1
|
Strojny Z, Kawka E, Strojny M, Kucz-Chrostowska A, Żuraszek-Szymańska J, Sikora W, Deja T, Konopka M, Sato M, Wakamura T, Negoro H, Surdacka A, Korybalska K, Bręborowicz A, Witowski J, Kanikowska D. Exploring the impact of chronotype, chrononutrition and lifestyle on bladder cancer. Int Urol Nephrol 2025:10.1007/s11255-025-04371-y. [PMID: 39982656 DOI: 10.1007/s11255-025-04371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND The misalignment of sleep and eating patterns with biological cycles is a significant issue that could have detrimental effects on health and is prevalent among cancer patients. Sleep duration, chronotype, and nutrition may be linked to the presence of urothelial tract cancer. Bladder cancer is the most frequently diagnosed cancer in the urinary system. The study estimated bladder cancer patients' nutrition behavior, sleep preferences, and chronotype. METHODS 101 patients were enrolled. Based on histopathological examination, they were divided into the cancer group (n = 69) and the non-cancer group (n = 32). Lifestyle was assessed through three questionnaires about sleep, chronotype patterns, and chrononutrition behaviors: social jet lag, eating jet lag, eating window, evening and morning latency. The analysis was also completed by assessing salivary alpha-amylase and immunoglobulin A (IgA). RESULTS In cancer and non-cancer patients, we did not find differences between the chronotypes (p = 0.0634) or other measured factors. Most of the studied population did not present social or eating jet lag and morning or evening latency. In addition, the total sleep duration in these groups was similar 8.5 (5.0-13.0) vs 9.0 (5.0-11.5) hours per day (p > 0.99). The eating window did not differ between the groups (p = 0.061). Furthermore, the assessment of salivary alpha-amylase 193.9 U/ml (10.2-1173.0) and IgA 129.0 μg/ml (5.1-801.1) (p = 0.43; p = 0.18, respectively) showed no differences. CONCLUSIONS In this preliminary study, we did not observe a domination of particular types of chronotypes in the cancer and non-cancer groups. Moreover, there were no significant changes in lifestyle and chrononutrition behavior, except weak difference between groups in eating window. However, it provides a robust foundation for further research and clinical applications.
Collapse
Affiliation(s)
- Zofia Strojny
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznan, Poland.
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Strojny
- Department of Urology with the Sub-Department of Oncological Urology, Hospital of the Ministry of Internal Affairs and Administration, Poznan, Poland
| | | | | | - Wiesław Sikora
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Deja
- Department of Urology with the Sub-Department of Oncological Urology, Hospital of the Ministry of Internal Affairs and Administration, Poznan, Poland
| | - Maciej Konopka
- Department of Urology with the Sub-Department of Oncological Urology, Hospital of the Ministry of Internal Affairs and Administration, Poznan, Poland
| | - Maki Sato
- Institutional Research, Aichi Medical University School of Medicine, Aichi, Japan
| | - Tomoko Wakamura
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812, Poznan, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
- Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Song QX, Suadicani SO, Negoro H, Jiang HH, Jabr R, Fry C, Xue W, Damaser MS. Disruption of circadian rhythm as a potential pathogenesis of nocturia. Nat Rev Urol 2024:10.1038/s41585-024-00961-0. [PMID: 39543359 DOI: 10.1038/s41585-024-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Increasing evidence suggested the multifactorial nature of nocturia, but the true pathogenesis of this condition still remains to be elucidated. Contemporary clinical medications are mostly symptom based, aimed at either reducing nocturnal urine volume or targeting autonomic receptors within the bladder to facilitate urine storage. The day-night switch of the micturition pattern is controlled by circadian clocks located both in the central nervous system and in the peripheral organs. Arousal threshold and secretion of melatonin and vasopressin increase at night-time to achieve high-quality sleep and minimize nocturnal urine production. In response to the increased vasopressin, the kidney reduces the glomerular filtration rate and facilitates the reabsorption of water. Synchronously, in the bladder, circadian oscillation of crucial molecules occurs to reduce afferent sensory input and maintain sufficient bladder capacity during the night sleep period. Thus, nocturia might occur as a result of desynchronization in one or more of these circadian regulatory mechanisms. Disrupted rhythmicity of the central nervous system, kidney and bladder (known as the brain-kidney-bladder circadian axis) contributes to the pathogenesis of nocturia. Novel insights into the chronobiological nature of nocturia will be crucial to promote a revolutionary shift towards effective therapeutics targeting the realignment of the circadian rhythm.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sylvia O Suadicani
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hai-Hong Jiang
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rita Jabr
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Christopher Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
3
|
Xiao X, Ge H, Wang Y, Wan X, Li D, Xie Z. (-)-Gallocatechin Gallate Mitigates Metabolic Syndrome-Associated Diabetic Nephropathy in db/db Mice. Foods 2024; 13:1755. [PMID: 38890983 PMCID: PMC11171689 DOI: 10.3390/foods13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic syndrome (MetS) significantly predisposes individuals to diabetes and is a prognostic factor for the progression of diabetic nephropathy (DN). This study aimed to evaluate the efficacy of (-)-gallocatechin gallate (GCG) in alleviating signs of MetS-associated DN in db/db mice. We administered GCG and monitored its effects on several metabolic parameters, including food and water intake, urinary output, blood glucose levels, glucose and insulin homeostasis, lipid profiles, blood pressure, and renal function biomarkers. The main findings indicated that GCG intervention led to marked improvements in these metabolic indicators and renal function, signifying its potential in managing MetS and DN. Furthermore, transcriptome analysis revealed substantial modifications in gene expression, notably the downregulation of pro-inflammatory genes such as S100a8, S100a9, Cd44, Socs3, Mmp3, Mmp9, Nlrp3, IL-1β, Osm, Ptgs2, and Lcn2 and the upregulation of the anti-oxidative gene Gstm3. These genetic alterations suggest significant effects on pathways related to inflammation and oxidative stress. In conclusion, GCG demonstrates therapeutic efficacy for MetS-associated DN, mitigating metabolic disturbances and enhancing renal health by modulating inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Xin Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| |
Collapse
|
4
|
Park J, Nang JH, Cho S, Chung KJ, Kim KH. Chronic Mealtime Shift Disturbs Metabolic and Urinary Functions in Mice: Effects of Daily Antioxidant Supplementation. Int Neurourol J 2024; 28:115-126. [PMID: 38956771 PMCID: PMC11222825 DOI: 10.5213/inj.2448144.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Through their biological clocks, organisms on this rotating planet can coordinate physiological processes according to the time of the day. However, the prevalence of circadian rhythm disorders has increased in modern society with the growing number of shift workers, elevating the risk of various diseases. In this study, we employed a mouse model to investigate the effects of urinary rhythm disturbances resulting from dietary changes commonly experienced by night shift workers. METHODS We established 3 groups based on feeding time and the use of restricted feeding: ad libitum, daytime, and early nighttime feeding. We then examined the urinary rhythm in each group. In addition to the bladder rhythm, we investigated changes in mRNA patterns within the tissues constituting the bladder. Additionally, we assessed the urination rhythm in Per1 and Per2 double-knockout mice and evaluated whether the injection of antioxidants modified the impact of mealtime shift on urination rhythm in wild-type mice. RESULTS Our study revealed that a shift in mealtime significantly impacted the circadian patterns of water intake and urinary excretion. In Per2::Luc knock-in mouse bladders cultured ex vivo, this shift increased the amplitude of Per2 oscillation and delayed its acrophases by several hours. Daily supplementation with antioxidants did not influence the mealtime shift-induced changes in circadian patterns of water intake and urinary excretion, nor did it affect the modified Per2 oscillation patterns in the cultured bladder. However, in aged mice, antioxidants partially restored the urinary rhythm. CONCLUSION A shift in mealtime meaningfully impacted the urination rhythm in mice, regardless of the presence of circadian clock genes.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
| | - Jun-Ho Nang
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon Univesity School of Medicine, Incheon, Korea
| | - Khae Hawn Kim
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| |
Collapse
|
5
|
Li T, Jiang Y, Bai Y, Jiang K, Du G, Chen P, Luo C, Li L, Qiao J, Shen J. A review for the impacts of circadian disturbance on urological cancers. Sleep Biol Rhythms 2024; 22:163-180. [PMID: 38524168 PMCID: PMC10959858 DOI: 10.1007/s41105-023-00500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/18/2023] [Indexed: 03/26/2024]
Abstract
Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guangshi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Luo
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Li
- Gastrointestinal Surgery Center, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun Shen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Li T, Jiang YT, Qi XZ, Chen P, Zhang JH, Luo F, Qiao J, Gu J, Du GS, Wang Q. Circadian disturbance induces erectile dysfunction by impairing endothelial function. Asian J Androl 2024; 26:205-211. [PMID: 38048170 PMCID: PMC10919418 DOI: 10.4103/aja202345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
In order to explore the impact of circadian disturbance on erectile function, we randomly divided 24 adult male rats into groups of control (light on at 8:00 a.m. and off at 8:00 p.m.), dark/dark (DD; constant dark), light/light (LL; constant light), and shift dark/light (DL; light off at 8:00 a.m. and on at 8:00 p.m.). Four weeks later, erectile function was measured and corpora cavernosa were harvested for analysis. The maximum intracavernous pressure (mICP) and mICP/mean arterial pressure (MAP) ratio in the DD, LL, and DL groups were significantly lower than that in the control group. The LL and DL groups showed significantly attenuated endothelial nitric oxide synthase (eNOS), while DD, LL, and DL showed reduced neuronal nitric oxide synthase (nNOS) at both mRNA and protein levels. The production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) was inhibited by altered light/dark cycles to varying degrees. Circadian disturbance impaired endothelial function and contributed to erectile dysfunction. For the core circadian elements, mRNA expression of circadian locomotor output cycles kaput ( Clock ) and brain/muscle aryl-hydrocarbon receptor nuclear translocator-like protein 1 ( Bmal1 ) was elevated in the DL group, but their protein expression was not significantly changed. DD, LL, and DL increased period 1 ( Per1 ) and Per3 levels, while LL and DL increased PER1 levels. No significant difference was found for Per2 levels, and PER2 and PER3 concentrations were not significantly changed. Moreover, LL and DL significantly increased cryptochrome-1 (CRY1) and CRY2 at both mRNA and protein levels. The altered light/dark rat model showed that circadian disturbance contributed to erectile dysfunction probably by impairing endothelial function. Meanwhile, the core circadian elements were detected in the corpora cavernosa, but these were disrupted. However, which circadian element regulates erectile function and how it works need further analysis.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yi-Ting Jiang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Xin-Zhu Qi
- Guizhou Institute for Food and Drug Control, Guiyang 550004, China
| | - Peng Chen
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jun-Hao Zhang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Fu Luo
- Department of Reproductive Center, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Jun Qiao
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guang-Shi Du
- Translational Medicine Research Center of Guizhou Medical University, Guiyang 550025, China
| | - Qiang Wang
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
7
|
Kim ES, Eun SJ, Kim KH. Artificial Intelligence-Based Patient Monitoring System for Medical Support. Int Neurourol J 2023; 27:280-286. [PMID: 38171328 PMCID: PMC10762372 DOI: 10.5213/inj.2346338.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE In this paper, we present the development of a monitoring system designed to aid in the management and prevention of conditions related to urination. The system features an artificial intelligence (AI)-based recognition technology that automatically records a user's urination activity. Additionally, we developed a technology that analyzes movements to prevent neurogenic bladder. METHODS Our approach included the creation of AI-based recognition technology that automatically logs users' urination activities, as well as the development of technology that analyzes movements to prevent neurogenic bladder. Initially, we employed a recurrent neural network model for the urination activity recognition technology. For predicting the risk of neurogenic bladder, we utilized convolutional neural network (CNN)-based AI technology. RESULTS The performance of the proposed system was evaluated using a study population of 30 patients with urinary tract dysfunction, who collected data over a 60-day period. The results demonstrated an average accuracy of 94.2% in recognizing urinary tract activity, thereby confirming the effectiveness of the recognition technology. Furthermore, the motion analysis technology for preventing neurogenic bladder, which also employed CNN-based AI, showed promising results with an average accuracy of 83%. CONCLUSION In this study, we developed a urination disease monitoring system aimed at predicting and managing risks for patients with urination issues. The system is designed to support the entire care cycle of a patient by leveraging AI technology that processes various image and signal data. We anticipate that this system will evolve into digital treatment products, ultimately providing therapeutic benefits to patients.
Collapse
Affiliation(s)
- Eui-Sun Kim
- Department of Media, Soongsil University, Seoul, Korea
| | - Sung-Jong Eun
- Digital Health Industry Team, National IT Industry Promotion Agency, Jincheon, Korea
| | - Khae-Hawn Kim
- Department of Media, Soongsil University, Seoul, Korea
| |
Collapse
|
8
|
Koyama T, Rana DW, Halberg KV. Managing fuels and fluids: Network integration of osmoregulatory and metabolic hormonal circuits in the polymodal control of homeostasis in insects. Bioessays 2023; 45:e2300011. [PMID: 37327252 DOI: 10.1002/bies.202300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Danial Wasim Rana
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
10
|
Berry MH, Moldavan M, Garrett T, Meadows M, Cravetchi O, White E, Leffler J, von Gersdorff H, Wright KM, Allen CN, Sivyer B. A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nat Commun 2023; 14:1492. [PMID: 36932080 PMCID: PMC10023714 DOI: 10.1038/s41467-023-36955-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tavita Garrett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
| | - Marc Meadows
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Henrique von Gersdorff
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
12
|
Chihara I, Negoro H, Kono J, Nagumo Y, Tsuchiya H, Kojo K, Shiga M, Tanaka K, Kandori S, Mathis BJ, Nishiyama H. Glucocorticoids coordinate the bladder peripheral clock and diurnal micturition pattern in mice. Commun Biol 2023; 6:81. [PMID: 36681730 PMCID: PMC9867708 DOI: 10.1038/s42003-023-04464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Peripheral clocks function to regulate each organ and are synchronized though various molecular and behavioral signals. However, signals that entrain the bladder clock remain elusive. Here, we show that glucocorticoids are a key cue for the bladder clock in vitro and in vivo. A pBmal1-dLuc human urothelial cell-line showed significant shifts in gene expression after cortisol treatment. In vivo, rhythmic bladder clock gene expression was unchanged by bilateral adrenalectomy but shifted 4 h forward by corticosterone administration at the inactive phase. Moreover, the bladder clock shifted 8-12 h in mice that underwent both bilateral adrenalectomy and corticosterone administration at the inactive phase. These mice showed decreases in the diurnal rhythm of volume voided per micturition, while maintaining diurnal activity rhythms. These results indicate that the diurnal rhythm of glucocorticoid signaling is a zeitgeber that overcomes other bladder clock entrainment factors and coordinates the diurnal rhythm of volume voided per micturition.
Collapse
Affiliation(s)
- Ichiro Chihara
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruki Tsuchiya
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kosuke Kojo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ken Tanaka
- Department of Urology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Garbarino S, Garbarino E, Lanteri P. Cyrcadian Rhythm, Mood, and Temporal Patterns of Eating Chocolate: A Scoping Review of Physiology, Findings, and Future Directions. Nutrients 2022; 14:3113. [PMID: 35956290 PMCID: PMC9370573 DOI: 10.3390/nu14153113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
This paper discusses the effect of chrononutrition on the regulation of circadian rhythms; in particular, that of chocolate on the resynchronization of the human internal biological central and peripheral clocks with the main external synchronizers, light-dark cycle and nutrition-fasting cycle. The desynchronization of internal clocks with external synchronizers, which is so frequent in our modern society due to the tight rhythms imposed by work, social life, and technology, has a negative impact on our psycho-physical performance, well-being, and health. Taking small amounts of chocolate, in the morning at breakfast at the onset of the active phase, helps speed up resynchronization time. The high flavonoid contents in chocolate promote cardioprotection, metabolic regulation, neuroprotection, and neuromodulation with direct actions on brain function, neurogenesis, angiogenesis, and mood. Although the mechanisms of action of chocolate compounds on brain function and mood as well as on the regulation of circadian rhythms have yet to be fully understood, data from the literature currently available seem to agree in suggesting that chocolate intake, in compliance with chrononutrition, could be a strategy to reduce the negative effects of desynchronization. This strategy appears to be easily implemented in different age groups to improve work ability and daily life.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | | | - Paola Lanteri
- Neurophysiopathology Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
14
|
Li X, Hu J, Zhao X, Li J, Chen Y. Piezo channels in the urinary system. Exp Mol Med 2022; 54:697-710. [PMID: 35701561 PMCID: PMC9256749 DOI: 10.1038/s12276-022-00777-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.
Collapse
Affiliation(s)
- Xu Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Junwei Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xuedan Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Juanjuan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
15
|
Park J, Kim J, Yun Y, Han D, Kim K, Hong J, Cho S. Daily injection of melatonin inhibits insulin resistance induced by chronic mealtime shift. Physiol Rep 2022; 10:e15227. [PMID: 35343087 PMCID: PMC8958345 DOI: 10.14814/phy2.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023] Open
Abstract
Shift work disorders have become an emerging concern worldwide. Shift disorders encompass a wide range of illnesses that have yet to be identified. The study focused on the relationship between shift work disorders and insulin resistance. Previously, it was reported that advancing the usual mealtime of mice triggered insulin resistance. Here, the hypothesis that chronic mealtime shifts induce oxidative damage leading to chronic diseases such as type 2 diabetes was tested. It was found that mealtime shift causes imbalances between anti-oxidative capacity and reactive oxygen species (ROS) levels, indicating increased oxidative damage during the light/rest phase. This study further demonstrated that daily supplementation of antioxidants at the appropriate time of day inhibited insulin resistance caused by chronic mealtime shifts, suggesting significant and chronic health implications for shift workers. In conclusion, it was confirmed that increased ROS levels caused by mealtime shift induce insulin resistance, which is inhibited by the antioxidant melatonin.
Collapse
Affiliation(s)
- Jihyun Park
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Jichul Kim
- Department of Life & Nanopharmaceutical ScienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Yejin Yun
- Department of Biomedical ScienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Dong‐Hee Han
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
- Present address:
Ildong Pharmaceutical Co. LtdSeocho‐guSeoulRepublic of Korea
| | - Kyungjin Kim
- Department of Brain ScienceDGISTDaeguSouth Korea
| | - Jongki Hong
- College of PharmacyKyung Hee UniversitySeoulSouth Korea
| | - Sehyung Cho
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
- Department of PhysiologyKyung Hee University School of MedicineSeoulSouth Korea
| |
Collapse
|
16
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Gu J, Sun F. The potential impacts of circadian rhythm disturbances on male fertility. Front Endocrinol (Lausanne) 2022; 13:1001316. [PMID: 36277693 PMCID: PMC9582279 DOI: 10.3389/fendo.2022.1001316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
A circadian rhythm is an internalized timing system that synchronizes the cellular, behavioral, and physiological processes of organisms to the Earth's rotation. Because all physiological activities occur at a specific time, circadian rhythm disturbances can lead to various pathological disorders and diseases. Growing evidence has shown that the circadian clock is tightly connected to male fertility, and circadian perturbations contribute to infertility. The night shiftwork, insufficient sleep, and poor sleep quality are common causes of circadian disturbances, and many studies have reported that they impair sperm quality and increase the risk of male infertility. However, research on the impacts of light, body temperature, and circadian/circannual rhythms is relatively lacking, although some correlations have been demonstrated. Moreover, as the index of sperm quality was diverse and study designs were non-uniform, the conclusions were temporarily inconsistent and underlying mechanisms remain unclear. A better understanding of whether and how circadian disturbances regulate male fertility will be meaningful, as more scientific work schedules and rational lifestyles might help improve infertility.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| | - Fa Sun
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| |
Collapse
|
17
|
Physiological rhythms are influenced by photophase wavelength in a nocturnal and a diurnal rodent species from South Africa. Physiol Behav 2021; 240:113551. [PMID: 34375624 DOI: 10.1016/j.physbeh.2021.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
The quality and quantity of light changes significantly over the course of the day. The effect of light intensity on physiological and behavioural responses of animals has been well documented, particularly during the scotophase, but the effect of the wavelength of light, particularly during the photophase, less so. We assessed the daily responses in urine production, urinary 6-sulfatoxymelatonin (6-SMT) and glucocorticoid metabolite (uGCM) concentrations in the nocturnal Namaqua rock mouse (Micaelamys namaquensis) and diurnal four striped field mouse (Rhabdomys pumilio) under varying wavelengths of near monochromatic photophase (daytime) lighting. Animals were exposed to a short-wavelength light cycle (SWLC; ∼465-470 nm), a medium-wavelength light cycle (MWLC; ∼515-520 nm) and a long-wavelength light cycle (LWLC; ∼625-630 nm). The SWLC significantly attenuated mean daily urine production rates and the mean daily levels of urinary 6-SMT and of uGCM were inversely correlated with wavelength in both species. The presence of the SWLC greatly augmented overall daily 6-SMT levels, and simultaneously led to the highest uGCM concentrations in both species. In M. namaquensis, the urine production rate and urinary 6-SMT concentrations were significantly higher during the scotophase compared to the photophase under the SWLC and MWLC, whereas the uGCM concentrations were significantly higher during the scotophase under all WLCs. In R. pumilio, the urine production rate and uGCM were significantly higher during the scotophase of the SWLC, not the MWLC and LWLC. Our results illustrate that wavelength in the photophase plays a central role in the entrainment of rhythms in diurnal and nocturnal African rodent species.
Collapse
|
18
|
Gene expression profiles during tissue remodeling following bladder outlet obstruction. Sci Rep 2021; 11:13171. [PMID: 34162983 PMCID: PMC8222387 DOI: 10.1038/s41598-021-92756-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Bladder outlet obstruction (BOO) often results in lower urinary tract symptoms (LUTSs) and negatively affects quality of life. Here, we evaluated gene expression patterns in the urinary bladder during tissue remodeling due to BOO. We divided BOO model rats into two groups according to the degree of hypertrophy of smooth muscle in the bladder. The strong muscular hypertrophy group, which exhibited markedly increased bladder smooth muscle proportion and HIF1α mRNA levels compared with the control group, was considered a model for the termination of hypertrophy, whereas the mild muscular hypertrophy group was considered a model of the initiation of hypertrophy. Some genes related to urinary function showed different expression patterns between the two groups. Furthermore, we found that several genes, including D-box binding PAR bZIP transcription factor (DBP), were upregulated only in the mild muscular hypertrophy group. DBP expression levels were increased in bladder smooth muscle cells in response to hypoxic stress. DBP associated with enhancer and promoter regions of NOS3 gene locus and upregulated NOS3 gene expression under hypoxic conditions. These findings suggested that the regulatory systems of gene expression were altered during tissue remodeling following BOO. Furthermore, circadian clock components might be involved in control of urinary function via transcriptional gene regulation in response to hypoxic stimuli.
Collapse
|
19
|
Keung MS, Streijger F, Herrity A, Ethridge J, Dougherty SM, Aslan S, Webster M, Fisk S, Deegan EG, Tessier-Cloutier B, Chen KYN, Morrison C, Okon EB, Tigchelaar S, Manouchehri N, Kim KT, Shortt K, So K, Damaser MS, Sherwood LC, Howland DR, Boakye M, Hubscher C, Stothers L, Kavanagh A, Kwon BK. Characterization of Lower Urinary Tract Dysfunction after Thoracic Spinal Cord Injury in Yucatan Minipigs. J Neurotrauma 2021; 38:1306-1326. [PMID: 33499736 DOI: 10.1089/neu.2020.7404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI. An iterative process to develop the protocol to perform urodynamics in female Yucatan minipigs began with a group of spinally intact, anesthetized pigs. Subsequently, urodynamic studies were performed in a group of awake, lightly restrained pigs, before and after a contusion-compression SCI at the T2 or T9-T11 spinal cord level. Bladder tissue was obtained for histological analysis at the end of the study. All anesthetized pigs had bladders that were acontractile, which resulted in overflow incontinence once capacity was reached. Uninjured, conscious pigs demonstrated appropriate relaxation and contraction of the external urethral sphincter during the voiding phase. SCI pigs demonstrated neurogenic detrusor overactivity and a significantly elevated post-void residual volume. Relative to the control, SCI bladders were heavier and thicker. The developed urodynamics protocol allows for repetitive evaluation of lower urinary tract function in pigs at different time points post-SCI. This technique manifests the potential for using the pig as an intermediary, large animal model for translational studies in NLUTD.
Collapse
Affiliation(s)
- Martin S Keung
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Neuroscience, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - April Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jay Ethridge
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan M Dougherty
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Sevda Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Megan Webster
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily G Deegan
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Basile Tessier-Cloutier
- Pathology and Laboratory Medicine, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuan-Yin N Chen
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, School of Medicine, Kyungpook National University, National University Hospital, Daegu, South Korea
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot S Damaser
- Biomedical Engineering Department, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland U.S. Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Leslie C Sherwood
- Comparative Medicine Research Unit, and University of Louisville, Louisville, Kentucky, USA
| | - Dena R Howland
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA.,Research Service, Robley Rex U.S. Department of Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Max Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Charles Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Lynn Stothers
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Kavanagh
- Urologic Sciences, and Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Crnko S, Schutte H, Doevendans PA, Sluijter JPG, van Laake LW. Minimally Invasive Ways of Determining Circadian Rhythms in Humans. Physiology (Bethesda) 2021; 36:7-20. [DOI: 10.1152/physiol.00018.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythm exerts a critical role in mammalian health and disease. A malfunctioning circadian clock can be a consequence, as well as the cause of several pathophysiologies. Clinical therapies and research may also be influenced by the clock. Since the most suitable manner of revealing this rhythm in humans is not yet established, we discuss existing methods and seek to determine the most feasible ones.
Collapse
Affiliation(s)
- Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hilde Schutte
- Department of Cardiology, Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Central Military Hospital, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht and Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Circulatory Health Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
22
|
Tsuchiya Y, Umemura Y, Yagita K. Circadian clock and cancer: From a viewpoint of cellular differentiation. Int J Urol 2020; 27:518-524. [PMID: 32223039 DOI: 10.1111/iju.14231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
The circadian clock controls and adapts diverse physiological and behavioral processes according to Earth's 24-h cycle of environmental changes. The master pacemaker of the mammalian circadian clock resides in the hypothalamic suprachiasmatic nucleus, but almost all cells throughout the body show circadian oscillations in gene expression patterns and associated functions. Recent studies have shown that the circadian clock gradually develops during embryogenesis. Embryonic stem cells and induced pluripotent stem cells do not show circadian oscillations of gene expression, but gradually develop circadian clock oscillation during differentiation; thus, the developmental program of circadian clock emergence appears closely associated with cellular differentiation. Like embryonic stem cells, certain cancer cell types also lack the circadian clock. Given this similarity between embryonic stem cells and cancer cells, interest is growing in the contributions of circadian clock dysfunction to dedifferentiation and cancer development. In this review, we summarize recent advances in our understanding of circadian clock emergence during ontogenesis, and discuss possible associations with cellular differentiation and carcinogenesis. Considering the multiple physiological functions of circadian rhythms, circadian abnormalities might contribute to a host of diseases, including cancer. Insights on circadian function could lead to the identification of biomarkers for cancer diagnosis and prognosis, as well as novel targets for treatment.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Influence of Circadian Disruption Associated With Artificial Light at Night on Micturition Patterns in Shift Workers. Int Neurourol J 2019; 23:258-264. [PMID: 31905272 PMCID: PMC6944784 DOI: 10.5213/inj.1938236.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Shift workers often experience problems associated with circadian disruption associated with artificial light at night and nocturia is commonly noted in night-shift workers. Nocturia associated with circadian disruption is due to increased urine production of the kidney and decreased storage function of the bladder. A recent discovery of peripheral clock genes in the bladder and their role in contractile property of the bladder support that micturition is closely related to the circadian rhythm. Moreover, there are clinical studies showed that shift workers more often experienced nocturia due to circadian disruption. However, comparing with other health problems, concerns on nocturia and voiding dysfunction associated with circadian disruption are insufficient. Therefore, further studies about voiding dysfunction associated with the circadian disruption in shift workers are necessary.
Collapse
|
24
|
The effect of a multidisciplinary weight loss program on renal circadian rhythm in obese adolescents. Eur J Pediatr 2019; 178:1849-1858. [PMID: 31486897 DOI: 10.1007/s00431-019-03456-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Adolescent obesity is a serious health problem associated with many comorbidities. Obesity-related alterations in circadian rhythm have been described for nocturnal blood pressure and for metabolic functions. We believe renal circadian rhythm is also disrupted in obesity, though this has not yet been investigated. This study aimed to examine renal circadian rhythm in obese adolescents before and after weight loss.In 34 obese adolescents (median age 15.7 years) participating in a residential weight loss program, renal function profiles and blood samples were collected at baseline, after 7 months, and again after 12 months of therapy. The program consisted of dietary restriction, increased physical activity, and psychological support. The program led to a median weight loss of 24 kg and a reduction in blood pressure. Initially, lower diurnal free water clearance (- 1.08 (- 1.40-- 0.79) mL/min) was noticed compared with nocturnal values (0.75 (- 0.89-- 0.64) mL/min). After weight loss, normalization of this inverse rhythm was observed (day - 1.24 (- 1.44-1.05) mL/min and night - 0.98 (- 1.09-- 0.83) mL/min). A clear circadian rhythm in diuresis rate and in renal clearance of creatinine, solutes, sodium, and potassium was seen at all time points. Furthermore, we observed a significant increase in sodium clearance. Before weight loss, daytime sodium clearance was 0.72 mL/min (0.59-0.77) and nighttime clearance was 0.46 mL/min (0.41-0.51). After weight loss, daytime clearance increased to 0.99 mL/min (0.85-1.17) and nighttime clearance increased to 0.78 mL/min (0.64-0.93).Conclusion: In obese adolescents, lower diurnal free water clearance was observed compared with nocturnal values. Weight loss led to a normalization of this inverse rhythm, suggesting a recovery of the anti-diuretic hormone activity. Both before and after weight loss, clear circadian rhythm of diuresis rate and renal clearance of creatinine, solutes, sodium, and potassium was observed.What is Known:• Obesity-related alterations in circadian rhythm have been described for nocturnal blood pressure and for metabolic functions. We believe renal circadian rhythm is disrupted in obesity, though this has not been investigated yet.What is New:• In obese adolescents, an inverse circadian rhythm of free water clearance was observed, with higher nighttime free water clearance compared with daytime values. Weight loss led to a normalization of this inverse rhythm, suggesting a recovery of the anti-diuretic hormone activity.• Circadian rhythm in diuresis rate and in the renal clearance of creatinine, solutes, sodium, and potassium was preserved in obese adolescents and did not change after weight loss.
Collapse
|
25
|
Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity - implications for mechanistic pharmacokinetics modeling. Sci Rep 2019; 9:10505. [PMID: 31324853 PMCID: PMC6642159 DOI: 10.1038/s41598-019-46977-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
P-glycoprotein (P-gp) largely influences the pharmacokinetics (PK) and toxicities of xenobiotics in a patient-specific manner so that personalized drug scheduling may lead to significant patient's benefit. This systems pharmacology study investigated P-gp activity in mice according to organ, sex, feeding status, and circadian time. Sex-specific circadian changes were found in P-gp ileum mRNA and protein levels, circadian amplitudes being larger in females as compared to males. Plasma, ileum and liver concentrations of talinolol, a pure P-gp substrate, significantly differed according to sex, feeding and circadian timing. A physiologically-based PK model was designed to recapitulate these datasets. Estimated mesors (rhythm-adjusted mean) of ileum and hepatic P-gp activity were higher in males as compared to females. Circadian amplitudes were consistently higher in females and circadian maxima varied by up to 10 h with respect to sex. Fasting increased P-gp activity mesor and dampened its rhythm. Ex-vivo bioluminescence recordings of ileum mucosae from transgenic mice revealed endogenous circadian rhythms of P-gp protein expression with a shorter period, larger amplitude, and phase delay in females as compared to males. Importantly, this study provided model structure and parameter estimates to refine PK models of any P-gp substrate to account for sex, feeding and circadian rhythms.
Collapse
|
26
|
Mangwe M, Bryant R, Beck M, Beale N, Bunt C, Gregorini P. Forage herbs as an alternative to ryegrass-white clover to alter urination patterns in grazing dairy systems. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Khalid M, Khan S, Ahmad J, Shaheryar M. Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data. IET Syst Biol 2019; 13:55-68. [PMID: 33444479 PMCID: PMC8687352 DOI: 10.1049/iet-syb.2018.5001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.
Collapse
Affiliation(s)
- Mehrosh Khalid
- School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
| | - Sharifullah Khan
- School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
| | - Jamil Ahmad
- Research Centre for Modelling and SimulationNational University of Sciences and TechnologyIslamabadPakistan
| | - Muhammad Shaheryar
- Department of Computer ScienceCapital University of Science and TechnologyIslamabadPakistan
| |
Collapse
|
28
|
Akhavizadegan H, Locke JA, Stothers L, Kavanagh A. A comprehensive review of adult enuresis. Can Urol Assoc J 2018; 13:282-287. [PMID: 30273117 DOI: 10.5489/cuaj.5485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nocturnal enuresis (NE) is a combined symptom of nocturia and urinary incontinence. In this review, we aim to summarize the current literature on NE in terms of its definition, diagnosis, and management. Recommended diagnostic evaluation of NE includes a focused history and physical examination, urinalysis, and when indicated, ultrasound examination, flow rate, urine volume chart, urodynamics, and cystoscopy. Therapeutic options include lifestyle modification and medications (i.e., desmopressin and anticholinergics).
Collapse
Affiliation(s)
- Hamed Akhavizadegan
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada.,Urology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Jennifer A Locke
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lynn Stothers
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada.,Principal Investigator, International Collaboration On Repair Discovery (ICORD), Peter Wall Institute for Advanced Studies Scholar, University of British Columbia, Vancouver, BC, Canada
| | - Alex Kavanagh
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Personalized Urination Activity Recognition Based on a Recurrent Neural Network Using Smart Band. Int Neurourol J 2018; 22:S91-100. [PMID: 30068071 PMCID: PMC6077936 DOI: 10.5213/inj.1836168.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
Purpose Though it is very important obtaining exact data about patients’ voiding patterns for managing voiding dysfunction, actual practice is very difficult and cumbersome. In this study, data about urination time and interval measured by smart band device on patients’ wrist were collected and analyzed to resolve the clinical arguments about the efficacy of voiding diary. By developing a smart band based algorithm for recognition of complex and serial pattern of motion, this study aimed to explore the feasibility of measurement the urination time and intervals for voiding dysfunction management. Methods We designed a device capable of recognizing urination time and intervals based on specific postures of the patient and consistent changes in posture. These motion data were obtained by a smart band worn on the wrist. An algorithm that recognizes the repetitive and common 3-step behavior for urination (forward movement, urination, backward movement) was devised based on the movement and tilt angle data collected from a 3-axis accelerometer. The sequence of body movements during voiding has consistent temporal characteristics, so we used a recurrent neural network and long short-term memory based framework to analyze the sequential data and to recognize urination time. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the value of the signals was calculated and then compared with the set analysis model to calculate the time of urination. A comparative study was conducted between real voiding and device-detected voiding to assess the performance of the proposed recognition technology. Results The accuracy of the algorithm was calculated based on clinical guidelines established by urologists. The accuracy of this detecting device was high (up to 94.2%), proving the robustness of the proposed algorithm. Conclusions This urination behavior recognition technology showed high accuracy and could be applied in clinical settings to characterize patients’ voiding patterns. As wearable devices are developed and generalized, algorithms detecting consistent sequential body movement patterns reflecting specific physiologic behavior might be a new methodology for studying human physiologic behavior.
Collapse
|
30
|
Kovalčíková A, Gyurászová M, Gardlík R, Boriš M, Celec P, Tóthová Ľ. The effects of sucrose on urine collection in metabolic cages. Lab Anim 2018; 53:180-189. [PMID: 30045671 DOI: 10.1177/0023677218781674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Representative urine collection that respects the standards of animal welfare is still an issue in experimental nephrology. The commonly used metabolic cages induce stress in rodents. In mice, the volume of collected urine is sometimes insufficient for further analysis. The aim of this experiment was to analyse the effects of time of day, temperature and 2%, 5% or 10% sucrose solutions on diuresis, weight change and liquid intake of adult mice placed in metabolic cages for urine collection. Mice were placed in metabolic cages for 12 h during the day or night at standard ambient (22℃) and thermoneutral (28℃) temperatures. To determine the effect of acclimatisation, mice were placed in metabolic cages for five consecutive days. Diuresis increased with concentrations of sucrose. Body weight reduction was most rapid in the group given tap water and decreased with increasing sucrose concentrations. A drastic drop in body weight was observed in mice placed in metabolic cages for four consecutive days with access to tap water and food, indicating that time spent in metabolic cages should be kept to a minimum, as prolonged confinement in metabolic cages can be harmful to mice. The administration of concentrated sucrose solutions can potentially aid in mouse urine collection by reducing the time spent in metabolic cages. Sucrose supplementation increased the albumin/creatinine ratio. However, without showing estimates of glomerular filtration rate, renal haemodynamics, plasma electrolytes and urinary electrolyte excretions, the results of this study do not provide any conclusion about the effect of sucrose on renal function.
Collapse
Affiliation(s)
- Alexandra Kovalčíková
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marianna Gyurászová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlík
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Boriš
- 3 Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Celec
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,2 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,4 Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Tóthová
- 1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,5 Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
31
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
32
|
Branche BL, Howard LE, Moreira DM, Roehrborn C, Castro-Santamaria R, Andriole GL, Hopp ML, Freedland SJ. Sleep Problems are Associated with Development and Progression of Lower Urinary Tract Symptoms: Results from REDUCE. J Urol 2017; 199:536-542. [PMID: 28870861 DOI: 10.1016/j.juro.2017.08.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE Although lower urinary tract symptoms and sleep problems often develop together, to our knowledge it is unknown whether sleep disturbances are linked to lower urinary tract symptoms development and progression. As measured by the 6-item MOS-Sleep (Medical Outcomes Study Sleep Scale) survey we examined the relationship between sleep problems, and the development and progression of lower urinary tract symptoms in the REDUCE (Reduction by Dutasteride of Prostate Cancer Events) study. MATERIALS AND METHODS REDUCE was a randomized trial testing prostate cancer chemoprevention with dutasteride in men with prostate specific antigen 2.5 to 10 ng/ml and a negative biopsy. At baseline men completed MOS-Sleep and a scaled average was used to calculate the sleep score. Men were followed for 4 years and I-PSS (International Prostate Symptom Score) was completed at baseline and every 6 months. Asymptomatic men had I-PSS less than 8 while symptomatic men had I-PSS 8 or greater. In the placebo arm of 2,588 men not receiving α-blockers or 5α-reductase inhibitors at baseline we tested the association between sleep problems and lower urinary tract symptom development and progression using Cox models. RESULTS During followup lower urinary tract symptoms developed in 209 of 1,452 asymptomatic men (14%) and 580 of 1,136 (51%) with lower urinary tract symptoms demonstrated progression. On multivariable analysis higher sleep scores were suggestively associated with increased lower urinary tract symptoms in asymptomatic men (quartile 4 vs 1 HR 1.41, 95% CI 0.92-2.17, p = 0.12) and with lower urinary tract symptom progression in symptomatic men (per 10 points of sleep score HR 1.06, 95% CI 1.01-1.12, p = 0.029). CONCLUSIONS Among men with lower urinary tract symptoms worse sleep scores were associated with the progression of lower urinary tract symptoms and among asymptomatic men worse sleep scores were suggestively associated with the development of lower urinary tract symptoms. If confirmed, these data suggest that sleep problems may precede such symptoms. Whether treating sleep problems would improve lower urinary tract symptoms requires further testing.
Collapse
Affiliation(s)
- Brandee L Branche
- Surgery Section, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Lauren E Howard
- Surgery Section, Durham Veterans Affairs Medical Center, Durham, North Carolina; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | | | - Claus Roehrborn
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ramiro Castro-Santamaria
- Metabolic Pathways and Cardiovascular R&D Unit, GlaxoSmithKline, Inc., King of Prussia, Pennsylvania
| | - Gerald L Andriole
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Martin L Hopp
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Freedland
- Surgery Section, Durham Veterans Affairs Medical Center, Durham, North Carolina; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
33
|
Lazzerini Ospri L, Prusky G, Hattar S. Mood, the Circadian System, and Melanopsin Retinal Ganglion Cells. Annu Rev Neurosci 2017; 40:539-556. [PMID: 28525301 DOI: 10.1146/annurev-neuro-072116-031324] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of a third type of photoreceptors in the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs), has had a revolutionary impact on chronobiology. We can now properly account for numerous non-vision-related functions of light, including its effect on the circadian system. Here, we give an overview of ipRGCs and their function as it relates specifically to mood and biological rhythms. Although circadian disruptions have been traditionally hypothesized to be the mediators of light's effects on mood, here we present an alternative model that dispenses with assumptions of causality between the two phenomena and explains mood regulation by light via another ipRGC-dependent mechanism.
Collapse
Affiliation(s)
- Lorenzo Lazzerini Ospri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Glen Prusky
- Department of Physiology and Biophysics, Cornell University, Ithaca, New York 10065
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
34
|
Development of Personalized Urination Recognition Technology Using Smart Bands. Int Neurourol J 2017; 21:S76-83. [PMID: 28446018 PMCID: PMC5426425 DOI: 10.5213/inj.1734886.443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/17/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. Methods This study aimed to develop an algorithm that recognizes urination based on a patient’s posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement) was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. Results An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. Conclusions The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.
Collapse
|
35
|
van der Merwe I, Oosthuizen MK, Ganswindt A, Haim A, Bennett NC. Effects of photophase illuminance on locomotor activity, urine production and urinary 6-sulfatoxymelatonin in nocturnal and diurnal South African rodents. ACTA ACUST UNITED AC 2017; 220:1684-1692. [PMID: 28209805 DOI: 10.1242/jeb.146951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 02/14/2017] [Indexed: 11/20/2022]
Abstract
Effects of photophase illuminance (1, 10, 100 and 330 lx of white incandescent lighting) on daily rhythms of locomotor activity, urine production and 6-sulfatoxymelatonin (6-SMT; 10 versus 330 lx) were studied in nocturnal Namaqua rock mice (Micaelamys namaquensis) and diurnal four-striped field mice (Rhabdomys pumilio). Micaelamys namaquensis was consistently nocturnal (∼90-94% nocturnal activity), whereas considerable individual variation marked activity profiles in R. pumilio, but with activity mostly pronounced around twilight (∼55-66% diurnal activity). The amplitude of daily activity was distinctly affected by light intensity and this effect was greater in M. namaquensis than in R. pumilio Only M. namaquensis displayed a distinctive daily rhythm of urine production, which correlated with its activity rhythm. Mean daily urine production appeared to be attenuated under dim photophase conditions, particularly in R. pumilio The results suggest that the circadian regulation of locomotor activity and urine production possesses separate sensitivity thresholds to photophase illuminance. Micaelamys namaquensis expressed a significant daily 6-SMT rhythm that peaked during the late night, but the rhythm was attenuated by the brighter photophase cycle (330 lx). Rhabdomys pumilio appeared to express an ultradian 6-SMT rhythm under both lighting regimes with comparable mean daily 6-SMT values, but with different temporal patterns. It is widely known that a natural dark phase which is undisturbed by artificial light is essential for optimal circadian function. Here, we show that light intensity during the photophase also plays a key role in maintaining circadian rhythms in rodents, irrespective of their temporal activity rhythm.
Collapse
Affiliation(s)
- Ingrid van der Merwe
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Maria K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Andre Ganswindt
- Endocrine Research Laboratory, Department of Anatomy and Physiology, Ondesterpoort, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Abraham Haim
- Israeli Center for Interdisciplinary Studies in Chronobiology, University of Haifa, Haifa 31905, Israel
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
36
|
Collins DE, Mulka KR, Hoenerhoff MJ, Taichman RS, Villano JS. Clinical Assessment of Urinary Tract Damage during Sustained-Release Estrogen Supplementation in Mice. Comp Med 2017; 67:11-21. [PMID: 28222835 PMCID: PMC5310620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Estrogen supplementation is a key component of numerous mouse research models but can adversely affect the urinary system. The goal of this study was to develop a clinical scoring system and identify biomarkers of occult urinary tract lesions prior to the development of systemic illness in mice. Ovariectomized or sham-surgery SCID mice were implanted subcutaneously with a placebo pellet or one containing sustained-release estradiol (0.18 mg 60-d release 17β-estradiol). Mice were assessed twice weekly for 4 to 6 wk by using a clinical scoring system that included body condition, general activity, posture, hair coat, hydration, abdominal distension, urine staining of coat and skin, and ability to urinate. Samples were collected weekly for urinalysis, BUN, creatinine, and serum estradiol levels. Terminal samples were analyzed for histopathologic lesions. Compared with placebo controls, estradiolsupplemented mice had higher serum estradiol levels at weeks 2 and 3; significant differences in total clinical scores by the 3-wk time point; and in body condition, general activity, posture, hair coat, and urine staining scores by the 6-wk terminal time point. Urinary tract lesions included hydronephrosis, pyelonephritis, cystitis, and urolithiasis. All mice with urolithiasis had crystalluria, and 5 of the 6 mice with pyelonephritis or hydroureter had dilute urine (that is, specific gravity less than 1.030). However, these findings were not specific to mice with lesions. A total clinical score of 3.5 (maximum, 24) identified estradiol-supplemented mice with 83% specificity and 50% sensitivity, but no single clinical parameter, biomarker, or the total clinical score accurately predicted occult urinary tract lesions. Considering the lesions we observed, prudence is warranted when using pelleted sustained-release estradiol in mice, and important parameters to monitor for animal health include urine staining, body condition score, urine sediment, and urine specific gravity.
Collapse
Affiliation(s)
- Dalis E Collins
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, Michigan, Center for Comparative Medicine, Baylor College of Medicine, Houston Texas
| | - Kathleen R Mulka
- College of Veterinary Medicine, Michigan State University, Lansing, Michigan
| | - Mark J Hoenerhoff
- In Vivo Animal Core (IVAC), University of Michigan, Ann Arbor, Michigan
| | | | - Jason S Villano
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, Michigan;,
| |
Collapse
|
37
|
Kim JW, Moon YT, Kim KD. Nocturia: The circadian voiding disorder. Investig Clin Urol 2016; 57:165-73. [PMID: 27195315 PMCID: PMC4869573 DOI: 10.4111/icu.2016.57.3.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology.
Collapse
Affiliation(s)
- Jin Wook Kim
- Department of Urology, Chung-Ang University, Seoul, Korea
| | - Young Tae Moon
- Department of Urology, Chung-Ang University, Seoul, Korea
| | - Kyung Do Kim
- Department of Urology, Chung-Ang University, Seoul, Korea
| |
Collapse
|
38
|
Iizuka D, Yoshioka S, Kawai H, Okazaki E, Kiriyama K, Izumi S, Nishimura M, Shimada Y, Kamiya K, Suzuki F. Hepcidin-2 in mouse urine as a candidate radiation-responsive molecule. JOURNAL OF RADIATION RESEARCH 2016; 57:142-9. [PMID: 26826199 PMCID: PMC4795955 DOI: 10.1093/jrr/rrv098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 11/06/2015] [Indexed: 05/24/2023]
Abstract
We used high-performance liquid chromatography to separate urine obtained from whole-body gamma-irradiated mice (4 Gy) before analyzing each fraction with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry to identify radiation-responsive molecules. We identified two candidates: hepcidin antimicrobial peptide 2 (hepcidin-2) and peptide fragments of kidney androgen-regulated protein (KAP). We observed that peak increases of hepcidin-2 in urine were delayed in a dose-dependent manner (1 Gy and above); however, the amount of KAP peptide fragments showed no correlation with radiation dose. In addition, an increase in hepcidin-2 after exposure to relatively low radiation doses (0.25 and 0.5 Gy, respectively) was biphasic (at 8-48 h and 120-168 h, respectively, after irradiation). The increase in hepcidin-2 paralleled an increase in hepcidin-2 gene (Hamp2) mRNA levels in the liver. These results suggest that radiation exposure directly or indirectly induces urinary excretion of hepcidin-2 at least in part by the upregulation of Hamp2 mRNA in the liver.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Susumu Yoshioka
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Hidehiko Kawai
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Emi Okazaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Keita Kiriyama
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8511, Japan
| | - Mayumi Nishimura
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Fumio Suzuki
- Department of International Radiation Emergency Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
39
|
Shafiee MA, Logan AG, Halperin ML. How Protective Mechanisms Interact to Prevent Overnight Calcium Phosphate Precipitation - An Observational Study to Determine Factors Against Calcium Phosphate Lithogenesis in a Healthy Cohort. Nephron Clin Pract 2016; 132:238-43. [PMID: 26890695 DOI: 10.1159/000443993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/26/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS As restful, non-interrupted sleep is essential for normal mental and physical functioning, the urine flow rate (UFR) overnight remains low. Due to this reduced UFR, the kidneys produce a lower urine volume, which may lead to supersaturation of lithogens in the renal collecting system. The protective mechanisms that prevent the rise in the concentration of the lithogenic substances in urine, such as calcium phosphate, are explored. METHODS Urine samples were collected from 26 subjects every 2-3 h during daylight with one nocturnal collection; the UFR was calculated in the median time for each collection period. Urinary constituents for calcium phosphate precipitation including electrolytes, calcium, phosphate, citrate, and pH were measured. Comparisons within individuals were done by paired t test. RESULTS The calcium excretion rate fell significantly overnight (from 2.4 ± 0.2 µmol/min during the daytime to 1.5 ± 0.3 µmol/min, p < 0.05), in parallel with sodium excretion (54 ± 16 µmol/min from its daytime 127 ± 12 µmol/min, p < 0.05), preventing nocturnal calcium concentration from increasing (3.0 ± 0.3 mmol/l daytime to 2.5 ± 0.5 mmol/l overnight), while citrate concentration did not change significantly. The total urine phosphate concentration rose significantly overnight (daytime 18.7 ± 1.4 µmol/min vs. nocturnal 20.9 ± 1.7 µmol/min), but the concentration of divalent phosphate did not increase in the overnight period. CONCLUSIONS Although the UFR was lower overnight, there was no evidence that the risk of calcium phosphate precipitate formation in healthy subjects was increased.
Collapse
Affiliation(s)
- Mohammad A Shafiee
- Division of General Internal Medicine, Department of Medicine, Toronto General Hospital, Toronto, Ont., Canada
| | | | | |
Collapse
|
40
|
Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis. J Urol 2016; 195:162-7. [DOI: 10.1016/j.juro.2015.07.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/18/2022]
|
41
|
Do rotational shifts affect micturition patterns in real practice? A pilot study in healthy, young female nurses. Int Neurourol J 2015; 18:206-12. [PMID: 25558418 PMCID: PMC4280440 DOI: 10.5213/inj.2014.18.4.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/12/2014] [Indexed: 12/26/2022] Open
Abstract
Purpose Healthy, young individuals are known to exhibit circadian variation in urinary functions. However, the effects of chronic circadian disturbance on voiding functions are largely unknown. The present work compared the effects of rotational shifts on the micturition patterns of female nurses to that in female nurses with routine daytime shifts. Methods A total of 19 nurses without lower urinary tract symptoms who worked rotational shifts for an average duration of 2 years were recruited. A voiding diary was kept for 9 consecutive days, and the overactive bladder symptom score (OABSS) questionnaire was completed three times, starting 3 days before their night duties until 3 days after completion of their night duties. For comparison, seven nurses with regular shifts completed a 3-day voiding diary and the OABSS questionnaire. Results Female nurses working rotational shifts had lower overall urine production and had decreased urination frequency and nocturia than female nurses working regular shifts, even when the nurses who worked rotational shifts had a regular night's sleep for at least 7 days. Upon reinitiation of night duty, overall urine production increased significantly, with no significant changes in urgency and frequency. When these nurses returned to daytime duty, the volume of urine decreased but nocturnal urine production remained high, and the incidence of nocturia also increased significantly. However, the effects on OABSS score were not significant under the study design used. Conclusions Long-term rotational shifts resulted in adaptive changes such as decreased urine production and frequency in healthy, young female nurses. In addition, their micturition patterns were significantly affected by abrupt changes in their work schedules. Although working in shifts did not increase urgency or frequency of urination in healthy, young female nurses working rotational shifts for an average 2 years, large-scale studies are needed to systematically analyze the influence of shift work timings on micturition in humans.
Collapse
|
42
|
Diaz M. Editorial Comment. J Urol 2014; 191:1821. [DOI: 10.1016/j.juro.2013.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mireya Diaz
- Vattikuti Urology Institute, Detroit, Michigan
| |
Collapse
|
43
|
Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice. Exp Mol Med 2014; 46:e81. [PMID: 24603368 PMCID: PMC3972783 DOI: 10.1038/emm.2013.153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 01/23/2023] Open
Abstract
Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In the present study, we demonstrate that Per2 promoter activity clearly oscillates in neonate and adult bladders cultured ex vivo from Per2::Luc knock-in mice. In subsequent experiments, we show that multiple local oscillators are operating in all the bladder tissues (detrusor, sphincter and urothelim) and the lumbar spinal cord (L4–5) but not in the pontine micturition center or the ventrolateral periaqueductal gray of the brain. Accordingly, the water intake and urine volume exhibited daily and circadian variations in young adult wild-type mice but not in Per1−/−Per2−/− mice, suggesting a functional clock-dependent nature of the micturition rhythm. Particularly in PDK mice, the water intake and urinary excretion displayed an arrhythmic pattern under constant darkness, and the amount of water consumed and excreted significantly increased compared with those of WT mice. These results suggest that local circadian clocks reside in three types of bladder tissue and the lumbar spinal cord and may have important roles in the circadian control of micturition function.
Collapse
|
44
|
Chronobiology of Micturition: Putative Role of the Circadian Clock. J Urol 2013; 190:843-9. [DOI: 10.1016/j.juro.2013.02.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 12/13/2022]
|
45
|
Coutu S, Wyrsch V, Wynn HK, Rossi L, Barry DA. Temporal dynamics of antibiotics in wastewater treatment plant influent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 458-460:20-6. [PMID: 23639908 DOI: 10.1016/j.scitotenv.2013.04.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 04/14/2023]
Abstract
A yearlong field experimental campaign was conducted to reveal time scales over which antibiotic fluxes vary in the influent of a wastewater treatment plant (WTP). In particular, sampling was carried out to ascertain the amplitudes of monthly, daily and hourly fluctuations of several antibiotics. A total of 180 samples was collected at the entrance of a WTP in Lausanne, Switzerland. Sample concentrations were multiplied by flow rate to obtain monthly, daily and hourly mass fluxes of six antibiotics (trimethoprim, norfloxacin, ciprofloxacin, ofloxacin, clindamycin and metronidazole). Seasonality in mass fluxes was observed for all substances, with maximum values in winter being up to an order of magnitude higher than in summer. The hourly measurements of the mass flux of antibiotics were found to have a period of 12h. This was due to peaks in toilet use in the morning and early evening. In particular, the morning peak in flushing coincided with high concentrations (and hence high mass fluxes) due to overnight accumulation of substances in urine. However, little variation was observed in the average daily flux. Consequently, fluctuations in mass fluxes of antibiotics were mainly evident at the monthly and hourly time scales, with little variation on the day-week time scale. These results can aid in optimizing removal strategies and future sampling campaigns focused on antibiotics in wastewater.
Collapse
Affiliation(s)
- Sylvain Coutu
- Laboratoire de Technologie Écologique, Institut d'ingénierie de l'environnement, Faculté de l'environnement naturel, Architectural et construit (ENAC), Station 2, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Lee YJ, Han DH, Pak YK, Cho SH. Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6. Exp Mol Med 2012; 44:642-52. [PMID: 22913986 PMCID: PMC3509181 DOI: 10.3858/emm.2012.44.11.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 12/28/2022] Open
Abstract
Low density lipoprotein receptor (LDLR) plays an important role in the cholesterol homeostasis. We examined the possible circadian regulation of LDLR and mechanism(s) underlying it. In mice, blood glucose and plasma triglyceride, total and high density lipoprotein cholesterol varied distinctively throughout a day. In addition, LDLR mRNA oscillated in the liver in a functional clock-dependent manner. Accordingly, analysis of human LDLR promoter sequence revealed three putative E-boxes, raising the possible regulation of LDLR expression by E-box-binding transcription factors. To test this possibility, human LDLR promoter reporter constructs were transfected into HepG2 cells and the effects of CLOCK/BMAL1, Hes1, and Hes6 expression were analyzed. It was found that positive circadian transcription factor complex CLOCK/BMAL1 upregulated human LDLR promoter activity in a serum-independent manner, while Hes family members Hes1 and Hes6 downregulated it only under serum-depleted conditions. Both effects were mapped to proximal promoter region of human LDLR, where mutation or deletion of well-known sterol regulatory element (SRE) abolished only the repressive effect of Hes1. Interestingly, hes6 and hes1 mRNA oscillated in an anti-phasic manner in the wild-type but not in the per1-/-per2 -/- mouse. Comparative analysis of mouse, rat and human hes6 genes revealed that three E-boxes are conserved among three species. Transfection and site-directed mutagenesis studies with hes6 reporter constructs confirmed that the third E-box in the exon IV is functionally induced by CLOCK/BMAL1. Taken together, these results suggest that LDLR expression is under circadian control involving CLOCK/BMAL1 and Hes family members Hes1 and Hes6.
Collapse
Affiliation(s)
- Yeon Ju Lee
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|