1
|
Temirbekov N, Temirbekova M, Tamabay D, Kasenov S, Askarov S, Tukenova Z. Assessment of the Negative Impact of Urban Air Pollution on Population Health Using Machine Learning Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6770. [PMID: 37754628 PMCID: PMC10531262 DOI: 10.3390/ijerph20186770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
This study focuses on assessing the level of morbidity among the population of Almaty, Kazakhstan, and investigating its connection with atmospheric air pollution using machine learning algorithms. The use of these algorithms is aimed at analyzing the relationship between air pollution levels and the state of public health, as well as the correlations between COVID-19 infection and the development of respiratory diseases. This study analyzes the respiratory diseases of the population of Almaty and the level of air pollution as a result of suspended particles for the period of 2017-2022. The study includes recommendations to reduce harmful emissions into the atmosphere using machine learning methods. The results of the study show that air pollution is a critical factor affecting the increase in the number of diseases of the respiratory system. The study recommends taking measures to reduce air pollution and improve air quality in order to prevent the development of chronic respiratory diseases. The study offers recommendations to industrial enterprises, traffic management organizations, thermal power plants, the Department of Environmental Protection, and local executive bodies in order to reduce respiratory diseases among the population.
Collapse
Affiliation(s)
- Nurlan Temirbekov
- National Engineering Academy of RK, Almaty 050010, Kazakhstan; (N.T.); (D.T.); (S.K.)
- Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Marzhan Temirbekova
- Almaty University of Power Engineering and Telecommunications Named after G. Daukeyev, Almaty 050013, Kazakhstan
| | - Dinara Tamabay
- National Engineering Academy of RK, Almaty 050010, Kazakhstan; (N.T.); (D.T.); (S.K.)
- Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Syrym Kasenov
- National Engineering Academy of RK, Almaty 050010, Kazakhstan; (N.T.); (D.T.); (S.K.)
- Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Seilkhan Askarov
- Ecoservice-S Limited Liability Partnership, Almaty 050009, Kazakhstan;
| | - Zulfiya Tukenova
- Institute of Zoology of the Ministry of Higher Education and Science of the RK, Almaty 050060, Kazakhstan;
| |
Collapse
|
2
|
Siegel J, Gill N, Ramanathan M, Patadia M. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:39-53. [DOI: 10.1016/j.otc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Ma R, Zhang Y, Zhang Y, Li X, Ji Z. The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031943. [PMID: 36767307 PMCID: PMC9916065 DOI: 10.3390/ijerph20031943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/11/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has been a global public health concern for almost three years, and the transmission characteristics vary among different virus variants. Previous studies have investigated the relationship between air pollutants and COVID-19 infection caused by the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, it is unclear whether individuals might be more susceptible to COVID-19 due to exposure to air pollutants, with the SARS-CoV-2 mutating faster and faster. This study aimed to explore the relationship between air pollutants and COVID-19 infection caused by three major SARS-CoV-2 strains (the original strain, Delta variant, and Omicron variant) in China. A generalized additive model was applied to investigate the associations of COVID-19 infection with six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3). A positive correlation might be indicated between air pollutants (PM2.5, PM10, and NO2) and confirmed cases of COVID-19 caused by different SARS-CoV-2 strains. It also suggested that the mutant variants appear to be more closely associated with air pollutants than the original strain. This study could provide valuable insight into control strategies that limit the concentration of air pollutants at lower levels and would better control the spread of COVID-19 even as the virus continues to mutate.
Collapse
Affiliation(s)
- Ruiqing Ma
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yeyue Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yini Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Xi Li
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| |
Collapse
|
4
|
Ruiz-Lara K, García-Medina S, Galar-Martínez M, Parra-Ortega I, Morales-Balcázar I, Hernández-Rosas NA, Moreno-Vázquez SE, Hernández-Díaz M, Cano-Viveros S, Olvera-Roldán EO, Gómez-Oliván LM, Gasca-Pérez E, García-Medina AL. The evaluation of liver dysfunction and oxidative stress due to urban environmental pollution in Mexican population related to Madin Dam, State of Mexico: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6950-6964. [PMID: 36018407 PMCID: PMC9411834 DOI: 10.1007/s11356-022-22724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
One of the most important causes of disease and premature death in the world is environmental pollution. The presence of pollutants in both water and air contributes to the deterioration of the health of human populations. The Mexico City Metropolitan Area is one of the most populous and affected by air pollution worldwide; in addition, in recent years there has been a growing demand for water, so urban reservoirs such as the Madin dam are vital to meet the demand. However, this reservoir is highly polluted due to the urban settlements around it. Therefore, the aim of the present study was to evaluate oxidative stress in clinically healthy subjects by means of the degree of lipoperoxidation, as well as the modification of serum enzyme levels, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase associated with air and drinking water pollutants from three zones of the Mexico City Metropolitan Area, two of them related to Madin Dam. This descriptive cross-sectional study was conducted between March 2019 and September 2021 in 142 healthy participants (age range 18-65 years). Healthy subjects were confirmed by their medical history. The results showed that chronic exposure to air (SO2) and water pollutants (Al and Fe) was significantly associated with elevated levels of lipoperoxidation. There was evidence that contamination from the Madín dam can generate oxidative stress and affect the health status of people who receive water from this reservoir or who consume fish that inhabit it.
Collapse
Affiliation(s)
- Karina Ruiz-Lara
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Israel Parra-Ortega
- Laboratorio Clínico, Hospital Infantil de México "Federico Gómez", Doctor Márquez 162, Delegación Doctores, Cuauhtémoc, 06720, México City, México
| | - Israel Morales-Balcázar
- Laboratorio Clínico, Hospital Infantil de México "Federico Gómez", Doctor Márquez 162, Delegación Doctores, Cuauhtémoc, 06720, México City, México
| | - Nancy Aline Hernández-Rosas
- Universidad Tecnológica de México, S. C. Avenida Central 375, Ejidos Tulpetlac, 55107, Ecatepec de Morelos, México
| | - Sergio Esteban Moreno-Vázquez
- Laboratorio de Productos Naturales, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Eduardo Osel Olvera-Roldán
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan S/N. Col. Residencial Colón, 50120, Toluca, Mexico City, México
| | - Eloy Gasca-Pérez
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| | - Alba Lucero García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados E Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala Y Carpio S/N, 11340, Mexico City, México
| |
Collapse
|
5
|
Ünal E, Özdemir A, Khanjani N, Dastoorpoor M, Özkaya G. Air pollution and pediatric respiratory hospital admissions in Bursa, Turkey: A time series study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2767-2780. [PMID: 34641701 DOI: 10.1080/09603123.2021.1991282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
We aimed to investigate the relation between air pollution and the number of daily hospitalizations due to pneumonia, asthma, bronchitis in children aged 0-18 in Bursa city of Turkey, between the years 2013-2018. The daily values of air pollutants (PM10, SO2, NO2, NOx, CO, and O3) from 2013 until 2018, were obtained. Adjusted Quasi-Poisson regression models including distributed lags, controlled for climate variables were used for data analysis. Increases in SO2, ozone, PMs, and nitrogen oxides were associated with pneumonia hospitalizations, increases in SO2 NOx and PMs were associated with asthma hospitalizations, and increases in SO2 and ozone were associated with bronchitis hospitalizations. Male hospitalization was related with SO2, ozone, and NOx; while female hospitalization was only related with SO2. This study showed that short-term exposure to air pollution is associated with an increased risk of pneumonia, asthma, and bronchitis hospitalization among children in Bursa.
Collapse
Affiliation(s)
- Eda Ünal
- Department of Nursing, Bursa Uludag University Institute of Health Sciences, Bursa, Turkey
| | - Aysel Özdemir
- Department of Public Health Nursing, Bursa Uludag University, Faculty of Health Sciences, Bursa, Turkey
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Güven Özkaya
- Department of Biostatistics, Bursa Uludag University Medical Faculty, Bursa, Turkey
| |
Collapse
|
6
|
Partículas en suspensión PM10, NO2 y agudizaciones de enfermedad respiratoria crónica. Semergen 2022; 48:101819. [DOI: 10.1016/j.semerg.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
|
7
|
Yan M, Ge H, Zhang L, Chen X, Yang X, Liu F, Shan A, Liang F, Li X, Ma Z, Dong G, Liu Y, Chen J, Wang T, Zhao B, Zeng Q, Lu X, Liu Y, Tang NJ. Long-term PM 2.5 exposure in association with chronic respiratory diseases morbidity: A cohort study in Northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114025. [PMID: 36049332 PMCID: PMC10380089 DOI: 10.1016/j.ecoenv.2022.114025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Several literatures have examined the risk of chronic respiratory diseases in association with short-term ambient PM2.5 exposure in China. However, little evidence has examined the chronic impacts of PM2.5 exposure on morbidity of chronic respiratory diseases in cohorts from high pollution countries. Our study aims to investigate the associations. Based on a retrospective cohort among adults in northern China, a Cox regression model with time-varying PM2.5 exposure and a concentration-response (C-R) curve model were performed to access the relationships between incidence of chronic respiratory diseases and long-term PM2.5 exposure during a mean follow-up time of 9.8 years. Individual annual average PM2.5 estimates were obtained from a satellite-based model with high resolution. The incident date of a chronic respiratory disease was identified according to self-reported physician diagnosis time and/or intake of medication for treatment. Among 38,047 urban subjects analyzed in all-cause chronic respiratory disease cohort, 482 developed new cases. In CB (38,369), asthma (38,783), and COPD (38,921) cohorts, the onsets were 276, 89, and 14, respectively. After multivariable adjustment, hazard ratio and 95% confidence interval for morbidity of all-cause chronic respiratory disease, CB, asthma, and COPD were 1.15 (1.01, 1.31), 1.20 (1.00, 1.42), 0.76 (0.55, 1.04), and 0.66 (0.29, 1.47) with each 10 μg/m3 increment in PM2.5, respectively. Stronger effect estimates were suggested in alcohol drinkers across stratified analyses. Additionally, the shape of C-R curve showed an increasing linear relationship before 75.00 μg/m3 concentrations of PM2.5 for new-onset all-cause chronic respiratory disease, and leveled off at higher levels. These findings indicated that long-term exposure to high-level PM2.5 increased the risks of incident chronic respiratory diseases in China. Further evidence of C-R curves is warranted to clarify the associations of adverse chronic respiratory outcomes involving air pollution.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Han Ge
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yamin Liu
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Baoxin Zhao
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030001, China
| | - Qiang Zeng
- Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
8
|
Bigliardi AP, Dos Santos M, Fernandes CLF, Garcia EM, Dos Santos MET, Jones MH, Soares MCF, Baisch ALM, da Silva Júnior FMR. Lung function among residents from the largest coal region in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46803-46812. [PMID: 35169947 DOI: 10.1007/s11356-022-19242-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Coal mining and burning activities in coal-fired power plants are among the most polluting activities in developing countries. In Brazil, the Candiota coal deposit concentrates 40% of the national mineral coal. Although, previous studies indicate several negative health outcomes to residents of this coal region, there is no information about lung function. Thus, this study aimed to evaluate lung function by spirometry among residents from the largest coal mining region of Brazil and its related factors. It was carried out a cross-sectional study with 300 male adults residing in four cities from this region. Socioeconomic, demographic, life style, and health conditions were collected through a structured questionnaire, and lung function was assessed by spirometry. Almost 18% of the residents have disorders in pulmonary function. There was significant statistical difference in the spirometry main parameters between the cities. Candiota city (host city of coal exploration activities) have the highest prevalence of obstructive ventilatory disorder. Curiously, upper economic class had significant higher risk of altered lung function (P<0.001), as well as inappropriate sewage destination (P<0.001). Residents of Candiota city had 20% higher risk of altered lung function. Regarding air quality, the PM10, SO2, and NO2 of the region were 20.6± 3.9, 7.0± 2.2, and 6.0± 1.6, respectively. Two air quality stations exceed the limit of 20 μg/m3 to PM10 proposed by Brazilian legislation and WHO, and three stations had PM10 quite close to the limit. This study points out the need for urgent action to protect residents from this coal mining region.
Collapse
Affiliation(s)
- Ana Paula Bigliardi
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Marina Dos Santos
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Caroline Lopes Feijo Fernandes
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Edariane Menestrino Garcia
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Marcelli Evans Telles Dos Santos
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Marcus Herbert Jones
- Escola de Medicina, PUCRS, Av. Ipiranga 6681 Prédio 40-9° andar CEP, Porto Alegre, RS, 90619-900, Brazil
| | - Maria Cristina Flores Soares
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Ana Luíza Muccillo Baisch
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos-LEFT, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande do Sul-FURG, Av. Itália, km 8, Campus Carreiros, CEP, Rio Grande, RS, 96203-900, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande (FURG), Rua Visconde de Paranaguá 102 Centro, CEP, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
9
|
Valderrama A, Ortiz-Hernández P, Agraz-Cibrián JM, Tabares-Guevara JH, Gómez DM, Zambrano-Zaragoza JF, Taborda NA, Hernandez JC. Particulate matter (PM 10) induces in vitro activation of human neutrophils, and lung histopathological alterations in a mouse model. Sci Rep 2022; 12:7581. [PMID: 35534522 PMCID: PMC9083477 DOI: 10.1038/s41598-022-11553-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023] Open
Abstract
The epidemiological association between exposure to particulate matter (PM10) and various respiratory and cardiovascular problems is well known, but the mechanisms driving these effects remain unclear. Neutrophils play an essential role in immune defense against foreign agents and also participate in the development of inflammatory responses. However, the role of these cells in the PM10 induced inflammatory response is not yet fully established. Thus, this study aims to evaluate the effect of PM10 on the neutrophil-mediated inflammatory response. For this, neutrophils from healthy adult human donors were in vitro exposed to different concentrations of PM10. The cell viability and cytotoxic activity were evaluated by MTT. LDH, propidium iodide and reactive oxygen species (ROS) were quantified by flow cytometry. Interleukin 8 (IL-8) expression, peptidyl arginine deiminase 4 (PAD4), myeloperoxidase (MPO), and neutrophil elastase (NE) expression were measured by RT-PCR. IL-8 was also quantified by ELISA. Fluorescence microscopy was used to evaluate neutrophil extracellular traps (NETs) release. The in vivo inflammatory responses were assessed in BALB/c mice exposed to PM10 by histopathology and RT-PCR. The analysis shows that PM10 exposure induced a cytotoxic effect on neutrophils, evidenced by necrosis and LDH release at high PM10 concentrations. ROS production, IL-8, MPO, NE expression, and NETs release were increased at all PM10 concentrations assessed. Neutrophil infiltration in bronchoalveolar lavage fluid (BALF), histopathological changes with inflammatory cell infiltration, and CXCL1 expression were observed in PM10-treated mice. The results suggest that lung inflammation in response to PM10 could be mediated by neutrophils activation. In this case, these cells migrate to the lungs and release pro-inflamatory mediators, including ROS, IL-8, and NETs. Thus, contributing to the exacerbation of respiratory pathologies, such as allergies, infectious and obstructive diseases.
Collapse
Affiliation(s)
- Andrés Valderrama
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Paul Ortiz-Hernández
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | | | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | | | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de La Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
10
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
11
|
Liu X, Guo S. Inclusive Finance, Environmental Regulation, and Public Health in China: Lessons for the COVID-19 Pandemic. Front Public Health 2021; 9:662166. [PMID: 33912533 PMCID: PMC8072000 DOI: 10.3389/fpubh.2021.662166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
The slow-down of the Chinese economy and the depression in the global economy during the COVID-19 show that governments should provide stimulus packages. These policies should be inclusive in terms of financial gains. Using the panel data of 30 regions in China from 2006 to 2016, this paper uses the Poisson Pseudo-Maximum Likelihood (PPML) estimator to analyze the impact of inclusive finance on public health. The results show that inclusive finance has a significant positive effect on public health. The performance of the eastern region is significantly better than that of the central and western regions. When we consider the combined effect of environmental regulation, the improvement effect of inclusive finance on public health is still significant, and the coefficient increases in the eastern region. Similarly, there is also a significant improvement effect in the central and western regions. Our findings reveal that environmental regulation promotes the beneficial effect of inclusive finance. Therefore, it is important to improve the inclusive financial development mechanism and enhance environmental regulation intensity for solving public health issues. Lessons related to the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Xia Liu
- School of International Finance and Trade, Sichuan International Studies University, Chongqing, China
| | - Suqin Guo
- Chongqing Dongnan Hospital, Southeast Hospital, Chongqing, China
| |
Collapse
|
12
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
13
|
Mishra R, Krishnamoorthy P, Gangamma S, Raut AA, Kumar H. Particulate matter (PM 10) enhances RNA virus infection through modulation of innate immune responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115148. [PMID: 32771845 PMCID: PMC7357538 DOI: 10.1016/j.envpol.2020.115148] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 05/07/2023]
Abstract
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM10 (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) - H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM10 prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM10 enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Pandikannan Krishnamoorthy
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - S Gangamma
- National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru, 575025, Karnataka, India; Centre for Water Food and Environment, IIT Ropar, Rupnagar, 140001, Punjab, India
| | - Ashwin Ashok Raut
- Pathogenomics Laboratory, ICAR - National Institute of High Security Animal Diseases (NIHSAD), OIE Reference Laboratory for Avian Influenza, Bhopal, 462021, MP, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan.
| |
Collapse
|
14
|
Mercan Y, Babaoglu UT, Erturk A. Short-term effect of particular matter and sulfur dioxide exposure on asthma and/or chronic obstructive pulmonary disease hospital admissions in Center of Anatolia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:646. [PMID: 32939661 DOI: 10.1007/s10661-020-08605-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We investigated the associations between the daily variations of coarse particulate matter (PM10) and/or sulfur dioxide (SO2) and hospital admissions for asthma and/or chronic obstructive pulmonary disease (COPD) diseases in Kirsehir, Center of Anatolia of Turkey. We analyzed the poison generalized linear model (GLM) to analyze the association between ambient air pollutants such as PM10 and SO2 and asthma and/or COPD admissions. We investigated single-lag days and multi-lag days for the risk increase in asthma, COPD, asthma, and/or COPD hospital admissions PM10, SO2, and PM10 with SO2 per 10 μg/m3. In single-lag day model a 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.027 (95% CI:1.022-1.033) and 1.069 (95% CI:1.062, 1.077) for asthma. A 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.029 (95% CI:1.022-1.035) and 1.065 (95% CI:1.056, 1.075) for COPD. A 10 μg/m3 increase in the current day (lag 0) concentrations of PM10 and SO2 corresponded to increase of 1.028 (95% CI:1.024-1.032) and 1.068 (95% CI:1.062, 1.074) for asthma and/or COPD. It was found that some lag structures were related with PM10 and SO2. Significant lags were detected in some lag structures from the previous first day until the previous eighth day (lag 1 to lag 7) in the asthma, COPD, and asthma and/or COPD hospital admissions in the model created with PM10 with SO2 both in the single-lag day model and in the multi-lag day model. Our study that used GLM in time series analysis showed that PM10 and/or SO2 short-term exposure in single-lag day and multi-lag day models was related with increased asthma, COPD, and asthma and/or COPD hospital admissions in the city between 2016 and 2019 until the previous-eighth day.
Collapse
Affiliation(s)
- Yeliz Mercan
- Kirklareli University Health Sciences Institute Department of Public Health, 39000, Kirklareli, Turkey.
- Kirklareli University School of Health Department of Health Management, 39000, Kirklareli, Turkey.
| | - Ulken Tunga Babaoglu
- Kirsehir Ahi Evran University Faculty of Medicine Department of Public Health, 40100, Kirsehir, Turkey
| | - Arzu Erturk
- Kirsehir Ahi Evran University Faculty of Medicine Department of Chest Diseases, Kirsehir, 40100, Turkey
| |
Collapse
|
15
|
Liu K, Li S, Qian ZM, Dharmage SC, Bloom MS, Heinrich J, Jalaludin B, Markevych I, Morawska L, Knibbs LD, Hinyard L, Xian H, Liu S, Lin S, Leskinen A, Komppula M, Jalava P, Roponen M, Hu LW, Zeng XW, Hu W, Chen G, Yang BY, Guo Y, Dong GH. Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113434. [PMID: 31672350 DOI: 10.1016/j.envpol.2019.113434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Little information exists on interaction effects between air pollution and influenza vaccination on allergic respiratory diseases. We conducted a large population-based study to evaluate the interaction effects between influenza vaccination and long-term exposure to ambient air pollution on allergic respiratory diseases in children and adolescents. METHODS A cross-sectional study was investigated during 2012-2013 in 94 schools from Seven Northeastern Cities (SNEC) in China. Questionnaires surveys were obtained from 56 137 children and adolescents aged 2-17 years. Influenza vaccination was defined as receipt of the influenza vaccine. We estimated air pollutants exposure [nitrogen dioxide (NO2) and particulate matter with aerodynamic diameters ≤1 μm (PM1), ≤2.5 μm (PM2.5) and ≤10 μm (PM10)] using machine learning methods. We employed two-level generalized linear mix effects model to examine interactive effects between influenza vaccination and air pollution exposure on allergic respiratory diseases (asthma, asthma-related symptoms and allergic rhinitis), after controlling for important covariates. RESULTS We found statistically significant interactions between influenza vaccination and air pollutants on allergic respiratory diseases and related symptoms (doctor-diagnosed asthma, current wheeze, wheeze, persistent phlegm and allergic rhinitis). The adjusted ORs for doctor-diagnosed asthma, current wheeze and allergic rhinitis among the unvaccinated group per interquartile range (IQR) increase in PM1 and PM2.5 were significantly higher than the corresponding ORs among the vaccinated group [For PM1, doctor-diagnosed asthma: OR: 1.89 (95%CI: 1.57-2.27) vs 1.65 (95%CI: 1.36-2.00); current wheeze: OR: 1.50 (95%CI: 1.22-1.85) vs 1.10 (95%CI: 0.89-1.37); allergic rhinitis: OR: 1.38 (95%CI: 1.15-1.66) vs 1.21 (95%CI: 1.00-1.46). For PM2.5, doctor-diagnosed asthma: OR: 1.81 (95%CI: 1.52-2.14) vs 1.57 (95%CI: 1.32-1.88); current wheeze: OR: 1.46 (95%CI: 1.21-1.76) vs 1.11 (95%CI: 0.91-1.35); allergic rhinitis: OR: 1.35 (95%CI: 1.14-1.60) vs 1.19 (95%CI: 1.00-1.42)]. The similar patterns were observed for wheeze and persistent phlegm. The corresponding p values for interactions were less than 0.05, respectively. We assessed the risks of PM1-related and PM2.5-related current wheeze were decreased by 26.67% (95%CI: 1.04%-45.66%) and 23.97% (95%CI: 0.21%-42.08%) respectively, which was attributable to influenza vaccination (both p for efficiency <0.05). CONCLUSIONS Influenza vaccination may play an important role in mitigating the detrimental effects of long-term exposure to ambient air pollution on childhood allergic respiratory diseases. Policy targeted at increasing influenza vaccination may yield co-benefits in terms of reduced allergic respiratory diseases.
Collapse
Affiliation(s)
- Kangkang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, 3052, Australia
| | - Michael S Bloom
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany
| | - Bin Jalaludin
- School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Iana Markevych
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality & Health (ILAQH), Science and Engineering Faculty, Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, 4059, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Leslie Hinyard
- Center for Health Outcomes Research, Saint Louis University, Saint Louis, 63104, USA
| | - Hong Xian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Shan Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shao Lin
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio, 70211, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio, 70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, 4059, Australia
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, 430000, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Bao X, Tian X, Yang C, Li Y, Hu Y. Association between ambient air pollution and hospital admission for epilepsy in Eastern China. Epilepsy Res 2019; 152:52-58. [PMID: 30909052 DOI: 10.1016/j.eplepsyres.2019.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/26/2019] [Accepted: 02/24/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND We aimed to study the short-term association between air pollutants and hospitalization for epilepsy in 47 hospitals from 10 cities in eastern China. METHOD We identified hospital epilepsy admissions in 2014 and 2015. A conditional Poisson regression model was used to examine the association between air pollutants and hospital admission, with temperature and relative humidity adjusted using the natural spline (ns) function. Pollutants included sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM). The association was stratified by sex, age, and geographic region in single-pollutant and two-pollutant models. RESULTS An interquartile (IQR) increase of NO2 and CO on the concurrent day is correlated with an increased admission of 2.0% (0.5%, 3.6%) and 1.1% (0.1%, 2.1%), respectively. The association is stronger in children (≤18 years) and in northern China, but did not vary with sex. A positive association was also observed on the previous day for CO [1.5%, 95% confidence interval (CI): 0.3%, 2.6%], NO2 (2.5%, 95% CI: 0.6%, 4.3%), and PM2.5 (1.32%, 95% CI: 0.16%, 2.48%). Moving average concentration of 7 days for all pollutants was associated with decreased admission (CO: -1.29%, NO2: -0.4.69%, SO2:-2.12%, PM2.5:-0.98%, PM10:-1.70%). CONCLUSION Exposures to NO2 and CO on concurrent days, and PM2.5 on the previous day, are associated with increased epilepsy hospitalization, whereas cumulative exposure appeared protective.
Collapse
Affiliation(s)
- Xiaoyuan Bao
- Medical Informatics Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Xin Tian
- Department of Health Policy and Administration, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Chao Yang
- Renal Division, Peking University First Hospital, Peking Uni versity Institute of Nephrology, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China.
| | - Yan Li
- Department of Hospital Management, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Yonghua Hu
- Medical Informatics Center, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Department of Epidemiology and Biostatistics, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
17
|
Yang S, Sui J, Liu T, Wu W, Xu S, Yin L, Pu Y, Zhang X, Zhang Y, Shen B, Liang G. Trends on PM 2.5 research, 1997-2016: a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12284-12298. [PMID: 29623642 DOI: 10.1007/s11356-018-1723-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaomei Zhang
- Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Zhang
- Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Bo Shen
- Jiangsu Cancer Hospital, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
18
|
Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax. Am J Emerg Med 2018; 36:2249-2253. [PMID: 29685359 DOI: 10.1016/j.ajem.2018.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). MATERIAL AND METHODS We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). RESULTS Using multivariate logistic regression analysis, O3 (p = 0.010), NO2 (p = 0.047), particulate matters (PM)10 (p = 0.021), and PM2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O3, NO2, PM10, and PM2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM10 in lag-1 (p = 0.012), and PM2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. CONCLUSION Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP.
Collapse
|