1
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Chae SJ, Kim DW, Igoshin OA, Lee S, Kim JK. Beyond microtubules: The cellular environment at the endoplasmic reticulum attracts proteins to the nucleus, enabling nuclear transport. iScience 2024; 27:109235. [PMID: 38439967 PMCID: PMC10909898 DOI: 10.1016/j.isci.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
All proteins are translated in the cytoplasm, yet many, including transcription factors, play vital roles in the nucleus. While previous research has concentrated on molecular motors for the transport of these proteins to the nucleus, recent observations reveal perinuclear accumulation even in the absence of an energy source, hinting at alternative mechanisms. Here, we propose that structural properties of the cellular environment, specifically the endoplasmic reticulum (ER), can promote molecular transport to the perinucleus without requiring additional energy expenditure. Specifically, physical interaction between proteins and the ER impedes their diffusion and leads to their accumulation near the nucleus. This result explains why larger proteins, more frequently interacting with the ER membrane, tend to accumulate at the perinucleus. Interestingly, such diffusion in a heterogeneous environment follows Chapman's law rather than the popular Fick's law. Our findings suggest a novel protein transport mechanism arising solely from characteristics of the intracellular environment.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
3
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Zhang L, Li Y, Dong L, Sun K, Liu H, Ma Z, Yan L, Yin Y. MAP Kinase FgHog1 and Importin β FgNmd5 Regulate Calcium Homeostasis in Fusarium graminearum. J Fungi (Basel) 2023; 9:707. [PMID: 37504696 PMCID: PMC10381525 DOI: 10.3390/jof9070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Maintaining cellular calcium (Ca2+) homeostasis is essential for many aspects of cellular life. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway responsible for signal integration and transduction plays crucial roles in environmental adaptation, especially in the response to osmotic stress. Hog1 is activated by transient Ca2+ increase in yeast, but the functions of the HOG pathway in Ca2+ homeostasis are largely unknown. We found that the HOG pathway was involved in the regulation of Ca2+ homeostasis in Fusarium graminearum, a devastating fungal pathogen of cereal crops. The deletion mutants of HOG pathway displayed increased sensitivity to Ca2+ and FK506, and elevated intracellular Ca2+ content. Ca2+ treatment induced the phosphorylation of FgHog1, and the phosphorylated FgHog1 was transported into the nucleus by importin β FgNmd5. Moreover, the increased phosphorylation and nuclear accumulation of FgHog1 upon Ca2+ treatment is independent of the calcineurin pathway that is conserved and downstream of the Ca2+ signal. Taken together, this study reported the novel function of FgHog1 in the regulation of Ca2+ homeostasis in F. graminearum, which advance the understanding of the HOG pathway and the association between the HOG and calcineurin pathways in fungi.
Collapse
Affiliation(s)
- Lixin Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yiqing Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lanlan Dong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kewei Sun
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hao Liu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhonghua Ma
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Yanni Yin
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Nayak BN, Rajagopal K, Shunmugasundaram R, Rao PL, Vaidyanathan S, Subbiah M. Molecular characterization suggests kinetic modulation of expression of accessory viral protein, W, in Newcastle disease virus infected DF1 cells. Virusdisease 2023; 34:236-247. [PMID: 37408548 PMCID: PMC10317930 DOI: 10.1007/s13337-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 07/07/2023] Open
Abstract
Viruses adopt strategies to efficiently utilize their compact genome. Members of the family Paramyxoviridae, exhibit a cotranscriptional RNA editing mechanism wherein polymerase stuttering generates accessory proteins from Phosphoprotein (P) gene. Newcastle disease virus (NDV), an avian paramyxovirus, expresses two accessory proteins, V and W, by RNA editing. While P and V proteins are well studied, very little is known about W protein. Recent studies confirmed W protein expression in NDV and the unique subcellular localization of W proteins of virulent and avirulent NDV. We characterized the W protein of NDV strain Komarov, a moderately virulent vaccine strain. W mRNA expression ranged between 7 and 9% of total P gene transcripts similar to virulent NDV. However, W protein expression, detectable by 6 h, peaked at 24 h and dropped by 48 h post infection in DF1 cells indicating a kinetically regulated expression by the virus. The W protein localized in the nucleus and by mutations, a strong nuclear localization signal was identified in the C-terminal region of W protein. The viral growth kinetics study suggested neither supplementation of W protein nor subcellular localization pattern of the supplemented W protein influenced viral replication in vitro similar to that noticed in avirulent NDV. A cytoplasmic mutant of W protein localized in cytoplasm unlike specific mitochondrial colocalization as recorded in velogenic NDV strain SG10 indicating a possible role of W protein in determining the viral pathogenicity. This study describes for the first time, the distinct features of W protein of moderately virulent NDV. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00813-2.
Collapse
Affiliation(s)
- B. Nagaraj Nayak
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Regional Centre for Biotechnology, New Delhi, India
| | | | | | | | | | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Regional Centre for Biotechnology, New Delhi, India
| |
Collapse
|
6
|
Li J, Ahmad M, Sang L, Zhan Y, Wang Y, Yan Y, Liu Y, Mi W, Lu M, Dai Y, Zhang R, Dong MQ, Yang YG, Wang X, Sun J, Li J. O-GlcNAcylation promotes the cytosolic localization of the m 6A reader YTHDF1 and colorectal cancer tumorigenesis. J Biol Chem 2023; 299:104738. [PMID: 37086786 DOI: 10.1016/j.jbc.2023.104738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is an emerging post-translation modification that couples metabolism with cellular signal transduction by crosstalk with phosphorylation and ubiquitination to orchestrate various biological processes. The mechanisms underlying the involvement of O-GlcNAc modifications in N6-methyladenosine (m6A) regulation are not fully characterized. Herein we show that O-GlcNAc modifies the m6A mRNA reader YTHDF1 and fine-tunes its nuclear translocation by the exportin protein Crm1. First we present evidence that YTHDF1 interacts with the sole O-GlcNAc transferase (OGT). Second, we verified Ser196/Ser197/Ser198 as the YTHDF1 O-GlcNAcylation sites, as described in numerous chemoproteomic studies. Then we constructed the O-GlcNAc-deficient YTHDF1-S196A/S197F/S198A (AFA) mutant, which significantly attenuated O-GlcNAc signals. Moreover, we revealed that YTHDF1 is a nucleocytoplasmic protein, whose nuclear export is mediated by Crm1. Furthermore, O-GlcNAcylation increases the cytosolic portion of YTHDF1 by enhancing binding with Crm1, thus upregulating downstream target (e.g. c-Myc) expression. Molecular dynamics simulations suggest that O-GlcNAcylation at S197 promotes the binding between the nuclear export signal motif and Crm1 through increasing hydrogen bonding. Mouse xenograft assays further demonstrate that YTHDF1-AFA mutants decreased the colon cancer mass and size via decreasing c-Myc expression. In sum, we found that YTHDF1 is a nucleocytoplasmic protein, whose cytosolic localization is dependent on O-GlcNAc modification. We propose that the OGT-YTHDF1-c-Myc axis underlies colorectal cancer tumorigenesis.
Collapse
Affiliation(s)
- Jie Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Muhammad Ahmad
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Sang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Yahui Zhan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Weixiao Mi
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Mei Lu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Yu Dai
- Department of Stomatology, Shenzhen Peoples Hospital, the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Rou Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, China.
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
7
|
Ashraf MA. A nuclear Pandora's box: functions of nuclear envelope proteins in cell division. AOB PLANTS 2023; 15:plac065. [PMID: 36779223 PMCID: PMC9910035 DOI: 10.1093/aobpla/plac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The nucleus is characteristic of eukaryotic cells and nuclear envelope proteins are conserved across the kingdoms. Over the years, the function of these proteins was studied in the intact nuclear envelope. Knowledge regarding the localization and function of nuclear envelope proteins during mitosis, after the nuclear envelope breaks down, is limited. Until recently, the localization of nuclear envelope proteins during mitosis has been observed with the mitotic apparatus. In this context, research in plant cell biology is more advanced compared to non-plant model systems. Although current studies shed light on the localization of nuclear envelope proteins, further experiments are required to determine what, if any, functional role different nuclear envelope proteins play during mitosis. This review will highlight our current knowledge about the role of nuclear envelope proteins and point out the unanswered questions as future direction.
Collapse
|
8
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
9
|
Cavalcante LTDF, da Fonseca GC, Amado Leon LA, Salvio AL, Brustolini OJ, Gerber AL, Guimarães APDC, Marques CAB, Fernandes RA, Ramos Filho CHF, Kader RL, Pimentel Amaro M, da Costa Gonçalves JP, Vieira Alves-Leon S, Vasconcelos ATR. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:13588. [PMID: 36362378 PMCID: PMC9659271 DOI: 10.3390/ijms232113588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.
Collapse
Affiliation(s)
| | | | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Andreza Lemos Salvio
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Otávio José Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Carla Augusta Barreto Marques
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Amphilophio Fernandes
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | | | - Rafael Lopes Kader
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marisa Pimentel Amaro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| |
Collapse
|
10
|
Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation. Cells 2022; 11:cells11121904. [PMID: 35741036 PMCID: PMC9221400 DOI: 10.3390/cells11121904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13−/− to wild type ESCs. Although IPO13−/− ESCs differentiated into neural progenitor cells, as indicated by the expression of dorsal forebrain progenitor markers, reduced expression of progenitor markers Pax6 and Nestin compared to IPO13−/− was evident, concomitant with reduced nuclear localisation/transcriptional function of IPO13 import cargo Pax6. Differentiation of IPO13−/− cells into neurons appeared to be strongly impaired, as evidenced by altered morphology, reduced expression of key neuronal markers, and altered response to the neurotransmitter glutamate. Our findings establish that IPO13 has a key role in ESC neuronal differentiation, in part through the nuclear transport of Pax6.
Collapse
|
11
|
Kural Mangit E, Boustanabadimaralan Düz N, Dinçer P. A cytoplasmic escapee: desmin is going nuclear. Turk J Biol 2022; 45:711-719. [PMID: 35068951 PMCID: PMC8733954 DOI: 10.3906/biy-2107-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022] Open
Abstract
It has been a long time since researchers have focused on the cytoskeletal proteins' unconventional functions in the nucleus. Subcellular localization of a protein not only affects its functions but also determines the accessibility for cellular processes. Desmin is a muscle-specific, cytoplasmic intermediate filament protein, the cytoplasmic roles of which are defined. Yet, there is some evidence pointing out nuclear functions for desmin. In silico and wet lab analysis shows that desmin can enter and function in the nucleus. Furthermore, the candidate nuclear partners of desmin support the notion that desmin can serve as a transcriptional regulator inside the nucleus. Uncovering the nuclear functions and partners of desmin will provide a new insight into the biological significance of desmin.
Collapse
Affiliation(s)
- Ecem Kural Mangit
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey.,Laboratory Animals Research and Application Centre, Hacettepe University, Ankara Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey
| |
Collapse
|
12
|
Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022; 15:7. [PMID: 34983613 PMCID: PMC8728933 DOI: 10.1186/s13041-021-00885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.
Collapse
Affiliation(s)
- Yang Shen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones. Pharmaceuticals (Basel) 2021; 14:ph14111131. [PMID: 34832913 PMCID: PMC8621101 DOI: 10.3390/ph14111131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.
Collapse
|
14
|
Brice AM, Watts E, Hirst B, Jans DA, Ito N, Moseley GW. Implication of the nuclear trafficking of rabies virus P3 protein in viral pathogenicity. Traffic 2021; 22:482-489. [PMID: 34622522 DOI: 10.1111/tra.12821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.
Collapse
Affiliation(s)
- Aaron M Brice
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ericka Watts
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Bevan Hirst
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, and United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Gregory W Moseley
- Viral Pathogenesis Laboratory, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Notas G, Panagiotopoulos A, Vamvoukaki R, Kalyvianaki K, Kiagiadaki F, Deli A, Kampa M, Castanas E. ERα36-GPER1 Collaboration Inhibits TLR4/NFκB-Induced Pro-Inflammatory Activity in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22147603. [PMID: 34299224 PMCID: PMC8303269 DOI: 10.3390/ijms22147603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.
Collapse
Affiliation(s)
- George Notas
- Correspondence: ; Tel.: +30-2810-3945-56; Fax: +30-2810-3945-81
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hamoya T, Fujii G, Iizumi Y, Narita T, Komiya M, Matsuzawa Y, Miki K, Kondo T, Kishimoto S, Watanabe K, Wakabayashi K, Sakai T, Toshima J, Mutoh M. Artesunate inhibits intestinal tumorigenesis through inhibiting wnt signaling. Carcinogenesis 2021; 42:148-158. [PMID: 32710739 DOI: 10.1093/carcin/bgaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Artesunate (ART) is a clinically approved antimalarial drug and was revealed as a candidate of colorectal cancer chemopreventive agents in our drug screening system. Here, we aimed to understand the suppressive effects of ART on intestinal tumorigenesis. In vitro, ART reduced T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter transcriptional activity. In vivo, ART inhibited intestinal polyp development. We found that ART reduces TCF1/TCF7 nuclear translocation by binding the Ras-related nuclear protein (RAN), suggesting that ART inhibits TCF/LEF transcriptional factor nuclear translocation by binding to RAN, thereby inhibiting Wnt signaling. Our results provide a novel mechanism through which artesunate inhibits intestinal tumorigenesis.
Collapse
Affiliation(s)
- Takahiro Hamoya
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.,Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.,Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Masami Komiya
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yui Matsuzawa
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kohei Miki
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Drug Discovery Center, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.,Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan.,Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. Int J Mol Sci 2021; 22:ijms22136676. [PMID: 34206543 PMCID: PMC8268282 DOI: 10.3390/ijms22136676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.
Collapse
|
18
|
Kong X, Xu J, Yang X, Zhai Y, Ji J, Zhai G. Progress in tumour-targeted drug delivery based on cell-penetrating peptides. J Drug Target 2021; 30:46-60. [PMID: 33944641 DOI: 10.1080/1061186x.2021.1920026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of cell-penetrating peptides (CPP) in the 1980s, they have played a unique role in various fields owing to their excellent and unique cell membrane penetration function. In particular, in the treatment of tumours, CPPS have been used to deliver several types of 'cargos' to cancer cells. To address the insufficient targeting ability, non-selectivity, and blood instability, activatable cell-penetrating peptides, which can achieve targeted drug delivery in tumour treatment, enhance curative effects, and reduce toxicity have been developed. This study reviews the application of different cell-penetrating peptides in tumour-targeted delivery, overcoming multidrug resistance, organelle targeting, tumour imaging, and diagnosis, and summarises the different mechanisms of activatable cell-penetrating peptides in detail.
Collapse
Affiliation(s)
- Xinru Kong
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Jiangkang Xu
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Xiaoye Yang
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jianbo Ji
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| | - Guangxi Zhai
- Key Laboratory of Chemical Biology, Department of Pharmaceutics, School of Pharmaceutical Sciences, Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
19
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Mechanisms and consequences of Newcastle disease virus W protein subcellular localization in the nucleus or mitochondria. J Virol 2021; 95:JVI.02087-20. [PMID: 33441338 PMCID: PMC8092705 DOI: 10.1128/jvi.02087-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that W proteins from different Newcastle disease virus (NDV) strains localize in either the cytoplasm (e.g., NDV strain SG10) or the nucleus (e.g., NDV strain La Sota). To clarify the mechanism behind these cell localization differences, we overexpressed W protein derived from four different NDV strains or W protein associated with different cellular regions in Vero cells. This revealed that the key region for determining W protein localization is 180-227aa. Further experiments found that there is a nuclear export signal (NES) motif in W protein 211-224aa. W protein could be transported into the nucleus via interaction with KPNA1, KPNA2, and KPNA6 in a nuclear localization signal-dependent manner, and W protein containing an NES was transported back to the cytoplasm in a CRM1-independent manner. Interestingly, we observed that the cytoplasm-localized W protein colocalizes with mitochondria. We rescued the NES-deletion W protein NDV strain rSG10-ΔWC/WΔNES using an NDV reverse genetics system and found that the replication ability, virulence, and pathogenicity of an NDV strain were all higher when the W protein cellular localization was in the nucleus rather than the mitochondria. Further experiments revealed that W protein nuclear localization reduced the expression of IFN-β otherwise stimulated by NDV. Our research reveals the mechanism by which NDV W protein becomes localized to different parts of the cell and demonstrates the outcomes of nuclear or cytoplasmic localization both in vitro and in vivo, laying a foundation for subsequent functional studies of the W protein in NDV and other paramyxoviruses.IMPORTANCE In Newcastle disease virus (NDV), the W protein, like the V protein, is a nonstructural protein encoded by the P gene via RNA editing. Compared with V protein, W protein has a common N-terminal domain but a unique C-terminal domain. V protein is known as a key virulence factor and an important interferon antagonist across the family Paramyxoviridae In contrast, very little is known about the function of NDV W protein, and this limited information is based on studies of the Nipah virus W protein. Here, we investigated the localization mechanism of NDV W protein and its subcellular distribution in mitochondria. We found that W protein localization differences impact IFN-β production, consequently affecting NDV virulence, replication, and pathogenicity. This work provides new insights on the differential localization mechanism of NDV W proteins, along with fundamental knowledge for understanding the functions of W proteins in NDV and other paramyxoviruses.
Collapse
|
21
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
22
|
Pan K, Lee W, Chou C, Yang Y, Chang Y, Chien M, Hsiao M, Hua K. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO J 2021; 40:e105450. [PMID: 33347625 PMCID: PMC7883293 DOI: 10.15252/embj.2020105450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β-catenin to stabilize β-catenin-TCF4 complex and facilitate the transactivation of Wnt/β-catenin signaling targets. Accordingly, activated β-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ke‐Fan Pan
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Jiunn Lee
- Department of UrologySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical Education and ResearchWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cancer CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chun‐Chi Chou
- Department of Obstetrics & GynecologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Chieh Yang
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTungs’ Taichung Metro Harbor HospitalTaichungTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Michael Hsiao
- The Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - Kuo‐Tai Hua
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Mol AA, Vogel M, Suess B. Inducible nuclear import by TetR aptamer-controlled 3' splice site selection. RNA (NEW YORK, N.Y.) 2021; 27:234-241. [PMID: 33148600 PMCID: PMC7812871 DOI: 10.1261/rna.077453.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Correct cellular localization is essential for the function of many eukaryotic proteins and hence cell physiology. Here, we present a synthetic genetic device that allows the control of nuclear and cytosolic localization based on controlled alternative splicing in human cells. The device is based on the fact that an alternative 3' splice site is located within a TetR aptamer that in turn is positioned between the branch point and the canonical splice site. The novel splice site is only recognized when the TetR repressor is bound. Addition of doxycycline prevents TetR aptamer binding and leads to recognition of the canonical 3' splice site. It is thus possible to produce two independent splice isoforms. Since the terminal loop of the aptamer may be replaced with any sequence of choice, one of the two isoforms may be extended by the respective sequence of choice depending on the presence of doxycycline. In a proof-of-concept study, we fused a nuclear localization sequence to a cytosolic target protein, thus directing the protein into the nucleus. However, the system is not limited to the control of nuclear localization. In principle, any target sequence can be integrated into the aptamer, allowing not only the production of a variety of different isoforms on demand, but also to study the function of mislocalized proteins. Moreover, it also provides a valuable tool for investigating the mechanism of alternative splicing in human cells.
Collapse
Affiliation(s)
- Adam A Mol
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
24
|
Lacasse V, Beaudoin S, Jean S, Leyton JV. A Novel Proteomic Method Reveals NLS Tagging of T-DM1 Contravenes Classical Nuclear Transport in a Model of HER2-Positive Breast Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:99-119. [PMID: 33024794 PMCID: PMC7522293 DOI: 10.1016/j.omtm.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/27/2020] [Indexed: 11/01/2022]
Abstract
The next breakthrough for protein therapeutics is effective intracellular delivery and accumulation within target cells. Nuclear localization signal (NLS)-tagged therapeutics have been hindered by the lack of efficient nuclear localization due to endosome entrapment. Although development of strategies for tagging therapeutics with technologies capable of increased membrane penetration has resulted in proportional increased potency, nonspecific membrane penetration limits target specificity and, hence, widespread clinical success. There is a long-standing idea that nuclear localization of NLS-tagged agents occurs exclusively via classical nuclear transport. In the present study, we modified the antibody-drug conjugate trastuzumab-emtansine (T-DM1) with a classical NLS linked to cholic acid (cell accumulator [Accum]) that enables modified antibodies to escape endosome entrapment and increase nuclear localization efficiency without abrogating receptor targeting. In parallel, we developed a proteomics-based method to evaluate nuclear transport. Accum-modified T-DM1 significantly enhanced cytotoxic efficacy in the human epidermal growth factor receptor 2 (HER2)-positive SKBR3 breast cancer system. We discovered that efficacy was dependent on the nonclassical importin-7. Our evaluation reveals that when multiple classical NLS tagging occurs, cationic charge build-up as opposed to sequence dominates and becomes a substrate for importin-7. This study results in an effective target cell-specific NLS therapeutic and a general approach to guide future NLS-based development initiatives.
Collapse
Affiliation(s)
- Vincent Lacasse
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada.,Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
25
|
Lopez-Salas FE, Nadella R, Maldonado-Berny M, Escobedo-Sanchez ML, Fiorentino-Pérez R, Gatica-García B, Fernandez-Parrilla MA, Mario Gil M, Reyes-Corona D, García U, Orozco-Barrios CE, Gutierrez-Castillo ME, Martinez-Fong D. Synthetic Monopartite Peptide That Enables the Nuclear Import of Genes Delivered by the Neurotensin-Polyplex Vector. Mol Pharm 2020; 17:4572-4588. [PMID: 33125243 DOI: 10.1021/acs.molpharmaceut.0c00755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotensin (NTS)-polyplex is a multicomponent nonviral vector that enables gene delivery via internalization of the neurotensin type 1 receptor (NTSR1) to dopaminergic neurons and cancer cells. An approach to improving its therapeutic safety is replacing the viral karyophilic component (peptide KPSV40; MAPTKRKGSCPGAAPNKPK), which performs the nuclear import activity, by a shorter synthetic peptide (KPRa; KMAPKKRK). We explored this issue and the mechanism of plasmid DNA translocation through the expression of the green fluorescent protein or red fluorescent protein fused with KPRa and internalization assays and whole-cell patch-clamp configuration experiments in a single cell together with importin α/β pathway blockers. We showed that KPRa electrostatically bound to plasmid DNA increased the transgene expression compared with KPSV40 and enabled nuclear translocation of KPRa-fused red fluorescent proteins and plasmid DNA. Such translocation was blocked with ivermectin or mifepristone, suggesting importin α/β pathway mediation. KPRa also enabled NTS-polyplex-mediated expression of reporter or physiological genes such as human mesencephalic-derived neurotrophic factor (hMANF) in dopaminergic neurons in vivo. KPRa is a synthetic monopartite peptide that showed nuclear import activity in NTS-polyplex vector-mediated gene delivery. KPRa could also improve the transfection of other nonviral vectors used in gene therapy.
Collapse
Affiliation(s)
- Francisco E Lopez-Salas
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Rasajna Nadella
- Biosciences, IIIT Srikakulam-RGUKT, Etcherla 532402, Srikakulam District, Andhra Pradesh, India
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Maria L Escobedo-Sanchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Rosana Fiorentino-Pérez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Bismark Gatica-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Manuel A Fernandez-Parrilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Moreno Mario Gil
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - David Reyes-Corona
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Ubaldo García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| | - Carlos E Orozco-Barrios
- Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Unidad de Investigaciones Médicas en Enfermedades Neurológicas, CONACyT, Av. Cuauhtémoc 330, Doctores, 06720 Ciudad de México, Mexico
| | - Maria E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de junio de 1520 s/n, La Laguna Ticoman, 07340 Ciudad de Mexico, Mexico
| | - Daniel Martinez-Fong
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.,Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico
| |
Collapse
|
26
|
Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proc Natl Acad Sci U S A 2020; 117:28402-28411. [PMID: 33106420 PMCID: PMC7668169 DOI: 10.1073/pnas.2003524117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms including wake-sleep cycles are driven by molecular time cues generated by a self-sustaining transcriptional negative feedback loop. Among all clock proteins, PERIOD (PER) is considered the pacemaker protein because its rhythm of accumulation and nuclear entry generates the timing and duration of feedback inhibition. Here we provide a new understanding of how robust PER rhythms are generated: the collective action of interacting PER molecules, not a random mass action of individual molecules, allows compensation of spatial and temporal differences (or “noise”) of individual molecules. We also show that the collective PER rhythm requires healthy cytoplasmic trafficking, and that circadian sleep disorders can arise in such conditions as obesity, aging, and neurodegenerative disorders in which the cytoplasm becomes congested. The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER’s cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.
Collapse
|
27
|
Zohud BA, Guo P, Zohud BA, Li F, Hao JJ, Shan X, Yu W, Guo W, Qin Y, Cai X. Importin 13 promotes NSCLC progression by mediating RFPL3 nuclear translocation and hTERT expression upregulation. Cell Death Dis 2020; 11:879. [PMID: 33082305 PMCID: PMC7575581 DOI: 10.1038/s41419-020-03101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | | | - Fengzhou Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jiao J Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Xiu Shan
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Yu Qin
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Xin Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
28
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
29
|
Teratani T, Tomita K, Toma-Fukai S, Nakamura Y, Itoh T, Shimizu H, Shiraishi Y, Sugihara N, Higashiyama M, Shimizu T, Inoue I, Takenaka Y, Hokari R, Adachi T, Shimizu T, Miura S, Kanai T. Redox-dependent PPARγ/Tnpo1 complex formation enhances PPARγ nuclear localization and signaling. Free Radic Biol Med 2020; 156:45-56. [PMID: 32553752 DOI: 10.1016/j.freeradbiomed.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ has been implicated in the pathogenesis of various human diseases including fatty liver. Although nuclear translocation of PPARγ plays an important role in PPARγ signaling, details of the translocation mechanisms have not been elucidated. Here we demonstrate that PPARγ2 translocates to the nucleus and activates signal transduction through H2O2-dependent formation of a PPARγ2 and transportin (Tnpo)1 complex via redox-sensitive disulfide bonds between cysteine (Cys)176 and Cys180 of the former and Cys512 of the latter. Using hepatocyte cultures and mouse models, we show that cytosolic H2O2/Tnpo1-dependent nuclear translocation enhances the amount of DNA-bound PPARγ and downstream signaling, leading to triglyceride accumulation in hepatocytes and liver. These findings expand our understanding of the mechanism underlying the nuclear translocation of PPARγ, and suggest that the PPARγ and Tnpo1 complex and surrounding redox environment are potential therapeutic targets in the treatment of PPARγ-related diseases.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan.
| | - Sachiko Toma-Fukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Complex Molecular Systems Laboratory, Nara Institute of Science and Technology, Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan
| | - Yutaro Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Hikaru Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasunaga Shiraishi
- Division of Environmental Medicine, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan
| | - Nao Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan
| | - Masaaki Higashiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ikuo Inoue
- Department of Endocrinology and Diabetes, Saitama Medical University, Moroyama, 350-0495, Japan
| | - Yasuhiro Takenaka
- Department of Endocrinology and Diabetes, Saitama Medical University, Moroyama, 350-0495, Japan; Department of Physiology, Graduate School of Medicine, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryota Hokari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan
| | - Takeshi Adachi
- Division of Cardiology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Soichiro Miura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan; International University of Health and Welfare Graduate School, 1-24-1 Minami-Aoyama, Minato-ku, Tokyo, 107-0062, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
30
|
Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Dev Cell 2020; 55:30-44. [PMID: 32726575 DOI: 10.1016/j.devcel.2020.06.033] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, various membrane-bound organelles compartmentalize diverse cellular activities in a spatially and temporally controlled manner. Numerous membraneless organelles assembled via liquid-liquid phase separation (LLPS), known as condensates, also facilitate compartmentalization of cellular functions. Emerging evidence shows that these two organelle types interact in many biological processes. Membranes modulate the biogenesis and dynamics of phase-separated condensates by serving as assembly platforms or by forming direct contacts. Phase separation of membrane-associated proteins participates in various trafficking events, such as clustering of vesicles for temporally controlled fusion and storage, and transport of membraneless condensates on membrane-bound organelles. Phase separation also acts in cargo trafficking pathways by sorting and docking cargos for translocon-mediated transport across membranes, by shuttling cargos through the nuclear pore complex, and by triggering the formation of surrounding autophagosomes for delivery to lysosomes. The coordinated actions of membrane-bound and membraneless organelles ensure spatiotemporal control of various cellular functions.
Collapse
|
31
|
Targeting nuclear import and export in hematological malignancies. Leukemia 2020; 34:2875-2886. [PMID: 32624581 PMCID: PMC7584478 DOI: 10.1038/s41375-020-0958-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The transport of proteins across the nuclear membrane is a highly regulated process, essential for the cell function. This transport is actively mediated by members of the karyopherin family, termed importins, or exportins, depending on the direction of transport. These proteins play an active part in tumorigenesis, through aberrant localization of their cargoes, which include oncogenes, tumor-suppressor genes and mediators of key signal transduction pathways. Overexpression of importins and exportins is reported in many malignancies, with implications in cell growth and viability, differentiation, drug resistance, and tumor microenvironment. Given their broad significance across tumors and pathways, much effort is being put to develop specific inhibitors as a novel anticancer therapeutics. Already, selinexor, a specific inhibitor of exportin-1 (XPO1), is approved for clinical use. This review will focus on the role of importins and exportins in hematological malignancies. We will discuss current preclinical and clinical data on importins and exportins, and demonstrate how our growing understanding of their functions has identified new therapeutic targets.
Collapse
|
32
|
Varma Shrivastav S, Bhardwaj A, Pathak KA, Shrivastav A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front Cell Dev Biol 2020; 8:286. [PMID: 32478064 PMCID: PMC7232603 DOI: 10.3389/fcell.2020.00286] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), one of the six members of the IGFBP family, is a key protein in the IGF pathway. IGFBP-3 can function in an IGF-dependent as well as in an IGF-independent manner. The IGF-dependent roles of IGFBP-3 include its endocrine role in the delivery of IGFs from the site of synthesis to the target cells that possess IGF receptors and the activation of associated downstream signaling. IGF-independent role of IGFBP-3 include its interactions with the proteins of the extracellular matrix and the proteins of the plasma membrane, its translocation through the plasma membrane into the cytoplasm and into the nucleus. The C-terminal domain of IGFBP-3 has the ability to undergo cell penetration therefore, generating a short 8-22-mer C-terminal domain peptides that can be conjugated to drugs or genes for effective intracellular delivery. This has opened doors for biotechnological applications of the molecule in molecular medicine. The aim of this this review is to summarize the complex roles of IGFBP-3 within the cell, including its mechanisms of cellular uptake and its translocation into the nucleus, various molecules with which it is capable of interacting, and its ability to regulate IGF-independent cell growth, survival and apoptosis. This would pave way into understanding the modus operandi of IGFBP-3 in regulating IGF-independent processes and its pleiotropic ability to bind with potential partners thus regulating several cellular functions implicated in metabolic diseases, including cancer.
Collapse
Affiliation(s)
- Shailly Varma Shrivastav
- VastCon Inc., Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Kumar Alok Pathak
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
33
|
Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019; 218:4063-4078. [PMID: 31636119 PMCID: PMC6891103 DOI: 10.1083/jcb.201902124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | | | - Katherine M Nelson
- Department of Molecular Biology, University of Wyoming, Laramie, WY
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
34
|
Mechanisms Mediating Nuclear Trafficking Involved in Viral Propagation by DNA Viruses. Viruses 2019; 11:v11111035. [PMID: 31703327 PMCID: PMC6893576 DOI: 10.3390/v11111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Typical viral propagation involves sequential viral entry, uncoating, replication, gene transcription and protein synthesis, and virion assembly and release. Some viral proteins must be transported into host nucleus to facilitate viral propagation, which is essential for the production of mature virions. During the transport process, nuclear localization signals (NLSs) play an important role in guiding target proteins into nucleus through the nuclear pore. To date, some classical nuclear localization signals (cNLSs) and non-classical NLSs (ncNLSs) have been identified in a number of viral proteins. These proteins are involved in viral replication, expression regulation of viral genes and virion assembly. Moreover, other proteins are transported into nucleus with unknown mechanisms. This review highlights our current knowledge about the nuclear trafficking of cellular proteins associated with viral propagation.
Collapse
|
35
|
He X, Zhang H, Tao B, Yang M, Chen H, Lu L, Yi H, Pan H, Tang S. The A/A Genotype of XPO1 rs4430924 Is Associated With Higher Risk of Antituberculosis Drug-Induced Hepatotoxicity in Chinese Patients. J Clin Pharmacol 2019; 59:1014-1021. [PMID: 30817003 DOI: 10.1002/jcph.1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/05/2019] [Indexed: 11/10/2022]
Abstract
Antituberculosis (anti-TB) drug-induced hepatotoxicity may be related to the excessive reactive oxygen species induced by hepatotoxic metabolites. Antioxidant activity involves the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The BTB domain and CNC homologue 1 (Bach1) may compete with Nrf2 for binding to transcriptional enhancers. Elimination of Bach1-mediated transcriptional repression depends on nuclear exporter exportin 1 (Xpo1). Thus, Xpo1 may indirectly affect antioxidant activity. The present study aimed to examine the role of tag single-nucleotide polymorphisms in XPO1 in Chinese anti-TB treatment patients. A 1:2 matched case-control study was conducted using 314 anti-TB drug-induced hepatotoxicity cases and 628 controls. After correcting for weight and hepatoprotectant use, conditional logistic regression analysis showed that patients carrying the AA genotype of rs4430924 in XPO1 were at higher risk of anti-TB drug-induced hepatotoxicity than those carrying the GG genotype based on the subgroup of probable cases (adjusted OR, 1.938; 95%CI, 1.035-3.628; P = .039), and marginally significant differences were also found under the recessive model (P = .048) and the additive model (P = .047). Based on this 1:2 matched case-control study, the AA genotype of rs4430924 in XPO1 may be associated with higher risk of anti-TB drug-induced hepatotoxicity in Chinese anti-TB treatment patients. Further studies in larger and more varied populations are required to validate this relationship.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Haiping Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bilin Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Miaomiao Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbo Chen
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
You HS, Ok YJ, Lee EJ, Kang SS, Hyun SH. Development of a novel DsRed-NLS vector with a monopartite classical nuclear localization signal. 3 Biotech 2019; 9:232. [PMID: 31139547 DOI: 10.1007/s13205-019-1770-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/18/2019] [Indexed: 12/01/2022] Open
Abstract
The nuclear localization signal (NLS) marks proteins for transport to the nucleus and is used in various applications in many fields. NLSs are used to achieve efficient and stable transport of biomolecules. Previously, commercial vectors used in NLS studies contained three iterations of the NLS sequence, but these sequences can affect experimental results and alter protein function. Here, we investigated a new vector using a single classical NLS sequence with a mutation in pDsRed2-C1-wt to reduce experimental artifacts. In the newly constructed pDsRed2-C1-1NLS vector, the NLS sequence is placed near the multiple cloning sites of pDsRed2-C1-wt, and the multiple cloning site region was designed to facilitate insertion of the desired gene by site-directed mutagenesis. Fluorescent protein expression in the nucleus can be visually confirmed. The results show that the fluorescent protein was bound to the transport protein. The constructed vector had a cell survival rate of 89-95% and a transfection efficiency of 39-56% when introduced into animal cells, which are similar to those of other NLS vectors. Additionally, the constructed NLS vector can be used to demonstrate complementary binding between target proteins, and that the target protein is transported by the NLS transport system. Especially, we show that the vector can be useful for experiments involving the S100A10 gene. In addition, the constructed vector is useful for studies of genes and proteins that show potential for gene therapy or drug delivery applications.
Collapse
Affiliation(s)
- Hee Sang You
- 1Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| | - Yeon Jeong Ok
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| | - Eun Jeong Lee
- 3Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Sang Sun Kang
- 3Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Sung Hee Hyun
- 1Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| |
Collapse
|
37
|
George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. J Biol Chem 2019; 294:9631-9641. [PMID: 31064840 DOI: 10.1074/jbc.ra119.008463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors that promote numerous steps associated with mRNA processing and whose biological function is tightly regulated through multi-site phosphorylation. In the nucleus, the cdc2-like kinases (CLKs) phosphorylate SR proteins on their intrinsically disordered Arg-Ser (RS) domains, mobilizing them from storage speckles to the splicing machinery. The CLKs have disordered N termini that bind tightly to RS domains, enhancing SR protein phosphorylation. The N termini also promote nuclear localization of CLKs, but their transport mechanism is presently unknown. To explore cytoplasmic-nuclear transitions, several classical nuclear localization sequences in the N terminus of the CLK1 isoform were identified, but their mutation had no effect on subcellular localization. Rather, we found that CLK1 amplifies its presence in the nucleus by forming a stable complex with the SR protein substrate and appropriating its NLS for transport. These findings indicate that, along with their well-established roles in mRNA splicing, SR proteins use disordered protein-protein interactions to carry their kinase regulator from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Athira George
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Brandon E Aubol
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Laurent Fattet
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Joseph A Adams
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| |
Collapse
|
38
|
Mullan PB, Bingham V, Haddock P, Irwin GW, Kay E, McQuaid S, Buckley NE. NUP98 - a novel predictor of response to anthracycline-based chemotherapy in triple negative breast cancer. BMC Cancer 2019; 19:236. [PMID: 30935371 PMCID: PMC6444590 DOI: 10.1186/s12885-019-5407-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background Triple Negative breast cancer (TNBC) is a poor outcome subgroup of breast cancer defined based on the absence of expression of ERα and PR and HER2 amplification. These hard to treat cancers lack targeted treatment options and are therefore treated with a standard of care (SoC) generic cocktail of DNA damaging chemotherapy, with a wide range of clinical responses. While a subset of TNBC patients respond very well to this treatment, others receive no clinical benefit and die from their disease within a short time period. We currently lack biomarkers to prospectively identify patients likely to relapse and we lack alternate treatment options. Methods NUP98 protein expression was investigated in patient samples using two independent tissue microarrays (TMAs), as well as a normal breast TMA. Correlation with pathological response to various chemotherapy regimens was investigated. Results We have shown that high NUP98 is significantly associated with poor outcome in TNBC patient samples both by gene expression and IHC-based protein analysis. While trends linking NUP98 expression with poorer outcomes were observed in breast cancer overall (and more specifically in the LuminalB Her2- subgroup), significant correlations were observed in TNBC. This appeared to be specific to anthracycline based regimens as the association between NUP98 and response was not observed in patients treated with taxane-based chemotherapy. Conclusions We have identified a novel biomarker, NUP98, that can predict response to anthracycline based chemotherapy in TNBC. The ability to prospectively identify patients who are less likely to respond to SoC chemotherapy is a vital step in improving the overall survival of these patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-5407-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Victoria Bingham
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Paula Haddock
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Gareth W Irwin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland.,Nightingale Breast Centre, Wythenshawe Hospital, Manchester University Foundation Trust, Manchester, UK
| | - Elaine Kay
- Department of Surgery, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephen McQuaid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Niamh E Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
39
|
Goeckel ME, Basgall EM, Lewis IC, Goetting SC, Yan Y, Halloran M, Finnigan GC. Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae. Fungal Biol Biotechnol 2019; 6:2. [PMID: 30766726 PMCID: PMC6360766 DOI: 10.1186/s40694-019-0065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/10/2019] [Indexed: 01/28/2023] Open
Abstract
Background The bacterial CRISPR/Cas genome editing system has provided a major breakthrough in molecular biology. One use of this technology is within a nuclease-based gene drive. This type of system can install a genetic element within a population at unnatural rates. Combatting of vector-borne diseases carried by metazoans could benefit from a delivery system that bypasses traditional Mendelian laws of segregation. Recently, laboratory studies in fungi, insects, and even mice, have demonstrated successful propagation of CRISPR gene drives and the potential utility of this type of mechanism. However, current gene drives still face challenges including evolved resistance, containment, and the consequences of application in wild populations. Additional research into molecular mechanisms that would allow for control, titration, and inhibition of drive systems is needed. Results In this study, we use artificial gene drives in budding yeast to explore mechanisms to modulate nuclease activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences (both NLS and NES) on Cas9 fusion proteins in vivo through fluorescence microscopy and genomic editing. Our results demonstrate that mutational substitutions to nuclear signals and combinatorial fusions can both modulate the level of gene drive activity within a population of cells. Conclusions These findings have implications for control of traditional nuclease-dependent editing and use of gene drive systems within other organisms. For instance, initiation of a nuclear export mechanism to Cas9 could serve as a molecular safeguard within an active gene drive to reduce or eliminate editing.
Collapse
Affiliation(s)
- Megan E Goeckel
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Erianna M Basgall
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Isabel C Lewis
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Samantha C Goetting
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Yao Yan
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| | - Megan Halloran
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA.,2Present Address: Department of Psychology, 106-B Kastle Hall, University of Kentucky, Lexington, KY 40506 USA
| | - Gregory C Finnigan
- 1Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
40
|
Guo L, Fare CM, Shorter J. Therapeutic Dissolution of Aberrant Phases by Nuclear-Import Receptors. Trends Cell Biol 2019; 29:308-322. [PMID: 30660504 DOI: 10.1016/j.tcb.2018.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Nuclear-import receptors (NIRs) bind nuclear-localization signals (NLSs) of protein cargo in the cytoplasm and transport them into the nucleus. Here, we review advances establishing that NIRs also function in the cytoplasm to prevent and reverse functional and aberrant phase transitions of their cargo, including neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains, such as TDP-43, FUS, hnRNPA1, and hnRNPA2. NIRs selectively extract cargo from condensed liquid phases thereby regulating functional phase separation. Consequently, NIRs sculpt cytoplasmic membraneless organelles and regulate cellular organization beyond their canonical role in nuclear import. Elevating NIR expression dissolves cytoplasmic RBP aggregates, restores functional RBPs to the nucleus, and rescues disease-linked RBP toxicity. Thus, NIRs could be leveraged therapeutically to restore RBP homeostasis and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Joint first authors
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Joint first authors
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, Vicente-Pascual M, Gómez-Aguado I, Battaglia LS, Solinís MÁ. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:321-368. [PMID: 31492963 DOI: 10.1007/10_2019_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy medicinal products (GTMPs) are one of the most promising biopharmaceuticals, which are beginning to show encouraging results. The broad clinical research activity has been addressed mainly to cancer, primarily to those cancers that do not respond well to conventional treatment. GTMPs to treat rare disorders caused by single-gene mutations have also made important advancements toward market availability, with eye and hematopoietic system diseases as the main applications.Nucleic acid-marketed products are based on both in vivo and ex vivo strategies. Apart from DNA-based therapies, antisense oligonucleotides, small interfering RNA, and, recently, T-cell-based therapies have been also marketed. Moreover, the gene-editing tool CRISPR is boosting the development of new gene therapy-based medicines, and it is expected to have a substantial impact on the gene therapy biopharmaceutical market in the near future.However, despite the important advancements of gene therapy, many challenges have still to be overcome, which are discussed in this book chapter. Issues such as efficacy and safety of the gene delivery systems and manufacturing capacity of biotechnological companies to produce viral vectors are usually considered, but problems related to cost and patient affordability must be also faced to ensure the success of this emerging therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luigi S Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
42
|
Affiliation(s)
- Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
43
|
Xia L, Wang M, Li H, Tang X, Chen F, Cui J. The effect of aberrant expression and genetic polymorphisms of Rad21 on cervical cancer biology. Cancer Med 2018; 7:3393-3405. [PMID: 29797792 PMCID: PMC6051231 DOI: 10.1002/cam4.1592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022] Open
Abstract
The therapeutic challenge of advanced, recurrent, and refractory cervical cancer (CC) needs to develop new molecularly targeted drugs. Rad21 is an important regulatory gene that maintains the correct dissociation of sister chromatids during cell mitosis. The aim of this study was to investigate the effect of Rad21 on CC. Rad21 expression in CC and cervical intraepithelial neoplasia III was significantly increased. Women with the rs2289937 C genotype (CC+CT) of rs4570 and rs4579555 genotypes and haplotype 1 (TTTCAGGCGC) were significantly associated with CC risk, while women with low frequencies of haplotype 6 (TTTTAGGCGC) also increased the risk of CC.Rad21‐specific shRNA decreased cancerous cell proliferation, migration, and invasion and increased the proportion of cells in G2/M phase as well as sensitivity to radiation. The Rad21 influenced the expression of XPO1, CyclinB1, CDK1, P21, P27, and P53 through up‐and downregulating the Rad21 expression. The TCGA database of CC also showed that Rad21 expression was associated with poor disease survival and XPO1 expression. Moreover, the KEGG pathway indicated that Rad21 is broadly involved in the cell cycle and RNA transportation via XPO1. This suggests that Rad21 involves the development of cervical cancer possibly by participating in the regulation of cell cycle and the nuclear output of the tumor suppressor gene via XPO1.
Collapse
Affiliation(s)
- Li Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minjie Wang
- Department of Obstetrics and Gynecology, People's Hospital of Linying, Luohe, China
| | - Hongying Li
- Department of Obstetrics and Gynecology, Pingdingshan First People's Hospital of Henan Province, Pingdingshan, China
| | - Xiangjing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Chen
- Department of Gynaecology and Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Autophagic Removal of Farnesylated Carboxy-Terminal Lamin Peptides. Cells 2018; 7:cells7040033. [PMID: 29690642 PMCID: PMC5946110 DOI: 10.3390/cells7040033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The mammalian nuclear lamina proteins—prelamin A- and B-type lamins—are post-translationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxy-terminal CAAX (C, cysteine; a, aliphatic amino acid; X, any amino acid) motif. However, prelamin A processing into mature lamin A is a unique process because it results in the production of farnesylated and carboxymethylated peptides. In cells from patients with Hutchinson–Gilford progeria syndrome, the mutant prelamin A protein, progerin, cannot release its prenylated carboxyl-terminal moiety and therefore remains permanently associated with the nuclear envelope (NE), causing severe nuclear alterations and a dysmorphic morphology. To obtain a better understanding of the abnormal interaction and retention of progerin in the NE, we analyzed the spatiotemporal distribution of the EGFP fusion proteins with or without a nuclear localization signal (NLS) and a functional CAAX motif in HeLa cells transfected with a series of plasmids that encode the carboxy-terminal ends of progerin and prelamin A. The farnesylated carboxy-terminal fusion peptides bind to the NE and induce the formation of abnormally shaped nuclei. In contrast, the unfarnesylated counterparts exhibit a diffuse localization in the nucleoplasm, without obvious NE deformation. High levels of farnesylated prelamin A and progerin carboxy-terminal peptides induce nucleophagic degradation of the toxic protein, including several nuclear components and chromatin. However, SUN1, a constituent of the linker of nucleoskeleton and cytoskeleton (LINC) complex, is excluded from these autophagic NE protrusions. Thus, nucleophagy requires NE flexibility, as indicated by SUN1 delocalization from the elongated NE–autophagosome complex.
Collapse
|
45
|
"Multiple partial recognitions in dynamic equilibrium" in the binding sites of proteins form the molecular basis of promiscuous recognition of structurally diverse ligands. Biophys Rev 2017; 10:421-433. [PMID: 29243092 DOI: 10.1007/s12551-017-0365-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
Promiscuous recognition of ligands by proteins is as important as strict recognition in numerous biological processes. In living cells, many short, linear amino acid motifs function as targeting signals in proteins to specify the final destination of the protein transport. In general, the target signal is defined by a consensus sequence containing wild-characters, and hence represented by diverse amino acid sequences. The classical lock-and-key or induced-fit/conformational selection mechanism may not cover all aspects of the promiscuous recognition. On the basis of our crystallographic and NMR studies on the mitochondrial Tom20 protein-presequence interaction, we proposed a new hypothetical mechanism based on "a rapid equilibrium of multiple states with partial recognitions". This dynamic, multiple recognition mode enables the Tom20 receptor to recognize diverse mitochondrial presequences with nearly equal affinities. The plant Tom20 is evolutionally unrelated to the animal Tom20 in our study, but is a functional homolog of the animal/fungal Tom20. NMR studies by another research group revealed that the presequence binding by the plant Tom20 was not fully explained by simple interaction modes, suggesting the presence of a similar dynamic, multiple recognition mode. Circumstantial evidence also suggested that similar dynamic mechanisms may be applicable to other promiscuous recognitions of signal peptides by the SRP54/Ffh and SecA proteins.
Collapse
|