinone, nystatin, and the combination thymoquinone-nystatin (p < 0.05). MIC values for thymoquinone were determined as 15 μg/mL for C.albicans, C.tropicalis and C.krusei while it was 30 μg/mL for C.glabrata. Moreover, MIC for nystatin was found as 1.875 μg/mL for C.albicans, C.tropicalis and C.krusei, whereas it was 7.5 μg/mL in C. glabrata. Interaction assays and ΣFIC index value revealed that, TQ and nystatin have a synergistic effect against to all strains. Thymoquinone was found to have antifungal activity on Candida species and synergistic effect when combined with nystatin.
Collapse
|
15
|
Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing Spanlastics for Improving the Ocular Delivery of Clotrimazole: In vitro Characterization, Ex vivo Permeability, Microbiological Assessment and In vivo Safety Study. Int J Nanomedicine 2021; 16:6249-6261. [PMID: 34531656 PMCID: PMC8439980 DOI: 10.2147/ijn.s319348] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this study was to encapsulate clotrimazole (CLT), an antifungal drug with poor water solubility characteristics, into spanlastics (SPs) to provide a controlled ocular delivery of the drug. Methods Span 60 was used in the formulation of SPs with Tween 80, Pluronic F127, or Kolliphor RH40 as an edge activator (EA). The presence of EA offers more elasticity to the membrane of the vesicles which is expected to increase the corneal permeation of CLT. SPs were prepared using ethanol injection method applying 32 complete factorial design to study the effect of formulation variables (ratio of Span 60: EA (w/w) and type of EA) on SPs characteristics (encapsulation efficiency percent (EE%), average vesicle size (VS), polydispersity index (PDI) and zeta potential (ZP)). Design-Expert software was used to determine the optimum formulation for further investigations. Results The optimum formulation determined was S1, which contains 20 mg of Tween 80 used as an EA and 80 mg of Span 60. S1 exhibited EE% = 66.54 ± 7.57%, VS = 206.20 ± 4.95 nm, PDI = 0.39 ± 0.00 and ZP = −29.60 ± 0.99 mV. S1 showed highly elastic sphere-shaped vesicles. Furthermore, S1 displayed a sustained release profile and a higher ex vivo permeation across rabbit cornea relative to CLT suspension. Also, S1 revealed superior inhibition of Candida albicans development compared to CLT suspension applying 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction technique. Moreover, in vivo histopathological examination assured the safety of S1 after ophthalmic application in mature male albino rabbits. Conclusion Overall, the outcomes revealed the marked efficacy of SPs for ocular delivery of CLT.
Collapse
Affiliation(s)
- Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Shereen Sameh El-Mancy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
16
|
Żyrek D, Wajda A, Czechowicz P, Nowicka J, Jaśkiewicz M, Neubauer D, Kamysz W. The Antimicrobial Activity of Omiganan Alone and In Combination against Candida Isolated from Vulvovaginal Candidiasis and Bloodstream Infections. Antibiotics (Basel) 2021; 10:antibiotics10081001. [PMID: 34439051 PMCID: PMC8389017 DOI: 10.3390/antibiotics10081001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Fungi from the Candida genus are widespread commensals and, at the same time, are the leading cause of fungal infections worldwide. For instance, vulvovaginal candidiasis (VVC) affects approximately 75% of women at least once in their lifetime, remaining the second most common gynecological infection. On the contrary, hospital-acquired fungal bloodstream infections (BSIs), although less frequent, are characterized by a high mortality rate. Undoubtedly, the main reason for this situation are virulence factors that these yeast-like fungi can produce, and the ability to form a biofilm is one of the most important of them. Due to the low effectiveness of classic antimycotics against Candida biofilms, an intense search for new drugs capable of eradicating this structure is highly demanded. One of the most promising groups of compounds exhibiting such properties are antimicrobial peptides (AMPs). This study focuses on a comparison of the efficacy of Omiganan and fluconazole alone and in combination against Candida strains isolated from BSIs. The obtained results are consistent with our previous reports on the effectiveness of Omiganan against clinical strains isolated from VVC. This is also the first report on the combinatory application of Omiganan in the context of fungal BSI. The majority of combinations with fluconazole showed an additive effect, as well as a synergistic effect in the range of certain concentrations. Importantly, such effects are visible at concentrations much lower than for those compounds used individually. Potentially, this entails the possibility of limiting the adverse effects (e.g., toxicity) of Omiganan and fluconazole applied in vivo, thus improving the safety profile of this particular antifungal therapy.
Collapse
Affiliation(s)
- Dawid Żyrek
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland; (D.Ż.); (A.W.)
| | - Andrzej Wajda
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland; (D.Ż.); (A.W.)
| | - Paulina Czechowicz
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland; (D.Ż.); (A.W.)
- Correspondence: (P.C.); (J.N.)
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland; (D.Ż.); (A.W.)
- Correspondence: (P.C.); (J.N.)
| | - Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (D.N.); (W.K.)
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (D.N.); (W.K.)
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.J.); (D.N.); (W.K.)
| |
Collapse
|
17
|
Kaur N, Bains A, Kaushik R, Dhull SB, Melinda F, Chawla P. A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients 2021; 13:2055. [PMID: 34203999 PMCID: PMC8232670 DOI: 10.3390/nu13062055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human skin acts as a physical barrier; however, sometimes the skin gets infected by fungi, which becomes more severe if the infection occurs on the third layer of the skin. Azole derivative-based antifungal creams, liquids, or sprays are available to treat fungal infections; however, these formulations show various side effects on the application site. Over the past few years, herbal extracts and various essential oils have shown effective antifungal activity. Additionally, autoxidation and epimerization are significant problems with the direct use of herbal extracts. Hence, to overcome these obstacles, polysaccharide-based nanohydrogels embedded with natural plant extracts and oils have become the primary choice of pharmaceutical scientists. These gels protect plant-based bioactive compounds and are effective delivery agents because they release multiple bioactive compounds in the targeted area. Nanohydrogels can be applied to infected areas, and due to their contagious nature and penetration power, they get directly absorbed through the skin, quickly reaching the skin's third layer and effectively reducing the fungal infection. In this review, we explain various skin fungal infections, possible treatments, and the effective utilization of plant extract and oil-embedded polysaccharide-based nanohydrogels.
Collapse
Affiliation(s)
- Navkiranjeet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| | - Sanju B. Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India;
| | - Fogarasi Melinda
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
18
|
Awad A, El Khoury P, Geukgeuzian G, Khalaf RA. Cell Wall Proteome Profiling of a Candida albicans Fluconazole-Resistant Strain from a Lebanese Hospital Patient Using Tandem Mass Spectrometry-A Pilot Study. Microorganisms 2021; 9:microorganisms9061161. [PMID: 34071222 PMCID: PMC8229660 DOI: 10.3390/microorganisms9061161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for high mortality rates in immunocompromised individuals. Azole drugs such as fluconazole are the first line of therapy in fungal infection treatment. However, resistance to azole treatment is on the rise. Here, we employ a tandem mass spectrometry approach coupled with a bioinformatics approach to identify cell wall proteins present in a fluconazole-resistant hospital isolate upon drug exposure. The isolate was previously shown to have an increase in cell membrane ergosterol and cell wall chitin, alongside an increase in adhesion, but slightly attenuated in virulence. We identified 50 cell wall proteins involved in ergosterol biosynthesis such as Erg11, and Erg6, efflux pumps such as Mdr1 and Cdr1, adhesion proteins such as Als1, and Pga60, chitin deposition such as Cht4, and Crh11, and virulence related genes including Sap5 and Lip9. Candidial proteins identified in this study go a long way in explaining the observed phenotypes. Our pilot study opens the way for a future large-scale analysis to identify novel proteins involved in drug-resistance mechanisms.
Collapse
|
19
|
Evaluation of Antifungal Activity by Mixed Oxide Metallic Nanocomposite against Candida spp. Processes (Basel) 2021. [DOI: 10.3390/pr9050773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High doses of antimicrobial agents are a huge threat due to the increasing number of pathogenic organisms that are becoming resistant to antimicrobial agents. This resistance has led to a search for alternatives. Therefore, this study presents the synthesis and characterization of ZrO2-Ag2O nanoparticles (NPs) by sol-gel. The NPs were analyzed by dynamic light scattering (DLS), UV-visible (UV-vis), Raman and scanning electron microscopy (SEM). The NPs were later evaluated for their antifungal effects against Candidaalbicans, Candida dubliniensis, Candida glabrata, and Candida tropicalis, using disc diffusion and microdilution methods, followed by the viability study. The DLS showed sizes for ZrO2 76 nm, Ag2O 50 nm, and ZrO2-Ag2O samples between 14 and 42 nm. UV-vis shows an absorption peak at 300 nm for ZrO2 and a broadband for Ag2O NPs. Raman spectra were consistent with factor group analysis predictions. SEM showed spherically shaped NPs. The antifungal activity result suggested that ZrO2-Ag2O NPs were effective against Candida spp. From the viability study, there was no significance difference in viability as a function of time and concentration on human mononuclear cells. This promising result can contribute toward the development of alternative therapies to treat fungal diseases in humans.
Collapse
|
20
|
Abed Bakhotmah D. Synthesis of Fluorine and Phosphorus Compounds Bearing an Amino Pyrimidine-Substituted Pyrazolo[3,4- d]Pyrimidine Moiety as Molluscicidal Agents against Some Snails. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1625066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
22
|
Mosallam S, Sheta NM, Elshafeey AH, Abdelbary AA. Fabrication of Highly Deformable Bilosomes for Enhancing the Topical Delivery of Terconazole: In Vitro Characterization, Microbiological Evaluation, and In Vivo Skin Deposition Study. AAPS PharmSciTech 2021; 22:74. [PMID: 33586022 DOI: 10.1208/s12249-021-01924-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
The current study aimed to load terconazole (TCZ), an antifungal agent with low permeability characteristics, into highly deformable bilosomes (HBs) for augmenting its topical delivery. HBs contain edge activator in addition to the constituents of traditional bilosomes (Span 60, cholesterol, and bile salts). More elasticity is provided to the membrane of vesicles by the existence of edge activator and is expected to increase the topical permeation of TCZ. HBs were formulated using ethanol injection technique based on 24 complete factorial design to inspect the impact of various formulation variables (bile salt type and amount, edge activator type, and sonication time) on HBs characteristics (entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP)). The optimum formula (HB14) was decided based on Design-Expert® software and was utilized for further explorations. HB14 exhibited EE% = 84.25 ± 0.49%, PS = 400.10 ± 1.69 nm, PDI = 0.23 ± 0.01, and ZP = - 56.20 ± 0.00 mV. HB14 showed spherical vesicles with higher deformability index (9.94 ± 1.91 g) compared to traditional bilosomal formula (3.49 ± 0.49 g). Furthermore, HB14 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition studies revealed superior TCZ deposition inside the skin from HB14 compared to traditional bilosomal formula and TCZ suspension. Moreover, histopathological examination in rats assured the safety of HB14 for topical use. Concisely, the obtained outcomes confirmed the pronounced efficacy of HBs for topical delivery of TCZ.
Collapse
|
23
|
Anti-adherence and Anti-fungal Abilities of Thymol and Carvacrol Against Candida Species Isolated From Patients with Oral Candidiasis in Comparison with Fluconazole and Voriconazole. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.65005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Natural isopropyl cresols, such as thymol and carvacrol, have been known to have antifungal activities. Objectives: The current study aimed to investigate the anti-adherence and antifungal activities of thymol, carvacrol, fluconazole, and voriconazole against oral isolates of Candida albicans (C. albicans), C. glabrata, and C. krusei. Methods: The susceptibility assay for the test compounds was performed using the disk diffusion method against all Candida isolates. Also, anti-adherence activity was examined using a rapid and highly reproducible 96 well microtiter-based method. Results: Both natural phenols and antifungal drugs revealed various efficacies against studied Candida species. The susceptibility to fluconazole and voriconazole were 100% for C. albicans, 50% and 90% for C. glabrata, and 0% and 100% for C. krusei isolates, respectively. The mean diameter of the inhibition zone was greater for thymol than carvacrol in C. albicans (19.89 ± 0.80 mm versus 17.05 ± 0.61 mm), C. glabrata (18.87 ± 0.71 mm versus 15.77 ± 0.57 mm), and C. krusei (15.11 ± 0.91 mm versus 13.91 ± 1.04 mm) isolates tested. Thymol showed more effective inhibition on adherence of all Candida species than other treatments. The mean relative adherence ratios for C. albicans, C. glabrata, and C. krusei were 0.50, 0.60, and 0.64, respectively. Conclusions: This study demonstrated significant inhibitory properties of thymol and carvacrol on the adherence and growth of azole susceptible- and -resistant Candida isolates. Also, thymol was more effective for preventing the adherence of yeast cells to polystyrene in comparison to carvacrol.
Collapse
|
24
|
The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob Agents Chemother 2021; 65:AAC.01719-20. [PMID: 33229427 DOI: 10.1128/aac.01719-20] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fungal infections are a universal problem and are routinely associated with high morbidity and mortality rates in immunocompromised patients. Existing therapies comprise five different classes of antifungal agents, four of which target the synthesis of ergosterol and cell wall glucans. However, the currently available antifungals have many limitations, including poor oral bioavailability, narrow therapeutic indices, and emerging drug resistance resulting from their use, thus making it essential to investigate the development of novel drugs which can overcome these limitations and add to the antifungal armamentarium. Advances have been made in antifungal drug discovery research and development over the past few years as evidenced by the presence of several new compounds currently in various stages of development. In the following minireview, we provide a comprehensive summary of compounds aimed at one or more novel molecular targets. We also briefly describe potential pathways relevant for fungal pathogenesis that can be considered for drug development in the near future.
Collapse
|
25
|
Sampaio ADG, Gontijo AVL, Lima GDMG, de Oliveira MAC, Lepesqueur LSS, Koga-Ito CY. Ellagic Acid-Cyclodextrin Complexes for the Treatment of Oral Candidiasis. Molecules 2021; 26:505. [PMID: 33477918 PMCID: PMC7833435 DOI: 10.3390/molecules26020505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The increase in the prevalence of fungal infections worldwide and the rise in the occurrence of antifungal resistance suggest that new research to discover antifungal molecules is needed. The aim of this study was to evaluate the potential use of ellagic acid-cyclodextrin complexes (EA/HP-β-CD) for the treatment of oral candidiasis. First, the effect of EA/HP-β-CD on C. albicans planktonic cells and biofilms was evaluated. Then, the cytotoxicity of the effective concentration was studied to ensure safety of in vivo testing. Finally, the in vivo effectiveness was determined by using a murine model of induced oral candidiasis. Data was statistically analyzed. The minimal inhibitory concentration of EA/HP-β-CD was 25 µg/mL and a concentration of 10 times MIC (250 µg/mL) showed an inhibitory effect on C. albicans 48 h-biofilms. The complex at concentration 250 µg/mL was classified as slightly cytotoxic. In vivo experiments showed a reduction in fungal epithelial invasion after treatment with EA/HP-β-CD for 24 h and 96 h when compared to the negative control. In conclusion, the results demonstrated that EA/HP-β-CD has antifungal and anti-inflammatory effects, reducing the invasive capacity of C. albicans, which suggests that EA/HP-β-CD may be a promising alternative for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Aline da Graça Sampaio
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
| | - Aline Vidal Lacerda Gontijo
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
| | - Gabriela de Morais Gouvêa Lima
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
| | - Maria Alcionéia Carvalho de Oliveira
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
| | - Laura Soares Souto Lepesqueur
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
- School of Dentistry, Santo Amaro University, São Paulo 04743-030, Brazil
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (A.V.L.G.); (G.d.M.G.L.); (M.A.C.d.O.); (L.S.S.L.)
- Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12247-016, Brazil
| |
Collapse
|
26
|
Mosallam S, Ragaie MH, Moftah NH, Elshafeey AH, Abdelbary AA. Use of Novasomes as a Vesicular Carrier for Improving the Topical Delivery of Terconazole: In Vitro Characterization, In Vivo Assessment and Exploratory Clinical Experimentation. Int J Nanomedicine 2021; 16:119-132. [PMID: 33447031 PMCID: PMC7802774 DOI: 10.2147/ijn.s287383] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose This manuscript aimed at encapsulating an antifungal terconazole (TCZ) into innovative novasomes for improving its penetration into the skin and clinically modulating its therapeutic efficacy. Methods Novasomes containing free fatty acid (FFA) as a penetration enhancer were formulated using ethanol injection technique based on 24 full factorial design to explore the impact of various formulation variables on novasomes characteristics regarding entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). The optimum formulation was chosen using Design-Expert® software and utilized for further explorations. Results The chosen formulation (N15; including 100 mg lipid components and Span 80 to oleic acid in a ratio of 2:1 (w/w)) exhibited an EE% = 99.45 ± 0.78%, PS = 623.00 ± 2.97 nm, PDI = 0.40 ± 0.04, and ZP = −73.85 ± 0.64 mV. N15 showed spherical vesicles with a higher deformability index (DI) (9.62 ± 0.15 g) compared to traditional niosomal formulation (0.92 ± 0.12 g). Further, N15 showed superior inhibition of Candida albicans growth relative to TCZ suspension using XTT (2,3-bis-(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay. Moreover, in vivo skin deposition tests revealed a superior TCZ deposition inside the skin from N15 in comparison to traditional niosomal formulation and TCZ suspension. Furthermore, histopathological examination for rats assured the safety of N15 for topical use. A clinical study conducted on infants suffering from napkin candidiasis proved the superiority of N15 to placebo in providing a complete cure of such fungal infections. Conclusion Concisely, the obtained outcomes confirmed the pronounced efficacy of N15 to successfully treat skin fungal infections.
Collapse
Affiliation(s)
- Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Noha H Moftah
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
27
|
Lee HS, Kim Y. Aucklandia lappa Causes Membrane Permeation of Candida albicans. J Microbiol Biotechnol 2020; 30:1827-1834. [PMID: 33148941 PMCID: PMC9728268 DOI: 10.4014/jmb.2009.09044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-β-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40°C compared to that at 35°C. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-β-D-glucan and chitin.
Collapse
Affiliation(s)
- Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejongsi 3009, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon 7136, Republic of Korea,Corresponding author Phone: +82-43-649-1346 Fax: +82-43-649-1341 E-mail:
| |
Collapse
|
28
|
Wieczorek D, Kaczorowska E, Wiśniewska M, Madura ID, Leśniak M, Lipok J, Adamczyk-Woźniak A. Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans. Molecules 2020; 25:E5999. [PMID: 33352986 PMCID: PMC7766895 DOI: 10.3390/molecules25245999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin® (Tavaborole) and Eucrisa® (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole's derivatives, have been synthetized and characterized in terms of their activity against Candida albicans as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds. The determined zones of the growth inhibition of examined microorganism indicate high diffusion of majority of the studied compounds within the applied media as well as their reasonable activity. The Minimum Inhibitory Concentration (MIC) values show that the introduction of an amine substituent in position "3" of the benzoxaborole heterocyclic ring results in a considerable drop in activity in comparison with Tavaborole (AN2690) as well as unsubstituted benzoxaborole (AN2679). In all studied cases the presence of a fluorine substituent at position para to the boron atom results in lower MIC values (higher activity). Interestingly, introduction of a fluorine substituent in the more distant piperazine phenyl ring does not influence MIC values. As determined by X-ray studies, introduction of a formyl group in proximity of the boron atom results in a considerable change of the boronic group geometry. The presence of a formyl group next to the benzoxaborole unit is also detrimental for activity against Candida albicans.
Collapse
Affiliation(s)
- Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Marta Wiśniewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Magdalena Leśniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| |
Collapse
|
29
|
Morais Vasconcelos Oliveira J, Conceição Oliver J, Latércia Tranches Dias A, Barbosa Padovan AC, Siqueira Caixeta E, Caixeta Franco Ariosa M. Detection of ERG11 Overexpression in Candida albicans isolates from environmental sources and clinical isolates treated with inhibitory and subinhibitory concentrations of fluconazole. Mycoses 2020; 64:220-227. [PMID: 33176021 DOI: 10.1111/myc.13208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Candida species can cause serious infection in patients with changes in defence mechanisms and/or when anatomical barriers are compromised. Mutations and overexpression in the ERG11 gene are described as molecular mechanisms of azole resistance. Information is limited on these mechanisms in the presence of subinhibitory concentrations of fluconazole. OBJECTIVES This study aimed to evaluate the expression of ERG11 gene from Candida albicans isolates, from clinical and hospital environments, in the absence and presence of inhibitory and subinhibitory concentrations of fluconazole. METHODS The American Type Culture Collection 10231 strain, five clinical isolates and three isolates from hospital environment colonisation were exposed to inhibitory and subinhibitory concentrations of fluconazole. Susceptibility tests were performed according to EUCAST 7.1 guidelines, and the relative expression analysis of ERG11 was performed by qPCR. RESULTS Differences in response to fluconazole concentrations were observed, with the exception only one clinical isolate when treated with 1/4 of the FLU-minimum inhibitory concentration (MIC). All the other isolates, regardless of the isolation source, had an increase in expression. The overexpression occurred in a very broad range, from 1.086 to 126.105 times. In general, treatment with the highest dose of fluconazole (MIC) was the one that most influenced the ERG11 expression, followed by treatments with 1/2 and 1/4 MIC. CONCLUSIONS The increased expression of ERG11 by C albicans in the presence of different concentrations of fluconazole is relevant, raising concerns in the care and cleaning of the hospital environment and the prophylactic use of fluconazole that could lead to the selection of potential azole-resistant isolates.
Collapse
Affiliation(s)
| | - Josidel Conceição Oliver
- Microbiology and Immunology Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Ana Carolina Barbosa Padovan
- Microbiology and Immunology Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta
- Department of Cell and Developmental Biology, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
30
|
Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3-GENES GENOMES GENETICS 2020; 10:3099-3108. [PMID: 32631950 PMCID: PMC7466979 DOI: 10.1534/g3.120.401340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is an opportunistic yeast pathogen within the human microbiota with significant medical importance because of its pathogenic potential. The yeast produces highly resistant biofilms, which are crucial for maintaining infections. Though antifungals are available, their effectiveness is dwindling due to resistance. Alternate options that comprise the combination of existing azoles and polyunsaturated fatty acids, such as arachidonic acid (AA), have been shown to increase azoles susceptibility of C. albicans biofilms; however, the mechanisms are still unknown. Therefore, transcriptome analysis was conducted on biofilms exposed to sub-inhibitory concentrations of AA alone, fluconazole alone, and AA combined with fluconazole to understand the possible mechanism involved with the phenomenon. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis from the differentially expressed genes revealed that the combination of AA and fluconazole influences biological processes associated with essential processes including methionine synthesis and those involved in ATP generation, such as AMP biosynthesis, fumarate metabolism and fatty acid oxidation. These observations suggests that the interference of AA with these processes may be a possible mechanisms to induce increased antifungal susceptibility.
Collapse
|
31
|
Guevara-Lora I, Bras G, Karkowska-Kuleta J, González-González M, Ceballos K, Sidlo W, Rapala-Kozik M. Plant-Derived Substances in the Fight Against Infections Caused by Candida Species. Int J Mol Sci 2020; 21:ijms21176131. [PMID: 32854425 PMCID: PMC7504544 DOI: 10.3390/ijms21176131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast-like fungi from the Candida genus are predominantly harmless commensals that colonize human skin and mucosal surfaces, but under conditions of impaired host immune system change into dangerous pathogens. The pathogenicity of these fungi is typically accompanied by increased adhesion and formation of complex biofilms, making candidal infections challenging to treat. Although a variety of antifungal drugs have been developed that preferably attack the fungal cell wall and plasma membrane, these pathogens have acquired novel defense mechanisms that make them resistant to standard treatment. This causes an increase in the incidence of candidiasis and enforces the urgent need for an intensified search for new specifics that could be helpful, alone or synergistically with traditional drugs, for controlling Candida pathogenicity. Currently, numerous reports have indicated the effectiveness of plant metabolites as potent antifungal agents. These substances have been shown to inhibit growth and to alter the virulence of different Candida species in both the planktonic and hyphal form and during the biofilm formation. This review focuses on the most recent findings that provide evidence of decreasing candidal pathogenicity by different substances of plant origin, with a special emphasis on the mechanisms of their action. This is a particularly important issue in the light of the currently increasing frequency of emerging Candida strains and species resistant to standard antifungal treatment.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Miriam González-González
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30–387 Krakow, Poland
| | - Kinga Ceballos
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Wiktoria Sidlo
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Correspondence:
| |
Collapse
|
32
|
Shen Loo Y, Yee Wong T, Veettil SK, Se Wong P, Gopinath D, Mooi Ching S, Kunnath Menon R. Antifungal agents in preventing oral candidiasis in clinical oncology: A network meta-analysis. Oral Dis 2020; 27:1631-1643. [PMID: 32762108 DOI: 10.1111/odi.13588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This review examined the comparative efficacy and safety of antifungal agents in preventing oral candidiasis among patients on cancer treatment. METHODS We performed a systematic review and network meta-analysis based on randomised controlled trials that compared antifungal agents to placebo or other antifungal agents used in patients undergoing cancer treatment. Relative ranking of antifungal agents was evaluated with surface under the cumulative ranking (SUCRA) probability score. A total of 20 randomised controlled trials (3,215 participants) comparing 11 interventions were included. RESULTS Compared with placebo, clotrimazole was ranked the best agent for preventing the incidence of oral candidiasis (risk ratio (RR), 0.21 [95% CI 0.08 to 0.55]; SUCRA = 0.89). Fluconazole was ranked the safest among other antifungal agents (SUCRA = 0.80), whereas clotrimazole (SUCRA = 0.36) and amphotericin B (SUCRA = 0.18) were ranked low for safety. Amphotericin B was associated with highest risk of adverse events (RR, 3.52 [95% CI 1.27 to 9.75]). CONCLUSION Clotrimazole is the most effective in preventing oral candidiasis, whereas fluconazole has the most favourable risk-benefit profile in patients undergoing cancer treatment. However, we are unable to recommend clotrimazole as the best choice to prevent oral candidiasis due to unavailability of studies comparing clotrimazole with other antifungal agents.
Collapse
Affiliation(s)
- Yee Shen Loo
- School of Pharmacy, International University Medical, Kuala Lumpur, Malaysia
| | - Tse Yee Wong
- School of Pharmacy, International University Medical, Kuala Lumpur, Malaysia
| | - Sajesh K Veettil
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Pei Se Wong
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Divya Gopinath
- Oral Diagnostics and Surgical Sciences, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rohit Kunnath Menon
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|
34
|
Uzunoğlu B, Wilson CG, Sağıroğlu M, Yüksel S, Şenel S. Mucoadhesive bilayered buccal platform for antifungal drug delivery into the oral cavity. Drug Deliv Transl Res 2020; 11:318-327. [PMID: 32578045 DOI: 10.1007/s13346-020-00798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A drug delivery technology comprising a mucoadhesive bilayered buccally anchored tablet containing natamycin was developed. The concept was to anchor the tablet to the buccal tissue and allow controlled release of the drug through the matrix into the mouth. Carbomer (Carbopol ® 974 P NF) was used to formulate the mucoadhesive layer. Hydroxypropyl methylcellulose (HPMC) (Methocel® K4M) at 10, 15, 20, and 40% w/w was used for the drug-containing layer. Natamycin, an amphoteric macrolide antifungal agent, was incorporated into the formulations. In addition, tablets containing erythrosine as a marker were prepared in order to examine the distribution and retention of the dye in the oral cavity. As expected, the in vitro analysis showed that the concentration of natamycin released decreased with the increasing proportion of HPMC in the formulation. A small volunteer study was conducted using the tablets containing 10% and 20% HPMC to quantitate the patterns of distribution of the drug released into the oral cavity (upper right buccal vestibule, lower right and left buccal vestibules, and sublingual region). The mucoadhesive bilayered buccal tablet formulation provided a unidirectional release of the drug from the tablet into the oral cavity in a prolonged release fashion, maintaining drug concentration above the MIC value (2 μg/mL) for Candida albicans. The amount of the drug in the sublingual region was found to be lowest when compared with other regions, which is due to the higher flow of saliva in this region. Graphical abstract.
Collapse
Affiliation(s)
- Burcum Uzunoğlu
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
- Rx Corporate Communications, Mustafa Kemal Mah. Eskişehir yolu 9. km, Mahall Ankara C2 Blok No 10, Çankaya, Ankara, Turkey
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, G4 ONR, Glasgow, Scotland, UK
| | - Meral Sağıroğlu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Selin Yüksel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
35
|
Deaguero IG, Huda MN, Rodriguez V, Zicari J, Al-Hilal TA, Badruddoza AZM, Nurunnabi M. Nano-Vesicle Based Anti-Fungal Formulation Shows Higher Stability, Skin Diffusion, Biosafety and Anti-Fungal Efficacy In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060516. [PMID: 32517047 PMCID: PMC7355414 DOI: 10.3390/pharmaceutics12060516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Opportunistic fungal infections are responsible for over 1.5 million deaths per year. This has created a need for highly effective antifungal medication to be as potent as possible. In this study, we improved the efficacy of a common over the counter (OTC) antifungal skin medication, miconazole, by encapsulating nano-molecules of the drug in cholesterol/sodium oleate nano-vesicles. These nano-vesicles were characterized to optimize their size, zeta potential, polydispersity index and encapsulation efficiency. Furthermore, these nano-vesicles were compared to a conventional miconazole-based commercially available cream to determine potential improvements via permeation through the stratum corneum, cytotoxicity, and antifungal capabilities. Our results found that the vesicle size was within the nano range (~300 nm), with moderate polydispersity and stability. When compared with the commercially available cream, Actavis, as well as free miconazole, the miconazole nano-vesicle formulation displayed enhanced fungal inhibition by a factor of three or more when compared to free miconazole. Furthermore, with smaller nanoparticle (NP) sizes, higher percentages of miconazole may be delivered, further enhancing the efficacy of miconazole's antifungal capability. Cytotoxicity studies conducted with human dermal fibroblast cells confirm its biosafety and biocompatibility, as cell survival rate was observed to be twofold higher in nano-vesicle formulation than free miconazole. This formulation has the potential to treat fungal infections through increasing the retention time in the skin, improving the treatment approach, and by enhancing the efficacy via the use of nano-vesicles.
Collapse
Affiliation(s)
- Isaac G. Deaguero
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Md Nurul Huda
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Victor Rodriguez
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Jade Zicari
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
| | - Taslim A. Al-Hilal
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: (A.Z.M.B.); (M.N.); Tel.: +1-915-747-8335 (M.N.)
| | - Md Nurunnabi
- Biomedical Engineering Program, School of Engineering, University of Texas at El Paso, TX 79902, USA; (I.G.D.); (M.N.H.); (V.R.); (J.Z.); (T.A.A.-H.)
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
- Border Biomedical Research Center, University of Texas at El Paso, TX 79902, USA
- Department of Environmental Science and Engineering, University of Texas at El Paso, TX 79902, USA
- Correspondence: (A.Z.M.B.); (M.N.); Tel.: +1-915-747-8335 (M.N.)
| |
Collapse
|
36
|
Erdal MS, Gürbüz A, Birteksöz Tan S, Güngör S, Özsoy Y. In Vitro Skin Permeation and Antifungal Activity of Naftifine Microemulsions. Turk J Pharm Sci 2020; 17:43-48. [PMID: 32454759 DOI: 10.4274/tjps.galenos.2018.87699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/18/2018] [Indexed: 12/01/2022]
Abstract
Objectives Microemulsions are fluid, isotropic, colloidal systems that have been widely studied as drug delivery systems. The percutaneous transport of active agents can be enhanced by their microemulsion formulation when compared to conventional formulations. The purpose of this study was to evaluate naftifine-loaded microemulsions with the objective of improving the skin permeation of the drug. Materials and Methods Microemulsions comprising oleic acid (oil phase), Kolliphor EL or Kolliphor RH40 (surfactant), Transcutol (co-surfactant), and water were prepared and physicochemical characterization was performed. In vitro skin permeation of naftifine from microemulsions was investigated and compared with that of its conventional commercial formulation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to evaluate the interaction between the microemulsions and the stratum corneum lipids. Candida albicans American Type Culture Collection (ATCC) 10231 and Candida parapsilosis were used to evaluate the antifungal susceptibility of the naftifine-loaded microemulsions. Results The microemulsion formulation containing Kolliphor RH40 as co-surfactant increased naftifine permeation through pig skin significantly when compared with the commercial topical formulation (p<0.05). ATR-FTIR spectroscopy showed that microemulsions increased the fluidity of the stratum corneum lipid bilayers. Drug-loaded microemulsions possessed superior antifungal activity against Candida albicans ATCC 10231 and Candida parapsilosis. Conclusion This study demonstrated that microemulsions could be suggested as an alternative topical carrier with potential for enhanced skin delivery of naftifine.
Collapse
Affiliation(s)
- Meryem Sedef Erdal
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Aslı Gürbüz
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Seher Birteksöz Tan
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İstanbul, Turkey
| | - Sevgi Güngör
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| | - Yıldız Özsoy
- İstanbul University, Faculty of Pharmacy, Department of Pharmaceutical Technology, İstanbul, Turkey
| |
Collapse
|
37
|
Vaňková E, Kašparová P, Dulíčková N, Čeřovský V. Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res 2020; 20:5824167. [DOI: 10.1093/femsyr/foaa020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Candida albicans has several virulence factors at its disposal, including yeast–hyphal transition associated with biofilm formation, phospholipases, proteases and hemolytic activity, all of which contribute to its pathogenesis. We used synthetic derivative LL-III/43 of antimicrobial peptide lasioglossin LL-III to enhance effect of azoles on attenuation of C. albicans virulence factors. LL-III/43 was able to inhibit initial adhesion or biofilm formation of C. albicans strains at 50 µM. Azoles, however, were ineffective at this concentration. Using fluorescently labeled LL-III/43, we observed that peptide covered C. albicans cells, partially penetrated through their membranes and then accumulated inside cells. LL-III/43 (25 µM) in combination with clotrimazole prevented biofilm formation already at 3.1 µM clotrimazole. Neither LL-III/43 nor azoles were able to significantly inhibit phospholipases, proteases, or hemolytic activity of C. albicans. LL-III/43 (25 µM) and clotrimazole (50 µM) in combination decreased production of these virulence factors, and it completely attenuated its hemolytic activity. Scanning electron microscopy showed that LL-III/43 (50 µM) prevented C. albicans biofilm formation on Ti-6Al-4 V alloy used in orthopedic surgeries and combination of LL-III/43 (25 µM) with clotrimazole (3.1 µM) prevented biofilm formation on urinary catheters. Therefore, mixture of LL-III/43 and clotrimazole is suitable candidate for future pharmaceutical research.
Collapse
Affiliation(s)
- Eva Vaňková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Petra Kašparová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Nikola Dulíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
| |
Collapse
|
38
|
Jafri H, Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J Mycol Med 2020; 30:100911. [DOI: 10.1016/j.mycmed.2019.100911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 01/19/2023]
|
39
|
Nagy M, Szemán-Nagy G, Kiss A, Nagy ZL, Tálas L, Rácz D, Majoros L, Tóth Z, Szigeti ZM, Pócsi I, Kéki S. Antifungal Activity of an Original Amino-Isocyanonaphthalene (ICAN) Compound Family: Promising Broad Spectrum Antifungals. Molecules 2020; 25:molecules25040903. [PMID: 32085460 PMCID: PMC7070524 DOI: 10.3390/molecules25040903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
: Multiple drug resistant fungi pose a serious threat to human health, therefore the development of completely new antimycotics is of paramount importance. The in vitro antifungal activity of the original, 1-amino-5-isocyanonaphthalenes (ICANs) was evaluated against reference strains of clinically important Candida species. Structure-activity studies revealed that the naphthalene core and the isocyano- together with the amino moieties are all necessary to exert antifungal activity. 1,1-N-dimethylamino-5-isocyanonaphthalene (DIMICAN), the most promising candidate, was tested further in vitro against clinical isolates of Candida species, yielding a minimum inhibitory concentration (MIC) of 0.04-1.25 µg/mL. DIMICAN was found to be effective against intrinsically fluconazole resistant Candida krusei isolates, too. In vivo experiments were performed in a severly neutropenic murine model inoculated with a clinical strain of Candida albicans. Daily administration of 5 mg/kg DIMICAN intraperitoneally resulted in 80% survival even at day 13, whereas 100% of the control group died within six days. Based on these results, ICANs may become an effective clinical lead compound family against fungal pathogens.
Collapse
Affiliation(s)
- Miklós Nagy
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (M.N.); (Z.L.N.); (D.R.)
| | - Gábor Szemán-Nagy
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (G.S.-N.); (A.K.); (L.T.); (Z.M.S.)
| | - Alexandra Kiss
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (G.S.-N.); (A.K.); (L.T.); (Z.M.S.)
| | - Zsolt László Nagy
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (M.N.); (Z.L.N.); (D.R.)
| | - László Tálas
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (G.S.-N.); (A.K.); (L.T.); (Z.M.S.)
| | - Dávid Rácz
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (M.N.); (Z.L.N.); (D.R.)
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 1 Egyetem tér, 4010 Debrecen, Hungary; (L.M.); (Z.T.)
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 1 Egyetem tér, 4010 Debrecen, Hungary; (L.M.); (Z.T.)
| | - Zsuzsa Máthéné Szigeti
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (G.S.-N.); (A.K.); (L.T.); (Z.M.S.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (G.S.-N.); (A.K.); (L.T.); (Z.M.S.)
- Correspondence: (I.P.); (S.K.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science, University of Debrecen, 4010 Debrecen, Hungary; (M.N.); (Z.L.N.); (D.R.)
- Correspondence: (I.P.); (S.K.)
| |
Collapse
|
40
|
Dennis EK, Garneau-Tsodikova S. Synergistic combinations of azoles and antihistamines against Candida species in vitro. Med Mycol 2020; 57:874-884. [PMID: 30295881 DOI: 10.1093/mmy/myy088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a major cause of skin and mucosal membrane disease. Immunocompromised individuals, such as those undergoing chemotherapy, are most susceptible to fungal infections. With a growing population of immunocompromised patients, there are many reports of increasing numbers of infections and of fungal strains resistant to current antifungals. One way to treat drug-resistant infections is to administer combinations of drugs to patients. Azoles are the most prescribed antifungals, as they are broad-spectrum and orally bioavailable. Terfenadine (TERF) and ebastine (EBA) are second-generation antihistamines, with EBA being used in many countries. In this study, we explored combinations of seven azole antifungals and two antihistamines (TERF and EBA) against a panel of 13 Candida fungal strains. We found 55 out of 91 combinations tested of TERF and EBA against the various fungal strains to be synergistic with the azoles. To evaluate the efficiency of these combinations to inhibit fungal growth, we performed time-kill assays. We also investigated the ability of these combinations to disrupt biofilm formation. Finally, we tested the specificity of the combinations towards fungal cells by mammalian cytotoxicity assays. These findings suggest a potential new strategy for targeting drug-resistant Candida infections.
Collapse
Affiliation(s)
- Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Flores Dalla Lana D, Neiva Lavorato S, Minussi Giuliani L, Cruz L, Lopes W, Henning Vainstein M, Camargo Fontana I, Rigon Zimmer A, Araújo Freitas M, Andrade SF, José Alves R, Meneghello Fuentefria A. Discovery of a novel and selective fungicide that targets fungal cell wall to treat dermatomycoses: 1,3‐bis(3,4‐dichlorophenoxy)propan‐2‐aminium chloride. Mycoses 2019; 63:197-211. [DOI: 10.1111/myc.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Daiane Flores Dalla Lana
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Stefânia Neiva Lavorato
- Centro das Ciências Biológicas e da Saúde Universidade Federal do Oeste da Bahia Bahia Brazil
| | - Laura Minussi Giuliani
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria Santa Maria Brazil
| | - Letícia Cruz
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria Santa Maria Brazil
| | - William Lopes
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | - Igor Camargo Fontana
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Aline Rigon Zimmer
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Murillo Araújo Freitas
- Centro das Ciências Biológicas e da Saúde Universidade Federal do Oeste da Bahia Bahia Brazil
| | - Saulo Fernandes Andrade
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Programa de Pós‐Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos Faculdade de Farmácia Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós‐Graduação em Ciências Farmacêuticas Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Programa de Pós‐Graduação em Microbiologia Agrícola e do Ambiente Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
42
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
43
|
Elkanzi NAA, Ghoneim AA, Hrichi H. Synthesis and Antimicrobial Evaluation of Novel Pyrazole, Imidazole and Pyrimidine Derivatives Possessing Imidazo[4,5-b]indol Moiety. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
44
|
Abassi S, Emtiazi G, Hosseini-Abari A, Kim BG. Chitooligosaccharides and Thermostable Chitinase Against Vulvovaginal Candidiasis and Saprophyte Fungi: LC Mass Studies of Shrimp Shell Fermentation by Bacillus altitudinis. Curr Microbiol 2019; 77:40-48. [PMID: 31659402 DOI: 10.1007/s00284-019-01779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/19/2019] [Indexed: 01/20/2023]
Abstract
Some patients with candidiasis seek alternatives drug to treat vaginal yeast infection like herbal preparations and probiotics. However, the effectiveness of such treatments has not received much study. In this research, the unique chitinotrophic Bacillus was isolated on shrimp shell from salt lakes and identified as Bacillus altitudinis by 16SRNA sequencing. This strain produced a novel chitin-oligosaccharide material and thermostable chitinase (5.1 units/ml) during 4 days incubation on shrimp shell medium; nevertheless, its growth on nutrient agar was negative. The zymogram showed less than 50 kD protein responsible for chitinase activities. The LC/MS detection of concentrate fermented products showed the production of oligosaccharide during chitin fermentation. As results of shrimp shell degradation, 65.6 mg/l protein, 73.4 mg/l N-acetyl glucose amine, and oligosaccharide were produced. Synergism activities of chitooligosaccharide and chitinase from this strain against fungi and pathogen candida (staining with methylene blue showed that almost 50% of 106 cells were died during 6 h) are promising for new anti-fungal drug with no side effect.
Collapse
Affiliation(s)
- Soheila Abassi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | | | - Byung Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Gwank-gu, Seoul, Republic of Korea
| |
Collapse
|
45
|
Carveoylphenols and Their Antifungal Potential against Pathogenic Yeasts. Antibiotics (Basel) 2019; 8:antibiotics8040185. [PMID: 31618883 PMCID: PMC6963845 DOI: 10.3390/antibiotics8040185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/30/2023] Open
Abstract
Candida is a genus of yeasts and is the most common cause of fungal infections worldwide. However, only a few antifungal drugs are currently available for the treatment of Candida infections. In the last decade, terpenophenols have attracted much attention because they often possess a variety of biological activities. In the search for new antifungals, eight carveoylphenols were synthesized and characterized by spectroscopic analysis. By using the broth microdilution assay, the compounds were evaluated for antifungal activities in vitro against four human pathogenic yeast, and structure–activity relationships (SAR) were derived. Noteworthy, in this preliminary study, compounds 5 and 6, have shown a significant reduction in the growth of all Candida strains tested. Starting from these preliminary results, we have designed the second generation of analogous in this class, and further studies are in progress in our laboratories.
Collapse
|
46
|
|
47
|
Smiljković M, Kostić M, Stojković D, Glamočlija J, Soković M. Could Flavonoids Compete with Synthetic Azoles in Diminishing Candida albicans Infections? A Comparative Review Based on In Vitro Studies. Curr Med Chem 2019; 26:2536-2554. [PMID: 29956609 DOI: 10.2174/0929867325666180629133218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are polyphenolic compounds with already confirmed various health benefits. This review will shed light on flavonoids as potential antifungals in Candida albicans infections. C. albicans is an opportunistic pathogen able to cause serious health issues due to numerous virulence factors amplifying its pathogenicity. One of the most important virulence factors is Candida ability to form biofilms which are highly resistant to the treatment of antifungal drugs; making diminishing of this pathogen even more challenging. This review will focus on current knowledge on individual flavonoid compounds having the potential to deal with C. albicans in vitro, with special turn on antibiofilm potential and insight into the mode of action, where available. Majority of the commercial drugs for the treatment of candidiasis belong to azole class, so the activity of flavonoids will be compared with the activity of newly synthetized azole compounds, as well as with azole drugs that are already on the market as official therapeutics. This literature review will provide pros and cons for pushing future research towards exploring novel synthetic azoles or further examination of a wide pallet of natural flavonoids.
Collapse
Affiliation(s)
- Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
48
|
Krocová E, Neradová S, Kupcik R, Janovská S, Bílková Z, Heidingsfeld O. PHO15 genes of Candida albicans and Candida parapsilosis encode HAD-type phosphatases dephosphorylating 2-phosphoglycolate. FEMS Yeast Res 2019; 19:5126360. [PMID: 30304493 PMCID: PMC6211248 DOI: 10.1093/femsyr/foy112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
Most of the phosphatases of human fungal pathogens Candida albicans and C. parapsilosis have never been experimentally characterised, although dephosphorylation reactions are central to many biological processes. PHO15 genes of these yeasts have been annotated as the sequences encoding 4-nitrophenyl phosphatase, on the basis of homology to PHO13 gene from the bakers' yeast Saccharomyces cerevisiae. To examine the real function of these potential phosphatases from Candida spp., CaPho15p and CpPho15p were prepared using expression in Escherichia coli and characterised. They share the hallmark motifs of the haloacid dehalogenase superfamily, readily hydrolyse 4-nitrophenyl phosphate at pH 8-8.3 and require divalent cations (Mg2+, Mn2+ or Co2+) as cofactors. CaPho15p and CpPho15p did not dephosphorylate phosphopeptides, but rather hydrolysed molecules related to carbohydrate metabolism. The preferred substrate for the both phosphatases was 2-phosphoglycolate. Among the other molecules tested, CaPho15 showed preference for glyceraldehyde phosphate and ß-glycerol phosphate, while CpPho15 dephosphorylated mainly 1,3-dihydroxyacetone phosphate. This type of substrate specificity indicates that CaPho15 and CpPho15 may be a part of metabolic repair system of C. albicans and C. parapsilosis.
Collapse
Affiliation(s)
- Eliška Krocová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Sylva Neradová
- Gymnasium, Pardubice, Mozartova, 530 09 Pardubice, Czech Republic
| | - Rudolf Kupcik
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Sylva Janovská
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Zuzana Bílková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Olga Heidingsfeld
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| |
Collapse
|
49
|
Qu S, Chen L, Tian H, Wang Z, Wang F, Wang L, Li J, Ji H, Xi L, Feng Z, Tian J, Feng Z. Effect of Perillaldehyde on Prophylaxis and Treatment of Vaginal Candidiasis in a Murine Model. Front Microbiol 2019; 10:1466. [PMID: 31333606 PMCID: PMC6615413 DOI: 10.3389/fmicb.2019.01466] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Vulvovaginal candidiasis is a common fungal infection afflicting women which is primarily caused by the yeast Candida albicans (C. albicans). It is imperative to introduce new drug classes to counter this threat due to the continuous emergence of drug-resistant cases in recent years. The purpose of this study was to clarify the in vivo antifungal activity of perillaldehyde (PAE) against C. albicans and to prove that PAE is a promising candidate for the control of vaginal candidiasis. An animal model of vaginitis was developed to demonstrate the therapeutic and preventive effects of PAE on vaginal candidiasis, and these were evaluated through fungal and histopathological examinations. In clarifying the mechanism of PAE, standard hematological test results indicated that white blood cells (WBC) were elevated abnormally in mice infected with C. albicans, whereas when the mice were treated with various concentrations of PAE, the number of WBC in the blood was reduced. Flow cytometry was used to detect the populations of neutrophils, macrophages and CD4 T cells in the vaginal tissue of the mice. PAE was found to reduce these immune cells, which all play a key role in the inflammatory response, and the related interleukin and pro-inflammatory cytokines, including IL-17, IL-22 and TNF-α. These were detected using ELISA. Finally, we detected the expression levels of E-cadherin in the PAE treatment mouse group and discovered that it had recovered to its normal levels, but in the infection mouse group, the E-cadherin expression was clearly suppressed by the presence of C. albicans. Our data demonstrated that PAE targets these cytokines and possesses the ability to fight the fungal infection while also reducing the levels of the inflammatory factors identified. Our results demonstrated that PAE has a significant preventative and therapeutic effect on vaginal candidiasis and is a potential candidate for the treatment of vaginal Candida infections.
Collapse
Affiliation(s)
- Su Qu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Lei Chen
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hui Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zhen Wang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fei Wang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Liqin Wang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jinting Li
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hui Ji
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Liurong Xi
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zhaojun Feng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Zhaozhong Feng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
50
|
Galgóczy L, Yap A, Marx F. Cysteine-Rich Antifungal Proteins from Filamentous Fungi are Promising Bioactive Natural Compounds in Anti- Candida Therapy. Isr J Chem 2019; 59:360-370. [PMID: 31680702 PMCID: PMC6813639 DOI: 10.1002/ijch.201800168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
The emerging number of life-threatening invasive fungal infections caused by drug-resistant Candida strains urges the need for the development and application of fundamentally new and safe antifungal strategies in the clinical treatment. Recent studies demonstrated that the extracellular cysteine-rich and cationic antifungal proteins (crAFPs) originating from filamentous fungi, and de novo designed synthetic peptide derivatives of these crAFPs provide a feasible basis for this approach. This mini-review focuses on the global challenges of the anti-Canidia therapy and on the crAFPs as potential drug candidates to overcome existing problems. The advantages and limitations in the use of crAFPs and peptide derivatives compared to those of conventional antifungal drugs will also be critically discussed.
Collapse
Affiliation(s)
- László Galgóczy
- Institute of Plant BiologyBiological Research CentreHungarian Academy of SciencesTemesvári krt. 62H-6726SzegedHungary
- Department of MicrobiologyFaculty of Science and InformaticsUniversity of SzegedKözép fasor 52H-6726SzegedHungary
| | - Annie Yap
- Division of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80–82A-6020InnsbruckAustria
| | - Florentine Marx
- Division of Molecular BiologyBiocenterMedical University of InnsbruckInnrain 80–82A-6020InnsbruckAustria
| |
Collapse
|