1
|
Kumari L, Yadav R, Kaur D, Dey P, Bhatia A. An image analysis approach to characterize micronuclei differences in different subtypes of breast cancer. Pathol Res Pract 2024; 254:155126. [PMID: 38228038 DOI: 10.1016/j.prp.2024.155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Micronuclei (MN) have been used as screening, diagnostic and prognostic markers in multiple cancer types, including breast cancer (BC). However, the question that the MN present in all subtypes of BC are similar or different remains unanswered. We thus hypothesized that MN present in different subtypes of BC may differ in their contents which may be visible as differences in their morphologic and morphometric features. This study was thus carried out with the aim to identify the differences between MN morphometry, complexity, and texture in different subtypes of BC, such as estrogen and progesterone receptor-positive (ER+/PR+; MCF-7, T-47D), human epidermal growth factor receptor-positive (Her2 +;SKBR3) and triple-negative BC (TNBC; MDA-MB-231, MDA-MB-468) cell lines (CLs) by ImageJ software. METHODS For analysis of MN dimensions, MN irregularity, and texture, we used morphometry and two mathematical computer-assisted algorithms, i.e., fractal dimension (FD) and grey level co-occurrence matrix (GLCM) of ImageJ software. RESULTS MN area and perimeter values showed differences in the size of MN in different subtypes of BC, with the largest MN in TNBC CLs. GLCM parameters (entropy, angular second moment, inverse difference moment, contrast, and correlation) showed highly heterogenous texture in case of TNBC MN as compared to the others. FD analysis also revealed more complexity and irregularity in MN found in TNBC cells. CONCLUSION The study for the first time showed morphometric, architectural and texture related differences amongst MN present in different subtypes of BC. The above may reflect differences in their composition and contents. Further, these differences may point towards the distinct mechanisms involved in the formation of MN in different subtypes of BC that need to be explored further.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepinder Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Ji P, Zhang G, Guo Y, Song H, Yuan X, Hu X, Guo Z, Xia P, Shen R, Wang D. Protein crotonylation: An emerging regulator in DNA damage response. Life Sci 2023; 331:122059. [PMID: 37652154 DOI: 10.1016/j.lfs.2023.122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Pengfei Ji
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xiaohui Hu
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zhao Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Peng Xia
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
3
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
4
|
Liu C, Zhang Y, Gao X, Wang G. Identification of cell subpopulations associated with disease phenotypes from scRNA-seq data using PACSI. BMC Biol 2023; 21:159. [PMID: 37468850 PMCID: PMC10354926 DOI: 10.1186/s12915-023-01658-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has revolutionized the transcriptomics field by advancing analyses from tissue-level to cell-level resolution. Despite the great advances in the development of computational methods for various steps of scRNA-seq analyses, one major bottleneck of the existing technologies remains in identifying the molecular relationship between disease phenotype and cell subpopulations, where "disease phenotype" refers to the clinical characteristics of each patient sample, and subpopulation refer to groups of single cells, which often do not correspond to clusters identified by standard single-cell clustering analysis. Here, we present PACSI, a method aimed at distinguishing cell subpopulations associated with disease phenotypes at the single-cell level. RESULTS PACSI takes advantage of the topological properties of biological networks to introduce a proximity-based measure that quantifies the correlation between each cell and the disease phenotype of interest. Applied to simulated data and four case studies, PACSI accurately identified cells associated with disease phenotypes such as diagnosis, prognosis, and response to immunotherapy. In addition, we demonstrated that PACSI can also be applied to spatial transcriptomics data and successfully label spots that are associated with poor survival of breast carcinoma. CONCLUSIONS PACSI is an efficient method to identify cell subpopulations associated with disease phenotypes. Our research shows that it has a broad range of applications in revealing mechanistic and clinical insights of diseases.
Collapse
Affiliation(s)
- Chonghui Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
5
|
Coelingh Bennink HJT, Schultz IJ, Schmidt M, Jordan VC, Briggs P, Egberts JFM, Gemzell-Danielsson K, Kiesel L, Kluivers K, Krijgh J, Simoncini T, Stanczyk FZ, Langer RD. Progesterone from ovulatory menstrual cycles is an important cause of breast cancer. Breast Cancer Res 2023; 25:60. [PMID: 37254150 DOI: 10.1186/s13058-023-01661-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Many factors, including reproductive hormones, have been linked to a woman's risk of developing breast cancer (BC). We reviewed the literature regarding the relationship between ovulatory menstrual cycles (MCs) and BC risk. Physiological variations in the frequency of MCs and interference with MCs through genetic variations, pathological conditions and or pharmaceutical interventions revealed a strong link between BC risk and the lifetime number of MCs. A substantial reduction in BC risk is observed in situations without MCs. In genetic or transgender situations with normal female breasts and estrogens, but no progesterone (P4), the incidence of BC is very low, suggesting an essential role of P4. During the MC, P4 has a strong proliferative effect on normal breast epithelium, whereas estradiol (E2) has only a minimal effect. The origin of BC has been strongly linked to proliferation associated DNA replication errors, and the repeated stimulation of the breast epithelium by P4 with each MC is likely to impact the epithelial mutational burden. Long-lived cells, such as stem cells, present in the breast epithelium, can carry mutations forward for an extended period of time, and studies show that breast tumors tend to take decades to develop before detection. We therefore postulate that P4 is an important factor in a woman's lifetime risk of developing BC, and that breast tumors arising during hormonal contraception or after menopause, with or without menopausal hormone therapy, are the consequence of the outgrowth of pre-existing neoplastic lesions, eventually stimulated by estrogens and some progestins.
Collapse
Affiliation(s)
| | - Iman J Schultz
- Pantarhei Bioscience BV, P.O. Box 464, 3700 AL, Zeist, The Netherlands
| | - Marcus Schmidt
- Department of Obstetrics and Gynaecology, University Medical Center Mainz, Mainz, Germany
| | - V Craig Jordan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paula Briggs
- Sexual and Reproductive Health, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | | | | | - Ludwig Kiesel
- Department of Gynaecology and Obstetrics, University of Münster, Münster, Germany
| | - Kirsten Kluivers
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan Krijgh
- Pantarhei Bioscience BV, P.O. Box 464, 3700 AL, Zeist, The Netherlands
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynaecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Robert D Langer
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
6
|
Miser-Salihoglu E, Demokan S, Karanlik H, Karahalil B, Önder S, Cömert S, Yardim-Akaydin S. Investigation of mRNA Expression Levels of Tip60 and Related DNA Repair Genes in Molecular Subtypes of Breast Cancer. Clin Breast Cancer 2023; 23:125-134. [PMID: 36463002 DOI: 10.1016/j.clbc.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Studies in breast cancer (BC) have been shown that many tumor cells carry mutations that disrupt the DNA damage response mechanism. In eukaryotic cells, the overexpression or deprivation of DSBs repair genes is linked closely to a higher risk of cancer. PATIENTS AND METHODS In this study, mRNA expression levels of some genes, such as Tip60, ATM, p53, CHK2, BRCA1, H2AX, which are associated with DNA damage repair, were measured using RT-PCR method in tumor and matched-normal tissues of 58 patients with BC. RESULTS According to the study results, 55% in Tip60, 59% in ATM, 57% in BRCA1, 48% in H2AX, 66% in CHK2, and 43% in p53 decreased in tumor tissue of patients compared to the matched normal tissue. When evaluated according to molecular subtypes, expression of all genes in the pathway was found significantly higher in normal tissues than in tumor tissues especially in Luminal B and Luminal B+HER2 groups. One of the most important results of the study is that CHK2 mRNA expressions in normal tissues were higher than tumor tissue in 90% of patients in Luminal B and Luminal B-HER2 + groups. This is the first study showing DNA repair genes' expressions in molecular subtypes of breast cancer. In general, the decrease in the expression of DNA damage repair genes in tumor tissue indicates that these genes may have a role in the development of BC. Our study results also suggest that CHK2 may be a candidate marker in the molecular classification of breast cancer.
Collapse
Affiliation(s)
- Ece Miser-Salihoglu
- Faculty of Pharmacy, Department of Biochemistry, Gazi University, Ankara, Turkey.
| | - Semra Demokan
- Department of Basic Oncology, Istanbul University, Oncology Institute, Istanbul, Turkey
| | - Hasan Karanlik
- Department of Surgery, Istanbul University, Institute of Oncology, Istanbul, Turkey
| | - Bensu Karahalil
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Semen Önder
- Istanbul University, Istanbul Medical Faculty, Department of Pathology, Istanbul, Turkey
| | - Sevde Cömert
- Department of Basic Oncology, Istanbul University, Oncology Institute, Istanbul, Turkey
| | - Sevgi Yardim-Akaydin
- Faculty of Pharmacy, Department of Biochemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Biomarkers of Response and Resistance to CDK4/6 Inhibitors in Breast Cancer: Hints from Liquid Biopsy and microRNA Exploration. Int J Mol Sci 2022; 23:ijms232314534. [PMID: 36498861 PMCID: PMC9739115 DOI: 10.3390/ijms232314534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.
Collapse
|
8
|
Del'haye GG, Nulmans I, Bouteille SP, Sermon K, Wellekens B, Rombaut M, Vanhaecke T, Vander Heyden Y, De Kock J. Development of an adverse outcome pathway network for breast cancer: a comprehensive representation of the pathogenesis, complexity and diversity of the disease. Arch Toxicol 2022; 96:2881-2897. [PMID: 35927586 DOI: 10.1007/s00204-022-03351-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Adverse outcome pathways (AOPs), introduced in modern toxicology, intend to provide an evidence-based representation of toxicological effects and facilitate safety assessment of chemicals not solely based on laboratory animal in vivo experiments. However, some toxicological processes are too complicated to represent in one AOP. Therefore, AOP networks are developed that help understanding and predicting toxicological processes where complex exposure scenarios interact and lead to the emergence of the adverse outcome. In this study, we present an AOP network for breast cancer, developed after an in-depth survey of relevant scientific literature. Several molecular initiating events (MIE) were identified and various key events that link the MIEs with breast cancer were described. The AOP was developed according to Organization of Economic Co-Operation and Development (OECD) guidance, weight of evidence was assessed through the Bradford Hill criteria and confidence was tested by the OECD key questions. The AOP network provides a straightforward understanding of the disease onset and progression at different biological levels. It can be used to pinpoint knowledge gaps, identify novel therapeutic targets and act as a stepping stone for the development of novel in vitro test methods for hazard identification and risk assessment of newly developed chemicals and drugs.
Collapse
Affiliation(s)
- Gigly G Del'haye
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium. .,Research Group of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Ine Nulmans
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Sandrine P Bouteille
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Karolien Sermon
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Brecht Wellekens
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Matthias Rombaut
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Tamara Vanhaecke
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Yvan Vander Heyden
- Research Group of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Joery De Kock
- Liver Therapy & Evolution Team, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
9
|
A Dietary Antioxidant Formulation Ameliorates DNA Damage Caused by γ-Irradiation in Normal Human Bronchial Epithelial Cells In Vitro. Antioxidants (Basel) 2022; 11:antiox11071407. [PMID: 35883898 PMCID: PMC9311589 DOI: 10.3390/antiox11071407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Antioxidants can be used as radioprotectants to reduce DNA damage due to exposure to radiation that could result in malignancies, including lung cancer. Mortality rates are consistently higher in lung cancer, which is usually diagnosed at later stages of cancer development and progression. In this preliminary study, we examined the potential of an antioxidant formulation (AOX2) to reduce DNA damage using a cell model of human normal bronchial epithelial cells (BEAS-2B). Cells were exposed to γ-irradiation or smoke-related hydrocarbon 4[(acetoxymethyl)nitrosamino]-1 (3-pyridyl) 1-butanone (NNKOAc) to induce DNA damage. We monitored intracellular reactive oxygen species (ROS) levels and evidence of genotoxic damage including DNA fragmentation ELISA, γ-H2AX immunofluorescence, and comet assays. Pre-incubation of the cells with AOX2 before exposure to γ-irradiation and NNKOAc significantly reduced DNA damage. The dietary antioxidant preparation AOX2 significantly reduced the induction of the tumor suppressor protein p53 and DNA damage-associated γ-H2AX phosphorylation by radiation and the NNKOAc treatment. Thus, AOX2 has the potential to act as a chemoprotectant by lowering ROS levels and DNA damage caused by exposure to radiation or chemical carcinogens.
Collapse
|
10
|
Sanli DET, Yildirim D. Evaluation of the Effect of Age, Menopausal Status, and Parity on Breast Parenchyma Stiffness by Multiparametric Shear Wave Elastography. Acad Radiol 2022; 29 Suppl 1:S62-S68. [PMID: 34702676 DOI: 10.1016/j.acra.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the relationship between quantitative breast parenchyma stiffness by using multiparametric shear wave elastography (mpSWE) and the potential risk factors of breast cancer. MATERIAL AND METHODS The Vmean, Vmax, Vmin, Vsd values were measured with mpSWE from each breast and each quadrant in all cases under and over the age of 40. Statistical analysis was performed to evaluate the relationship between breast stiffness and age, side, quadrant, menopausal status, mammographic breast density, and obstetric history. RESULTS The study cohort included 964 breasts of 482 patients, where 342 patients were ≥40 years of age; and 140 cases were <40 years of age with a mean age of 45.07 ± 10.96. No significant difference in breast stiffness was detected between right and left breasts (p > 0.05); however, upper quadrants were found to be stiffer than the lower quadrants (p < 0.05). The effect of age on all values was found to be significant (p < 0.05), and stiffness increased with age. All mpSWE values of post-menopausal cases were significantly higher (p < 0.05) than premenopausal cases. Nulliparous cases had higher values than cases with prior parity (p < 0.05). Cases with Type C and D breast density had higher stiffness values than those with Type A and Type B breast density. CONCLUSION Breast parenchyma shows increased stiffness in in post-menopausal, nulliparous and older patients and patients with dense breast density. Similar to the mammographic increased breast density, elastographically increased breast parenchymal stiffness may be used as a possible risk factor for breast cancer or as a predictor of breast cancer.
Collapse
Affiliation(s)
- Deniz Esin Tekcan Sanli
- Department of Medical Imaging Techniques, Vocational School of Health Services, Istanbul Rumeli University, Istanbul, Turkey; Department of Radiology, Acibadem Kozyatagi Hospital, Istanbul, Turkey.
| | - Duzgun Yildirim
- Department of Medical Imaging Techniques, Vocational School of Health, Acibadem University, Istanbul, Turkey
| |
Collapse
|
11
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
12
|
Christensen RAG, Kirkham AA. Time-Restricted Eating: A Novel and Simple Dietary Intervention for Primary and Secondary Prevention of Breast Cancer and Cardiovascular Disease. Nutrients 2021; 13:3476. [PMID: 34684476 PMCID: PMC8537890 DOI: 10.3390/nu13103476] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
There is substantial overlap in risk factors for the pathogenesis and progression of breast cancer (BC) and cardiovascular disease (CVD), including obesity, metabolic disturbances, and chronic inflammation. These unifying features remain prevalent after a BC diagnosis and are exacerbated by BC treatment, resulting in elevated CVD risk among survivors. Thus, therapies that target these risk factors or mechanisms are likely to be effective for the prevention or progression of both conditions. In this narrative review, we propose time-restricted eating (TRE) as a simple lifestyle therapy to address many upstream causative factors associated with both BC and CVD. TRE is simple dietary strategy that typically involves the consumption of ad libitum energy intake within 8 h, followed by a 16-h fast. We describe the feasibility and safety of TRE and the available evidence for the impact of TRE on metabolic, cardiovascular, and cancer-specific health benefits. We also highlight potential solutions for overcoming barriers to adoption and adherence and areas requiring future research. In composite, we make the case for the use of TRE as a novel, safe, and feasible intervention for primary and secondary BC prevention, as well as tertiary prevention as it relates to CVD in BC survivors.
Collapse
Affiliation(s)
| | - Amy A. Kirkham
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
13
|
Safabakhsh M, Shab-Bidar S, Imani H. Higher Fruits and Vegetables Consumption Is not Associated with Risk of Breast Cancer in Iranian Women. Nutr Cancer 2021; 74:1680-1691. [PMID: 34323618 DOI: 10.1080/01635581.2021.1957486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We aimed to investigate the association of fruits and vegetables (FVs) and their all subgroups intakes with breast cancer (BC) risk in Iranian women. The present case-control study conducted on 150 age-matched women with newly diagnosed BC and apparently healthy controls. Anthropometric measures were collected and eventually, the mean intakes of total FVs and each subgroup were obtained from a validated 147-item food frequency questionnaire. Multivariate regression analysis was used to estimate odds ratios (OR) with 95% confidence intervals (CI). Our findings revealed that the intake of only dark yellow vegetable was significantly higher in BC patients (P = 0.03) after controlling for covariates. OR of BC across tertiles of FVs intake, showed that there was not any statistical association of total FVs (OR: 1.83, CI: 0.54-6.24, P-trend = 0.3) and their subgroups intakes with BC risk. Except for berry fruits intake which was adversely associated with BC risk (OR: 0.36, CI: 0.09-1.37, P-trend = 0.02). Our findings did not support the hypothesis that higher total FVs and their subgroups intakes reduce BC risk and suggested that only higher berry fruits intake may have an association with lower BC risk.
Collapse
Affiliation(s)
- Maryam Safabakhsh
- Clinical Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Community Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Imani
- Clinical Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
14
|
Schultz F, Osuji OF, Nguyen A, Anywar G, Scheel JR, Caljon G, Pieters L, Garbe LA. Pharmacological Assessment of the Antiprotozoal Activity, Cytotoxicity and Genotoxicity of Medicinal Plants Used in the Treatment of Malaria in the Greater Mpigi Region in Uganda. Front Pharmacol 2021; 12:678535. [PMID: 34276369 PMCID: PMC8278201 DOI: 10.3389/fphar.2021.678535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the potential antimalarial and toxicological effects of 16 medicinal plants frequently used by traditional healers to treat malaria, fever, and related disorders in the Greater Mpigi region in Uganda. Species studied were Albizia coriaria, Cassine buchananii, Combretum molle, Erythrina abyssinica, Ficus saussureana, Harungana madagascariensis, Leucas calostachys, Microgramma lycopodioides, Morella kandtiana, Plectranthus hadiensis, Securidaca longipedunculata, Sesamum calycinum subsp. angustifolium, Solanum aculeastrum, Toddalia asiatica, Warburgia ugandensis, and Zanthoxylum chalybeum. In addition, the traditional healers indicated that P. hadiensis is used as a ritual plant to boost fertility and prepare young women and teenagers for motherhood in some Ugandan communities where a high incidence of rapidly growing large breast masses in young female patients was observed (not necessarily breast cancer). We present results from various in vitro experiments performed with 56 different plant extracts, namely, 1) an initial assessment of the 16 species regarding their traditional use in the treatment of malaria by identifying promising plant extract candidates using a heme biocrystallization inhibition library screen; 2) follow-up investigations of antiprotozoal effects of the most bioactive crude extracts against chloroquine-resistant P. falciparum K1; 3) a cytotoxicity counterscreen against human MRC-5SV2 lung fibroblasts; 4) a genotoxicity evaluation of the extract library without and with metabolic bioactivation with human S9 liver fraction; and 5) an assessment of the mutagenicity of the ritual plant P. hadiensis. A total of seven extracts from five plant species were selected for antiplasmodial follow-up investigations based on their hemozoin formation inhibition activity in the heme biocrystallization assay. Among other extracts, an ethyl acetate extract of L. calostachys leaves exhibited antiplasmodial activity against P. falciparum K1 (IC50 value: 5.7 µg/ml), which was further characterized with a selectivity index of 2.6 (CC50 value: 14.7 µg/ml). The experiments for assessment of potential procarcinogenic properties of plant extracts via evaluation of in vitro mutagenicity and genotoxicity indicated that few extracts cause mutations. The species T. asiatica showed the most significant genotoxic effects on both bacterial test strains (without metabolic bioactivation at a concentration of 500 µg/plate). However, none of the mutagenic extracts from the experiments without metabolic bioactivation retained their genotoxic activity after metabolic bioactivation of the plant extract library through pre-incubation with human S9 liver fraction. While this study did not show that P. hadiensis has genotoxic properties, it did provide early stage support for the therapeutic use of the medicinal plants from the Greater Mpigi region.
Collapse
Affiliation(s)
- Fabien Schultz
- Institute of Biotechnology, Faculty III—Process Sciences, Technical University of Berlin, Berlin, Germany
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Ogechi Favour Osuji
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Anh Nguyen
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | - John R. Scheel
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany
- ZELT—Neubrandenburg Center for Nutrition and Food Technology gGmbH, Neubrandenburg, Germany
| |
Collapse
|
15
|
Li W, Amei A, Bui F, Norouzifar S, Lu L, Wang Z. Impact of Neoantigen Expression and T-Cell Activation on Breast Cancer Survival. Cancers (Basel) 2021; 13:cancers13122879. [PMID: 34207556 PMCID: PMC8228363 DOI: 10.3390/cancers13122879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neoantigens are novel proteins presented on the cell surface and derived from the accumulation of somatic mutations in tumor cells. They can be recognized by the immune system and may play a crucial role in boosting immune responses against tumor cells. The impact of neoantigen expression and T-cell activation status on overall survival was investigated in a breast cancer cohort. We found that high neoantigen expression and T-cell activation status was correlated with improved patient survival in the study population. This result supports that neoantigens are promising to serve as immunogenic agents for immunotherapy in breast cancer. Abstract Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agents for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Correspondence: (A.A.); (Z.W.)
| | - Francis Bui
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Saba Norouzifar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA;
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
- Correspondence: (A.A.); (Z.W.)
| |
Collapse
|
16
|
Mohamed RI, Bargal SA, Mekawy AS, El-Shiekh I, Tuncbag N, Ahmed AS, Badr E, Elserafy M. The overexpression of DNA repair genes in invasive ductal and lobular breast carcinomas: Insights on individual variations and precision medicine. PLoS One 2021; 16:e0247837. [PMID: 33662042 PMCID: PMC7932549 DOI: 10.1371/journal.pone.0247837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
In the era of precision medicine, analyzing the transcriptomic profile of patients is essential to tailor the appropriate therapy. In this study, we explored transcriptional differences between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed 3854 differentially expressed genes between normal ductal tissues and IDC. In addition, IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on DNA repair genes because of their known effects on patients' response to therapy and resistance. We here report that 36 DNA repair genes are overexpressed in a significant number of both IDC and LC patients' samples. Despite the upregulation in a significant number of samples, we observed a noticeable variation in the expression levels of the repair genes across patients of the same cancer subtype. The same trend is valid for the expression of miRNAs, where remarkable variations between patients' samples of the same cancer subtype are also observed. These individual variations could lie behind the differential response of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend on high-throughput genomic and transcriptomic data analysis. However, we propose that performing analysis on individual patients rather than a big set of patients' samples will be necessary to ensure that the best treatment is determined, and therapy resistance is reduced.
Collapse
Affiliation(s)
- Ruwaa I. Mohamed
- Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma A. Bargal
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Alaa S. Ahmed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- * E-mail: (EB); (ME)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- * E-mail: (EB); (ME)
| |
Collapse
|
17
|
Breast cancer and fibroadenoma biomarkers detection through genetic association study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Veljović T, Đurić M, Gušić I, Mirnić J, Čakić S, Maletin A, Brkić S. THE INFLUENCE OF PERIODONTAL DISEASE TREATMENT ON 8-HYDROXY-DEOXYGUANOSINE CONCENTRATIONS IN SALIVA AND PLASMA OF CHRONIC PERIODONTITIS PATIENTS. Acta Clin Croat 2020; 59:615-622. [PMID: 34285432 PMCID: PMC8253078 DOI: 10.20471/acc.2020.59.04.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/12/2019] [Indexed: 11/24/2022] Open
Abstract
The 8-hydroxy-deoxyguanosine (8-OHdG) is one of the customary products of oxidized DNA. The purpose of this study was to compare salivary and plasma 8-OHdG concentrations in a group of chronic periodontitis patients to those measured in a group of patients with healthy periodontium, as well as to determine the impact of periodontal therapy on 8-OHdG concentrations in saliva and plasma in chronic periodontitis patients. The study sample comprised of 24 patients with chronic periodontitis and 16 periodontally healthy individuals. Plaque index, gingival index, papilla bleeding index, probing depth and clinical attachment level were indices used to determine patient periodontal status. Salivary and plasma 8-OHdG concentrations were determined by ELISA method. The salivary 8-OHdG concentration was statistically significantly higher in the group of periodontitis patients compared to periodontally healthy subjects. After initial periodontal therapy, the 8-OHdG concentration in saliva was significantly reduced in the periodontitis group (p=0.021). Differences in plasma 8-OHdG concentrations between the two groups did not reach statistical significance and no significant changes were noted in the periodontitis group following initial periodontal therapy. A higher salivary 8-OHdG concentration reflects increased oxidative stress caused by periodontal disease. Initial periodontal therapy may be helpful in reducing salivary 8-OHdG concentrations in chronic periodontitis patients.
Collapse
Affiliation(s)
| | - Milanko Đurić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Ivana Gušić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Jelena Mirnić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Saša Čakić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Aleksandra Maletin
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| | - Snežana Brkić
- 1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia; 2Department of Dentistry, Novi Sad, Serbia; 3University of Belgrade, Faculty of Dental Medicine, Department of Periodontology and Oral Medicine, Belgrade, Serbia; 4Department of Infectious Diseases, Clinical Centre of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
19
|
Proteomics Profiling of KAIMRC1 in Comparison to MDA-MB231 and MCF-7. Int J Mol Sci 2020; 21:ijms21124328. [PMID: 32570693 PMCID: PMC7352455 DOI: 10.3390/ijms21124328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Proteomics characterization of KAIMRC1 cell line, a naturally immortalized breast cancer cells, is described in comparison to MCF-7 and MDA-MB-231 breast cancer cells. Quantitative proteomics analysis using the tandem mass tag (TMT)-labeled technique in conjunction with the phosphopeptide enrichment method was used to perform comparative profiling of proteins and phosphoproteins in the three cell lines. In total, 673 proteins and 33 Phosphoproteins were differentially expressed among these cell lines. These proteins are involved in several key cellular pathways that include DNA replication and repair, splicing machinery, amino acid metabolism, cellular energy, and estrogen signaling pathway. Many of the differentially expressed proteins are associated with different types of tumors including breast cancer. For validation, 4 highly significant expressed proteins including S-methyl-5'-thioadenosine phosphorylase (MTAP), BTB/POZ domain-containing protein (KCTD12), Poly (ADP-ribose) polymerase 1 (PARP 1), and Prelamin-A/C were subjected to western blotting, and the results were consistent with proteomics analysis. Unlike MCF-7 and MDA-MB-231, KAIMRC1 showed different phospho- and non-phosphoproteomic phenotypes which make it a potential model to study breast cancer.
Collapse
|
20
|
Pamphlett R, Satgunaseelan L, Kum Jew S, Doble PA, Bishop DP. Elemental bioimaging shows mercury and other toxic metals in normal breast tissue and in breast cancers. PLoS One 2020; 15:e0228226. [PMID: 32004334 PMCID: PMC6993973 DOI: 10.1371/journal.pone.0228226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Exposure to toxic metals such as mercury has been proposed to be a risk factor for the development of breast cancer since some metals can promote genetic mutations and epigenetic changes. We sought to find what toxic metals are present in normal breast tissue and in the tumours of women who had mastectomies for invasive ductal breast carcinoma. MATERIALS AND METHODS Formalin-fixed paraffin-embedded blocks from mastectomies for breast carcinoma were examined from 50 women aged 34-69 years. Paraffin blocks selected for elemental analysis were from breast tissue not involved by carcinoma and from the carcinoma itself. Seven micrometer-thick sections were stained with autometallography to demonstrate the presence of mercury, and subjected to laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to confirm the presence of mercury and to detect other toxic metals. RESULTS Autometallography-detected mercury was seen in intraductal secretions and some luminal epithelial cells of normal breast lobules in 26 (55%) of the 47 samples where lobules were present, and in 10 (23%) of carcinomas from the 44 samples where carcinoma was present. In eight samples ductal carcinoma in situ was present and one of these contained mercury. LA-ICP-MS confirmed the presence of mercury in samples that stained with autometallography, and detected lead, iron, nickel, aluminium, chromium and cadmium in some samples. CONCLUSIONS Mercury was present in normal breast lobules in more than half of mastectomy samples that contained an invasive carcinoma, and in a smaller proportion of carcinomas and ductal carcinomas in situ. Other toxic metals that may interact synergistically with mercury could be detected in some samples. These findings do not provide direct evidence that toxic metals such as mercury play a role in the pathogenesis of breast cancer, but suggest that future molecular biological investigations on the role of toxic metals in breast cancer are warranted.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- * E-mail:
| | - Laveniya Satgunaseelan
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Kresovich JK, Erdal S, Chen HY, Gann PH, Argos M, Rauscher GH. Metallic air pollutants and breast cancer heterogeneity. ENVIRONMENTAL RESEARCH 2019; 177:108639. [PMID: 31419716 PMCID: PMC6717519 DOI: 10.1016/j.envres.2019.108639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Emerging evidence suggests airborne metals may be associated with breast cancer risk. However, breast cancer is heterogenous and associations with heavy metals vary by subtype. Heavy metals possess both carcinogenic and xenoestrogenic properties which may be related to different tumor etiologies. Therefore, we tested for etiologic heterogeneity, using a case-series approach, to determine whether associations between residential airborne metal concentrations and breast cancer differed by tumor subtype. METHODS Between 2005 and 2008, we enrolled incident breast cancer cases into the Breast Cancer Care in Chicago study. Tumor estrogen and progesterone receptors status was determined by medical record abstraction and confirmed immunohistochemically (N = 696; 147 ER/PR-negative). The 2002 USEPA's National Air Toxics Assessment census-tract estimates of metal concentrations (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel and selenium) were matched to participants' residences of the same year. Adjusted logistic regression models were used to examine whether the airborne heavy metal associations differed by tumor ER/PR status. Principal component analysis was performed to assess associations by metal co-exposures. RESULTS Comparing the highest and lowest quintiles, higher concentrations of antimony (odds ratio[OR]: 1.8, 95% confidence interval[CI]: 0.9, 3.7, P-trend: 0.05), cadmium (OR: 2.3, 95% CI: 1.2, 4.4, P-trend: 0.04) and cobalt (OR: 2.0, 95% CI: 0.9, 4.4, P-trend: 0.04) were associated with ER/PR-negative breast cancer. Mixture analysis using principal components suggested co-exposures to multiple airborne heavy metals may drive associations with tumor receptor status. CONCLUSIONS Among women diagnosed with breast cancer, metallic air pollutants were associated with increased odds of developing ER/PR-negative breast cancer.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA.
| | - Serap Erdal
- Division of Environmental and Occupational Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| | - Hua Yun Chen
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| | - Peter H Gann
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA; Department of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Maria Argos
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| | - Garth H Rauscher
- Division of Epidemiology and Biostatisitics, University of Illinois at Chicago School of Public Health, Chicago, IL, 60612, USA
| |
Collapse
|
22
|
Smolarz B, Michalska MM, Samulak D, Romanowicz H, Wójcik L. Polymorphism of DNA Repair Genes via Homologous Recombination (HR) in Ovarian Cancer. Pathol Oncol Res 2019; 25:1607-1614. [PMID: 30712190 PMCID: PMC6815278 DOI: 10.1007/s12253-019-00604-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 01/15/2019] [Indexed: 11/26/2022]
Abstract
Ovarian cancer is one of the most common types of cancer in women. The repair system via homologous recombination repairs double-strand breaks (DSB) of DNA, which are the most mortal for cell, out of all DNA damages. The genes, which encode the double-strand break repairing proteins, are highly polymorphic and, taking into account the significance of the repaired defects for cancer development, it seems important to learn the role of the polymorphisms in ovarian cancer development. The aim of the study was to determine the relationship between DNA repair genes via homologous recombination (HR) and modulation of the risk of ovarian cancer. The following polymorphisms were analysed: XRCC3-Thr241Met (rs861539), XRCC2--41657C/T (rs718282), XRCC2-Arg188His (rs3218536), BRCA1-Q356R (rs1799950) and RAD51-135 G/C (rs1801320). The study group included 600 patients with ovarian cancer and 600 healthy controls. The PCR-RFLP (PCR-based restriction fragment length polymorphism) technique was applied for polymorphism analysis. Allele XRCC3-241Met (OR 0.85, 95%CI 0.72-0.99, p < 0.045), XRCC2-41657 T (OR 1.67, 95% CI 1.42-1.96, p < .0001), BRCA1-356R (OR 1.61; % CI 1.37-1.90, p < .0001) and RAD51-135C (OR 5.16; 95% CI 4.29-6.20, p < .0001) strongly correlated with the neoplastic disease. No relationship was observed between the studied polymorphisms and the cancer progression stage according to FIGO classification. The results indicate that polymorphisms of DNA repair genes via homologous recombination may be associated with the incidence of ovarian cancer. Further research on larger groups is warranted to determine the influence of above-mentioned genetic variants on ovarian cancer risk.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Magdalena M. Michalska
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
- The State Higher Professional School of Stanisław Wojciechowski, Kalisz, Poland
| | - Dariusz Samulak
- Department of Obstetrics and Gynaecology, Regional Hospital in Kalisz, Kalisz, Poland
- The State Higher Professional School of Stanisław Wojciechowski, Kalisz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Luiza Wójcik
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
23
|
Beggs R, Yang ES. Targeting DNA repair in precision medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 115:135-155. [PMID: 30798930 DOI: 10.1016/bs.apcsb.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Precision medicine is an emerging treatment paradigm that aims to find the right therapy at the right time based on an individual's unique genetic background, environment, and lifestyle. One area of precision medicine that has had success is targeting DNA repair in cancer. DNA is exposed to constant stress and there are repair mechanisms in place to maintain genetic integrity. These repair mechanisms can be targeted as a treatment strategy. In this chapter, we will focus on current efforts to target DNA repair pathways as part of precision oncology-based treatments.
Collapse
Affiliation(s)
- Reena Beggs
- Department of Radiation Oncology, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States; Hugh Kaul Precision Medicine Institute, University of Alabama-Birmingham School of Medicine, Birmingham, AL, United States.
| |
Collapse
|
24
|
López-Cortés A, Paz-Y-Miño C, Cabrera-Andrade A, Barigye SJ, Munteanu CR, González-Díaz H, Pazos A, Pérez-Castillo Y, Tejera E. Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis. Sci Rep 2018; 8:16679. [PMID: 30420728 PMCID: PMC6232116 DOI: 10.1038/s41598-018-35149-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus between 8 prioritization strategies for the early recognition of pathogenic genes. A communality analysis in the protein-protein interaction (PPi) network of previously selected genes was enriched with gene ontology, metabolic pathways, as well as oncogenomics validation with the OncoPPi and DRIVE projects. The consensus genes were rationally filtered to 1842 genes. The communality analysis showed an enrichment of 14 communities specially connected with ERBB, PI3K-AKT, mTOR, FOXO, p53, HIF-1, VEGF, MAPK and prolactin signaling pathways. Genes with highest ranking were TP53, ESR1, BRCA2, BRCA1 and ERBB2. Genes with highest connectivity degree were TP53, AKT1, SRC, CREBBP and EP300. The connectivity degree allowed to establish a significant correlation between the OncoPPi network and our BC integrated network conformed by 51 genes and 62 PPi. In addition, CCND1, RAD51, CDC42, YAP1 and RPA1 were functional genes with significant sensitivity score in BC cell lines. In conclusion, the consensus strategy identifies both well-known pathogenic genes and prioritized genes that need to be further explored.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, 170129, Quito, Ecuador.
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain.
| | - César Paz-Y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, 170129, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
| | - Stephen J Barigye
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Cristian R Munteanu
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain
- INIBIC, Institute of Biomedical Research, CHUAC, UDC, 15006, Coruna, Spain
| | - Humberto González-Díaz
- Department of Organic Chemistry II, University of the Basque Country UPV/EHU, 48940, Leioa, Biscay, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Biscay, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR, Computer Sciences Faculty, University of Coruna, 15071, Coruna, Spain
- INIBIC, Institute of Biomedical Research, CHUAC, UDC, 15006, Coruna, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
- Escuela de Ciencias Físicas y Matemáticas, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de las Américas, Avenue de los Granados, 170125, Quito, Ecuador.
| |
Collapse
|
25
|
Min A, Jang H, Kim S, Lee KH, Kim DK, Suh KJ, Yang Y, Elvin P, O'Connor MJ, Im SA. Androgen Receptor Inhibitor Enhances the Antitumor Effect of PARP Inhibitor in Breast Cancer Cells by Modulating DNA Damage Response. Mol Cancer Ther 2018; 17:2507-2518. [PMID: 30232143 DOI: 10.1158/1535-7163.mct-18-0234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is expressed in 60%-70% of breast cancers regardless of estrogen receptor status, and has been proposed as a therapeutic target in breast cancers that retain AR. In this study, the authors aimed to investigate a new treatment strategy using a novel AR inhibitor AZD3514 in breast cancer. AZD3514 alone had a minimal antiproliferative effect on most breast cancer cell lines irrespective of AR expression level, but it downregulated the expressions of DNA damage response (DDR) molecules, including ATM and chk2, which resulted in the accumulation of damaged DNA in some breast cancer cells. Furthermore, AZD3514 enhanced cellular sensitivity to a PARP inhibitor olaparib by blocking the DDR pathway in breast cancer cells. Furthermore, the downregulation of NKX3.1 expression in MDA-MB-468 cells by AZD3514 occurred in parallel with the suppression of ATM-chk2 axis activation, and the suppression of NKX3.1 by AZD3514 was found to result from AZD3514-induced TOPORS upregulation and a resultant increase in NKX3.1 degradation. The study shows posttranslational regulation of NKX3.1 via TOPORS upregulation by AZD3514-induced ATM inactivation-increased olaparib sensitivity in AR-positive and TOPORS-expressing breast cancer cells, and suggests the antitumor effect of AZD3514/olaparib cotreatment is caused by compromised DDR activity in breast cancer cell lines and in a xenograft model. These results provide a rationale for future clinical trials of olaparib/AR inhibitor combination treatment in breast cancer.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Korea
| | - Yaewon Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Chungbuk University Hospital, Cheong-Ju, Korea
| | - Paul Elvin
- Oncology IMED, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Mark J O'Connor
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca UK Ltd., Cambridge, United Kingdom
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Melatonin Sensitizes Hepatocellular Carcinoma Cells to Chemotherapy Through Long Non-Coding RNA RAD51-AS1-Mediated Suppression of DNA Repair. Cancers (Basel) 2018; 10:cancers10090320. [PMID: 30201872 PMCID: PMC6162454 DOI: 10.3390/cancers10090320] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
DNA repair systems are abnormally active in most hepatocellular carcinoma (HCC) cells due to accumulated mutations, resulting in elevated DNA repair capacity and resistance to chemotherapy and radiotherapy. Thus, targeting DNA repair mechanisms is a common treatment approach in HCC to sensitize cancer cells to DNA damage. In this study, we examined the anti-HCC effects of melatonin and elucidated the regulatory mechanisms. The results of functional assays showed that in addition to inhibiting the proliferation, migration, and invasion abilities of HCC cells, melatonin suppressed their DNA repair capacity, thereby promoting the cytotoxicity of chemotherapy and radiotherapy. Whole-transcriptome and gain- and loss-of-function analyses revealed that melatonin induces expression of the long noncoding RNA RAD51-AS1, which binds to RAD51 mRNA to inhibit its translation, effectively decreasing the DNA repair capacity of HCC cells and increasing their sensitivity to chemotherapy and radiotherapy. Animal models further demonstrated that a combination of melatonin and the chemotherapeutic agent etoposide (VP16) can significantly enhance tumor growth inhibition compared with monotherapy. Our results show that melatonin is a potential adjuvant treatment for chemotherapy and radiotherapy in HCC.
Collapse
|
27
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018. [DOI: '10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
28
|
Zhou G, Latchoumanin O, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv Drug Deliv Rev 2018; 134:107-121. [PMID: 29627370 DOI: 10.1016/j.addr.2018.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Traditional anticancer therapies are often unable to completely eradicate the tumor bulk due to multi-drug resistance (MDR) of cancers. A number of mechanisms such as micro-environmental stress and overexpression of drug efflux pumps are involved in the MDR process. Hence, therapeutic strategies for overcoming MDR are urgently needed to improve cancer treatment efficacy. Aptamers are short single-stranded oligonucleotides or peptides exhibiting unique three-dimensional structures and possess several unique advantages over conventional antibodies such as low immunogenicity and stronger tissue-penetration capacity. Aptamers targeting cancer-associated receptors have been explored to selectively deliver a therapeutic cargo (anticancer drugs, siRNAs, miRNAs and drug-carriers) to the intratumoral compartment where they can exert better tumor-killing effects. In this review, we summarize current knowledge of the multiple regulatory mechanisms of MDR, with a particular emphasis on aptamer-mediated novel therapeutic agents and strategies that seek to reversing MDR. The challenges associated with aptamer-based agents and approaches are also discussed.
Collapse
|
29
|
Malik SS, Masood N, Asif M, Ahmed P, Shah ZU, Khan JS. Expressional analysis of MLH1 and MSH2 in breast cancer. Curr Probl Cancer 2018; 43:97-105. [PMID: 30149959 DOI: 10.1016/j.currproblcancer.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mismatch repair proteins are ubiquitous keys in diverse cellular functions and protects the genome by correcting mismatch as post replication error correction machinery. Mismatch repair deficiency was associated with tumor development and progression therefore, current study was aimed to investigate MLH1 and MSH2 expression in breast cancer and correlate patients' clinicopathological factors with status of mismatch repair genes. MATERIAL AND METHODS Breast cancer tissues with adjacent normal tissue along with clinical details were collected during surgery from 80 cases. Immunohistochemistry was performed with primary and secondary antibodies for expressional analysis. Results were analyzed using SPSS version 24. RESULTS Immunohistochemical analysis revealed that both MLH1 and MSH2 were crucial in maintaining DNA repair system and loss of these 2 mismatch repair proteins may lead to adverse outcomes in breast cancer. Statistically significant association was found between loss of MLH1 (P = 0.0004; odds ratio 13.8; 95% confidence interval 4.6-41.1), MSH2 (P = 0.0002; odds ratio 14.0; 95% confidence interval 4.7-42.2) and breast cancer. Statistical analysis demonstrated that MLH1 and MSH2 deficiency may lead breast cancer progression to advanced stage, correlated with tumor focality (MLH1 P = 0.001; MSH2 P = 0.002) and chemotherapy (MLH1 P = 0.01; MSH2 P = 0.04). Presence of CK7, GATA 3, and E cadherin tends to increase in mismatch repair deficient breast cancer. Whereas, no association of mismatch repair deficiency was observed with age, tumor grade, positive lymph nodes, menopause, and ER and/or PR status. CONCLUSION Loss of mismatch repair proteins in breast cancer highlights its potential role in DNA repair mechanisms and helps tumor cells to become resistant against chemotherapeutic drugs. Therefore, mismatch repair deficiency may contribute to breast cancer progression.
Collapse
Affiliation(s)
- Saima Shakil Malik
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan; Armed Forces Institute of Pathology, Rawalpindi, Pakistan.
| | - Nosheen Masood
- Microbiology and Biotechnology Research Lab, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Muhammad Asif
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Parvez Ahmed
- Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | | | | |
Collapse
|
30
|
Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat Rev 2018; 70:98-111. [PMID: 30130687 DOI: 10.1016/j.ctrv.2018.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is one of the most common chronic disease worldwide and affects all cross-sections of the society including children, women, youth and adults. Scientific evidence has linked diabetes to higher incidence, accelerated progression and increased aggressiveness of different cancers. Among the different forms of cancer, research has reinforced a link between diabetes and the risk of breast cancer. Some studies have specifically linked diabetes to the highly aggressive, triple negative breast cancers (TNBCs) which do not respond to conventional hormonal/HER2 targeted interventions, have chances of early recurrence, metastasize, tend to be more invasive in nature and develop drug resistance. Commonly used anti-diabetic drugs, such as metformin, have recently gained importance in the treatment of breast cancer due to their proposed anti-cancer properties. Here we discuss the link between diabetes and breast cancer, the metabolic disturbances in diabetes that support the development of breast cancer, the challenges involved and future perspective and directions. We link the three main metabolic disturbances (dyslipidemia, hyperinsulinemia and hyperglycemia) that occur in diabetes to potential aberrant molecular pathways that may lead to the development of an oncogenic phenotype of the breast tissue, thereby leading to acceleration of cell growth, proliferation, migration, inflammation, angiogenesis, EMT and metastasis and inhibition of apoptosis in breast cancer cells. Furthermore, managing diabetes and treating cancer using a combination of anti-diabetic and classical anti-cancer drugs should prove to be more efficient in the treatment diabetes associated cancers.
Collapse
|
31
|
He BS, Xu T, Pan YQ, Wang HJ, Cho WC, Lin K, Sun HL, Gao TY, Wang SK. Nucleotide excision repair pathway gene polymorphisms are linked to breast cancer risk in a Chinese population. Oncotarget 2018; 7:84872-84882. [PMID: 27768589 PMCID: PMC5356705 DOI: 10.18632/oncotarget.12744] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Polymorphisms in nucleotide excision repair (NER) pathway genes are associated with the risk of breast cancer, but the relevance of these associations appeared to vary according to the ethnicity of the subjects. To systemically evaluate the potential associations between NER polymorphisms and breast cancer risk in a Chinese population, we carried out a case-control study on 450 breast cancer patients and 430 healthy controls. Sequenom MassARRAY was used for genotyping, and immunohistochemistry was performed to detect estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression in tumor tissue. Our results showed that ERCC1 rs11615 (additive model: ORadjusted: 1.36, 95% CI: 1.08-1.71, p = 0.009), XPC rs2228000 (additive model: ORadjusted: 1.39, 95% CI: 1.13-1.72, p = 0.002) and ERCC2/XPD rs50872 (additive model: ORadjusted: 1.32, 95% CI: 1.04-1.67, p = 0.021) were associated with an increased risk of breast cancer. Stratified analysis revealed three polymorphisms (rs11615, rs1800975, and rs50872) to be associated with breast cancer in menopausal females. Three polymorphisms were associated with specific breast cancer grades (rs11615 with grade 3, rs2228000 and rs50872 with grade 1-2). Two polymorphisms (rs2228001 and rs50872) were associated with the risk of breast cancer with negative lymph node involvement. rs1800975 and rs50872 were associated with the risk of ER− and PR− breast cancer, whereas rs11615 was associated with the risk of ER+ and PR+ breast cancer. We found that carriers of the T allele of ERCC1 rs11615, XPC rs2228000 and rs50872, particularly in postmenopausal females, have an increased risk of breast cancer.
Collapse
Affiliation(s)
- Bang-Shun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han-Jin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Kang Lin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian-Yi Gao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu-Kui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Li DG, LeCompte G, Golod L, Cecchi G, Irwin D, Harken A, Matecki A. Dermal carotenoid measurement is inversely related to anxiety in patients with breast cancer. J Investig Med 2018; 66:329-333. [PMID: 28923881 PMCID: PMC5805643 DOI: 10.1136/jim-2017-000546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 11/04/2022]
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Increased oxidative stress and poor subjective health outcomes have been associated with increased risk of cancer recurrence and metastasis, but few studies until now have explored the relationship between oxidative stress and chronic stress/anxiety. This study aims to examine the association between anxiety and a potential dermal correlate of oxidative stress in patients with breast cancer. 102 breast cancer patients were enrolled in a cross-sectional study at Highland Hospital, a county hospital in Oakland, California. Each participant's skin carotenoid score (SCS), a potential dermal correlate of oxidative stress, was recorded via Raman spectroscopy. Patient demographics, breast cancer stage, and subjective health measures (anxiety and self-rated health) were ascertained. Multivariate linear regression analysis was performed to quantify any associations between SCS and the above health correlates. Higher levels of skin carotenoids were associated with decreased severity of anxiety, lower BMI, increased servings of vegetables/fruits in daily diet, Hispanic race, lower educational status, and nonsmoking status. Severity of anxiety as graded by the GAD-7 was inversely associated with dermal carotenoid measurements via SCS. CONCLUSIONS Increased levels of oxidative stress as quantified by SCS is associated with greater severity of anxiety. Because chronic stress has been associated with tumor progression, increased recurrence rates, and increased metastatic risk in breast cancer,non-invasive dermal carotenoid measurements could be used as a novel objective correlate of subjective health during cancer treatment.
Collapse
Affiliation(s)
- David G Li
- Predoctoral Clinical Research (TL1), Tufts University School of Medicine, Boston, MA, USA
| | | | - Lev Golod
- University of California, Berkeley, Berkeley, CA, USA
| | - Gary Cecchi
- Hematology and Oncology, Alta Bates Summit Medical Center, Berkeley, CA, USA
| | - David Irwin
- Hematology and Oncology, Alta Bates Summit Medical Center, Berkeley, CA, USA
| | | | - Amy Matecki
- Integrative Medicine, Highland Hospital, Oakland, CA, USA
| |
Collapse
|
33
|
Smolarz B, Bryś M, Forma E, Zadrożny M, Bieńkiewicz J, Romanowicz H. Data on Single Nucleotide Polymorphism of DNA Repair Genes and Breast Cancer Risk from Poland. Pathol Oncol Res 2017; 25:1311-1317. [PMID: 29209986 DOI: 10.1007/s12253-017-0370-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) may modify the risk of cancer. They may be then regarded as potential markers of carcinogenesis. The aim of this study was to analyze the frequency of genotypes and alleles of SNPs in DNA repair genes and to investigate the influence this genetic variation exerts on breast cancer in Polish females. The test group comprised 600 females with breast cancer and 600 healthy controls. Genomic DNA was isolated and the SNPs in DNA repair genes were determined by High-Resolution Melter (HRM) technique. Following polymorphisms were analysed: Arg399Gln (rs25487) of the XRCC1, Gly322Asp (rs4987188) of the hMSH2, Lys751Gln (rs13181) of the XPD, Arg188His (rs3218536) of the XRCC2, P871L (rs799917) of the BRCA1 and N372H (rs144848) of the BRCA2 gene. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for each genotype and allele. Statistically significant correlations were identified between 4 single nucleotide polymorphisms and the breast cancer risk: rs25487 rs4987188 rs13181 and rs799917. The alleles XRCC1-Gln (OR 5.11; 95% CI 5.68-11.64, p < .0001), hMSH2-Asp (OR 4.66; 95% CI 3.90-5.56, p < .0001), XPD-Gln (OR 2.65; 95% CI 2.24-3.14, p < .0001) and BRCA1-L (OR 1.45; 95% CI 1.24-1.71, p < .0001) genes were strongly correlated with this malignancy. No correlation was found between the studied SNPs and tumor grading nor the lymph node status. Further research on larger groups is warranted to determine the influence of above-mentioned genetic variants on breast cancer risk.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland.
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237, Lodz, Poland
| | - Marek Zadrożny
- Department of Oncological Surgery and Breast Diseases, Polish Mother's Memorial Hospital - Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Jan Bieńkiewicz
- Department of Surgical and Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital-Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Institute of Polish Mother's Memorial Hospital, Rzgowska 281/289, 93-338, Lodz, Poland
| |
Collapse
|
34
|
Anandi L, Chakravarty V, Ashiq KA, Bodakuntla S, Lahiri M. DNA-dependent protein kinase plays a central role in transformation of breast epithelial cells following alkylation damage. J Cell Sci 2017; 130:3749-3763. [PMID: 28923836 DOI: 10.1242/jcs.203034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022] Open
Abstract
DNA alkylating agents form the first line of cancer chemotherapy. They not only kill cells but also behave as potential carcinogens. MNU, a DNA methylating agent, is well known to induce mammary tumours in rodents. However, the mechanism of tumorigenesis is not well understood. Our study reports a novel role played by DNA-dependent protein kinase (DNA-PK) in methylation damage-induced transformation using three-dimensional breast acinar cultures. Here, we report that exposure of breast epithelial cells to MNU inhibited polarisation at the basolateral domain, increased dispersal of the Golgi at the apical domain and induced an epithelial-to-mesenchymal transition (EMT)-like phenotype as well as invasion. This altered Golgi phenotype correlated with impaired intracellular trafficking. Inhibition of DNA-PK resulted in almost complete reversal of the altered Golgi phenotype and partial rescue of the polarity defect and EMT-like phenotype. The results confirm that methylation damage-induced activation of DNA-PK is a major mechanism in mediating cellular transformation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Libi Anandi
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Vaishali Chakravarty
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - K A Ashiq
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Satish Bodakuntla
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.,Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
| | - Mayurika Lahiri
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
35
|
Wu X, Shaikh AB, Yu Y, Li Y, Ni S, Lu A, Zhang G. Potential Diagnostic and Therapeutic Applications of Oligonucleotide Aptamers in Breast Cancer. Int J Mol Sci 2017; 18:ijms18091851. [PMID: 28841163 PMCID: PMC5618500 DOI: 10.3390/ijms18091851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer related deaths in women. Currently, with the development of early detection, increased social awareness and kinds of treatment options, survival rate has improved in nearly every type of breast cancer patients. However, about one third patients still have increased chances of recurrence within five years and the five-year relative survival rate in patients with metastasis is less than 30%. Breast cancer contains multiple subtypes. Each subtype could cause distinct clinical outcomes and systemic interventions. Thereby, new targeted therapies are of particular importance to solve this major clinical problem. Aptamers, often termed “chemical antibodies”, are functionally similar to antibodies and have demonstrated their superiority of recognizing target with high selectivity, affinity and stability. With these intrinsic properties, aptamers have been widely studied in cancer biology and some are in clinical trials. In this review, we will firstly discuss about the global impacts and mechanisms of breast cancer, then briefly highlight applications of aptamers that have been developed for breast cancer and finally summarize various challenges in clinical translation of aptamers.
Collapse
Affiliation(s)
| | - Atik Badshah Shaikh
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Yuanyuan Yu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Yongshu Li
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Shuaijian Ni
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| |
Collapse
|
36
|
Polymorphisms and mutations in GSTP1, RAD51, XRCC1 and XRCC3 genes in breast cancer patients. Int J Biol Markers 2017; 32:e337-e343. [PMID: 28315507 DOI: 10.5301/ijbm.5000258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Genotoxic factors, including ionizing radiation and oxidative stress, are associated with genomic instability and development of breast cancer (BC). The homologous recombination DNA repair (HRR) pathway, base excision repair (BER) mechanism, and antioxidative enzymes are required as defense mechanisms against these DNA damaging agents. GSTP1, XRCC1, XRCC3 and RAD51 proteins are essential components of antioxidation, BER and HRR of DNA, respectively. Deficiencies in BER, HRR and antioxidation pathways are involved in the progression of cancer. METHODS Genomic DNA was extracted from formalin-fixed, paraffin-embedded tissue and blood samples of BC patients of an Italian population. Genomic DNA was also extracted from blood specimens of a control group. DNA sequencing was performed for six single-nucleotide polymorphisms (SNPs) in the GSTP1, RAD51, XRCC1 and XRCC3 genes in BC patients and the control group. RESULTS Two variants in the 5'-UTR of the XRCC3 (rs1799794 A/G) and RAD51 (rs1801321) genes showed a significant association with susceptibility to BC (OR = 4.125; 95% CI 1.057-16.102; p = 0.03 and OR = 2.04; 95% CI 0.4925-8.449; p = 0.007, respectively). Additionally, we reported 2 mutations in intron 7 of the XRCC3 gene, CTdel (rs543072564) and A/G (rs369703243). CONCLUSIONS Our results underscored the existence of an association between XRCC3-5'-UTR-A/G (rs1799794) and RAD51-5'-UTR G172T (rs1801321) genotypes and BC risk in an Italian population. The presence of mutations in the intronic region of the XRCC3 gene highlights the importance of more sequence screening of DNA repair genes for possible genetic penetrance in BC.
Collapse
|
37
|
FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res Treat 2017; 166:217-226. [PMID: 28702895 PMCID: PMC5645429 DOI: 10.1007/s10549-017-4388-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/07/2017] [Indexed: 10/25/2022]
Abstract
PURPOSE The FANCM c.5101C>T nonsense mutation was previously found to associate with breast cancer in the Finnish population, especially among triple-negative cases. Here, we studied the prevalence of three other FANCM variants: c.5791C>T, which has been reported to predispose to familial breast cancer, and the c.4025_4026delCT and c.5293dupA variants recently identified in Finnish cancer patients. METHODS We genotyped the FANCM c.5791C>T mutation in 4806 invasive breast cancer patients, including BRCA1/2 mutation negative familial cases and unselected cases, and in 2734 healthy population controls from four different geographical areas of Finland. The association of the mutation with breast cancer risk among patient subgroups was statistically evaluated. We further analyzed the combined risk associated with c.5101C>T and c.5791C>T mutations. We also genotyped 526 unselected ovarian cancer patients for the c.5791C>T mutation and 862 familial breast cancer patients for the c.4025_4026delCT and c.5293dupA variants. RESULTS The frequency of the FANCM c.5791C>T mutation was higher among breast cancer cases than in controls (OR 1.94, 95% CI 0.87-4.32, P = 0.11), with a statistically significant association with triple-negative breast cancer (OR 5.14, 95% CI 1.65-16.0, P = 0.005). The combined analysis for c.5101C>T and c.5791C>T carriers confirmed a strong association with breast cancer (OR 1.86, 95% CI 1.32-2.49, P = 0.0002), especially among the triple-negative patients (OR 3.08, 95% CI 1.77-5.35, P = 0.00007). For the other variants, only one additional c.4025_4026delCT carrier and no c.5293dupA carriers were observed. CONCLUSIONS These results support the role of FANCM as a breast cancer susceptibility gene, particularly for triple-negative breast cancer.
Collapse
|
38
|
Abstract
Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized by a progressive degeneration of nerve cells eventually leading to dementia. While these diseases affect different neuronal populations and present distinct clinical features, they share in common several features and signaling pathways. In particular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly described and might be correlated with AMP-activated protein kinase (AMPK) deregulation. AMPK is a master energy sensor which was reported to be overactivated in the brain of patients affected by these neurodegenerative disorders. While the exact role played by AMPK in these diseases remains to be clearly established, several studies reported the implication of AMPK in various signaling pathways that are involved in these diseases' progression. In this chapter, we review the current literature regarding the involvement of AMPK in the development of these diseases and discuss the common pathways involved.
Collapse
|
39
|
Kim HJ, Min A, Im SA, Jang H, Lee KH, Lau A, Lee M, Kim S, Yang Y, Kim J, Kim TY, Oh DY, Brown J, O'Connor MJ, Bang YJ. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int J Cancer 2016; 140:109-119. [DOI: 10.1002/ijc.30373] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/16/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Hee-Jun Kim
- Department of Internal Medicine; Chung-Ang University College of Medicine; Seoul Korea
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Seock-Ah Im
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University; Seoul Korea
| | - Kyung Hun Lee
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Alan Lau
- AstraZeneca UK Ltd; Macclesfield, Cheshire United Kingdom
| | - Miso Lee
- Cancer Research Institute, Seoul National University; Seoul Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University; Seoul Korea
| | - Yaewon Yang
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute, Seoul National University; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Jungeun Kim
- Cancer Research Institute, Seoul National University; Seoul Korea
| | - Tae Yong Kim
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | - Do-Youn Oh
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| | | | | | - Yung-Jue Bang
- Translational Medicine; Seoul National University College of Medicine; Seoul Korea
- Cancer Research Institute, Seoul National University; Seoul Korea
- Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Department of Internal Medicine; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
40
|
Spugnesi L, Gabriele M, Scarpitta R, Tancredi M, Maresca L, Gambino G, Collavoli A, Aretini P, Bertolini I, Salvadori B, Landucci E, Fontana A, Rossetti E, Roncella M, Naccarato GA, Caligo MA. Germline mutations in DNA repair genes may predict neoadjuvant therapy response in triple negative breast patients. Genes Chromosomes Cancer 2016; 55:915-924. [PMID: 27328445 DOI: 10.1002/gcc.22389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Triple negative breast cancers (TNBCs) represent about 15-20% of all breast cancer cases and are characterized by a complex molecular heterogeneity. Some TNBCs exhibit clinical and pathological properties similar to BRCA-mutated tumors, without actually bearing a mutation in BRCA genes. This "BRCAness" phenotype may be explained by germline mutations in other genes involved in DNA repair. Although respond to chemotherapy with alkylating agents, they have a high risk of recurrence and progression. Some studies have shown the efficacy of neoadjuvant therapy in TNBC patients with DNA repair defects, but proper biomarkers of DNA repair deficiency are still needed. Here, we investigated if mutations in DNA repair genes may be correlated with anthracyclines/taxanes neoadjuvant therapy response. DNA from 19 TNBC patients undergoing neoadjuvant therapy were subjected to next generation sequencing of a panel of 24 genes in DNA repair and breast cancer predisposition. In this study, 5 of 19 patients (26%) carried a pathogenic mutation in BRCA1, PALB2, RAD51C and two patients carried a probable pathogenic missense variant. Moreover, VUS (Variants of Unknown Significance) in other genes, predicted to be deleterious by in silico tools, were detected in five patients. Germline mutations in DNA repair genes were found to be associated with the group of TNBC patients who responded to therapy. We conclude that a subgroup of TNBC patients have defects in DNA repair genes, other than BRCA1, and such patients respond favourably to neoadjuvant anthracyclines/taxanes therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Spugnesi
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Michele Gabriele
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Rosa Scarpitta
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Mariella Tancredi
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Luisa Maresca
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Gaetana Gambino
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Anita Collavoli
- Section of Genetic Oncology, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | | | - Ilaria Bertolini
- UO Medical Oncology, Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Barbara Salvadori
- UO Medical Oncology, Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Elisabetta Landucci
- UO Medical Oncology, Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Andrea Fontana
- UO Medical Oncology, Department of Oncology, University Hospital of Pisa, Pisa, Italy
| | | | | | | | - Maria Adelaide Caligo
- UO Medical Genetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
41
|
Nogueira A, Assis J, Faustino I, Pereira D, Catarino R, Medeiros R. Base excision repair pathway: PARP1 genotypes as modulators of therapy response in cervical cancer patients. Biomarkers 2016; 22:70-76. [PMID: 27323894 DOI: 10.1080/1354750x.2016.1204006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Genetic polymorphisms in genes of the base excision repair (BER) pathway appear to modulate the therapy response of cancer patients. PARP1 protein recognizes the DNA strand damage and facilitates the subsequent recruitment of BER proteins. Few studies have reported an association between PARP1 Val762Ala polymorphism (rs1136410) and cancer therapy response. OBJECTIVE The purpose of our study was to determine whether PARP1 Val762Ala polymorphism have prognostic value in patients with cervical cancer. MATERIALS AND METHODS Two hundred and sixty adult patients, with histologically confirmed cervical cancer, at FIGO-stages IB2-IVA, primarily treated with concurrent chemotherapy (cisplatin) and radiotherapy. Overall survival (OS) and disease-free survival (DFS) were the primary end points of the analysis. The PARP1 Val762Ala genetic variants were analyzed by allelic discrimination by real-time PCR. RESULTS We observed that peri- and postmenopausal women carrying the C-allele present a statistically significant lower OS and DFS (log-rank test, p = 0.008 and p = 0.006, respectively) among those with early stage cervical cancer. Cox regression analysis confirmed these results, after adjustment for other prognostic factors (for OS: HR, 3.70; 95%CI, 1.32-10.38; p = 0.013 and for DFS: HR, 3.97; 95%CI, 1.59-9.93; p = 0.003). CONCLUSIONS This is the first study evaluating the effect of PARP1 Val762Ala polymorphism in treatment response in cervical cancer patients. PARP1 genotypes may contribute as an independent prognostic factor in cervical cancer, being useful in predicting the clinical outcome.
Collapse
Affiliation(s)
- Augusto Nogueira
- a Molecular Oncology and Viral Pathology Group - Research Center , Portuguese Institute of Oncology , Porto , Portugal.,b FMUP, Faculty of Medicine of Porto University , Porto , Portugal.,c Research Department , Portuguese League against Cancer (NRNorte) , Porto , Portugal
| | - Joana Assis
- a Molecular Oncology and Viral Pathology Group - Research Center , Portuguese Institute of Oncology , Porto , Portugal.,b FMUP, Faculty of Medicine of Porto University , Porto , Portugal
| | - Ilda Faustino
- d Oncology Department , Portuguese Institute of Oncology , Porto , Portugal
| | - Deolinda Pereira
- a Molecular Oncology and Viral Pathology Group - Research Center , Portuguese Institute of Oncology , Porto , Portugal.,d Oncology Department , Portuguese Institute of Oncology , Porto , Portugal.,e ICBAS , Abel Salazar Institute for the Biomedical Sciences , Porto , Portugal
| | - Raquel Catarino
- a Molecular Oncology and Viral Pathology Group - Research Center , Portuguese Institute of Oncology , Porto , Portugal
| | - Rui Medeiros
- a Molecular Oncology and Viral Pathology Group - Research Center , Portuguese Institute of Oncology , Porto , Portugal.,c Research Department , Portuguese League against Cancer (NRNorte) , Porto , Portugal.,e ICBAS , Abel Salazar Institute for the Biomedical Sciences , Porto , Portugal.,f CEBIMED , Faculty of Health Sciences of Fernando Pessoa University , Porto , Portugal
| |
Collapse
|
42
|
High DRC Levels Are Associated with Let-7b Overexpression in Women with Breast Cancer. Int J Mol Sci 2016; 17:ijms17060865. [PMID: 27271599 PMCID: PMC4926399 DOI: 10.3390/ijms17060865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/05/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022] Open
Abstract
Nucleotide Excision Repair (NER) is a critical pathway involved in breast cancer (BC). We have previously published that a low DNA repair capacity (DRC) is associated with a higher risk of BC in Puerto Rican women. Let-7b belongs to a miRNA family with tumor suppressor activity that targets oncogenes. We isolated miRNAs from plasma of 153 Puerto Rican women with and without BC. DRC was measured in lymphocytes by means of a host cell reactivation assay. These women were divided into four groups according to their DRC level: High (>3.8%) and low (<3.8%). The four groups consisted of BC patients with high (n = 35) and low (n = 43) DRC and controls with high (n = 39) and low (n = 36) DRC. Epidemiologic data were collected at initial BC diagnosis and almost five years after diagnosis. A significant difference in Let-7b expression was found in BC patients with high DRC versus the remaining groups (p < 0.001). Thus, our data reveal a possible role of Let-7b on DRC during breast carcinogenesis. Our study is innovative because it provides the first evidence that Let-7b may play role in DRC regulation (through the NER repair pathway) in BC.
Collapse
|
43
|
Kochan DZ, Ilnytskyy Y, Golubov A, Deibel SH, McDonald RJ, Kovalchuk O. Circadian-disruption-induced gene expression changes in rodent mammary tissues. Oncoscience 2016; 3:58-70. [PMID: 27014724 PMCID: PMC4789572 DOI: 10.18632/oncoscience.292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
Evidence is mounting that circadian disruption (CD) is a potential carcinogen in breast cancer development. However, despite the growing concern, to our knowledge, no studies have attempted a genome-wide analysis of CD-induced gene expression changes in mammary tissues. Using a rodent model system, a proven photoperiod-shifting paradigm, varying degrees of CD, and Illumina sequencing, we performed an exploratory genome-wide mRNA analysis in mammary tissues. Even though our analysis did not identify any significant patterns in mRNA levels based on the degree of CD, and the majority of groups did not show changes in gene expression on a large-scale, one group (two-week chronic ZT19) displayed 196 differentially expressed genes, 51 of which have been linked to breast cancer. Through gene-specific pathway analysis, the data illustrate that CD may promote breast cancer development through downregulation of DNA repair and p53 signaling pathways, thus promoting genomic instability and cancer development. Although these results have to be interpreted with caution because only a single group illustrated drastic changes in transcript levels, they indicate that chronic CD may directly induce changes in gene expression on a large-scale with potentially malignant consequences.
Collapse
Affiliation(s)
- David Z Kochan
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrey Golubov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
44
|
Liu C, Srihari S, Lal S, Gautier B, Simpson PT, Khanna KK, Ragan MA, Lê Cao KA. Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer. Mol Oncol 2016; 10:179-93. [PMID: 26456802 PMCID: PMC5528935 DOI: 10.1016/j.molonc.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
The Homologous Recombination (HR) pathway is crucial for the repair of DNA double-strand breaks (DSBs) generated during DNA replication. Defects in HR repair have been linked to the initiation and development of a wide variety of human malignancies, and exploited in chemical, radiological and targeted therapies. In this study, we performed a personalised pathway analysis independently for four large sporadic breast cancer cohorts to investigate the status of HR pathway dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and its impact on tumour characteristics. Specifically, we first manually curated a list of HR genes according to our recent review on this pathway (Liu et al., 2014), and then applied a personalised pathway analysis method named Pathifier (Drier et al., 2013) on the expression levels of the curated genes to obtain an HR score quantifying HR pathway dysregulation in individual tumours. Based on the score, we observed a great diversity in HR dysregulation between and within gene expression-based breast cancer subtypes, and by using two published HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel association between HR pathway dysregulation and chromosomal instability (CIN) in sporadic breast cancer. Although CIN has long been considered as a hallmark of most solid tumours, with recent extensive studies highlighting its importance in tumour evolution and drug resistance, the molecular basis of CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway dysregulation might contribute to CIN in sporadic breast cancer.
Collapse
Affiliation(s)
- Chao Liu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Samir Lal
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia
| | - Benoît Gautier
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia; School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Kum Kum Khanna
- QIMR-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4029, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia.
| | - Kim-Anh Lê Cao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
45
|
Pauwels EK, Foray N, Bourguignon MH. Breast Cancer Induced by X-Ray Mammography Screening? A Review Based on Recent Understanding of Low-Dose Radiobiology. Med Princ Pract 2016; 25:101-9. [PMID: 26571215 PMCID: PMC5588356 DOI: 10.1159/000442442] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 11/15/2015] [Indexed: 12/28/2022] Open
Abstract
Screening mammography offers the possibility of discovering malignant diseases at an early stage, which is consequently treated early, thereby reducing the mortality rate. However, ionizing radiation as used in low-dose X-ray mammography may be associated with a risk of radiation-induced carcinogenesis. In the context of the harmful effects of ionizing radiation, this article reviewed novel radiobiological data and provided a simulation of the relative incidence of radiation-induced breast cancer due to screening against a background baseline incidence in a population of 100,000 individuals. The use of modern digital mammographic technology was assumed, giving rise to a glandular dose of 2.5 mGy from a 2-view per breast image. Assuming no latency time, this led to a ratio of induced incidence rate over baseline incidence rate of about 1.6‰ for biennial screening in women aged 50-74 years, although it cannot be excluded that the dose and dose rate effectiveness factor values relying on new radiobiological insights may lower this number to about 0.7‰. This carcinogenic risk is considered small in relation to the potential beneficial effects of screening, especially as latency time was not taken into consideration. However, individuals who are known to be carriers of risk-increasing genetic variations and/or have an inherited disposition of breast cancer should avoid ionizing radiation as much as possible and should be referred to ultrasound or magnetic resonance imaging. In addition, a significant, but difficult to quantify, risk of cancer is present for individuals who suffer from hypersusceptibility to ionizing radiation.
Collapse
Affiliation(s)
- Ernest K.J. Pauwels
- Department of Radiology, University Medical Center Leiden, Leiden
- Department of Nuclear Medicine, University Medical School Pisa, Pisa, Italy
- *Prof. emer. Dr. E.K.J. Pauwels, Department of Radiology and Nuclear Medicine, Via di San Gennaro 79B, IT—55010 Capannori (Italy), E-Mail
| | - Nicolas Foray
- Department of Radiobiology INSERM, UMR1052, Cancer Research Centre of Lyon, Lyon
| | - Michel H. Bourguignon
- Department of Biophysics, University of Versailles, Paris, France
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses, France
| |
Collapse
|
46
|
Brufsky AM. Delaying Chemotherapy in the Treatment of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. Clin Med Insights Oncol 2015; 9:137-47. [PMID: 26793013 PMCID: PMC4697769 DOI: 10.4137/cmo.s31586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022] Open
Abstract
Global guidelines for the management of locally advanced or metastatic hormone receptor-positive (HR-positive), human epidermal growth factor 2-negative (HER2-negative) breast cancer recommend endocrine therapy as first-line treatment for all patients, regardless of age or postmenopausal status. However, current practice patterns in the United States and Europe suggest that these modes of therapy are not being used as recommended, and many patients with advanced HR-positive, HER2-negative disease are being treated first-line with chemotherapy or switched to chemotherapy after a single endocrine therapy. Given that chemotherapy is associated with increased toxicity and reduced quality of life (QOL) compared with endocrine therapy, prolonging the duration of response obtained with endocrine therapy may help delay chemotherapy and its attendant toxicities. Several strategies to delay or overcome endocrine resistance and thereby postpone chemotherapy have been explored, including the use of second-line endocrine agents with different mechanisms of action, adding targeted agents that inhibit specific resistance pathways, and adding agents that act in complementary or synergistic ways to inhibit tumor cell proliferation. This review analyzes the different therapy options available to HR-positive, HER2-negative patients with advanced breast cancer that can be used to delay chemotherapy and enhance QOL.
Collapse
Affiliation(s)
- Adam M. Brufsky
- Professor of Medicine, Associate Division Chief of Hematology/Oncology, Medical Director of Women’s Cancer Center at Magee-Womens Hospital, Codirector of Comprehensive Breast Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Nicolas E, Arora S, Zhou Y, Serebriiskii IG, Andrake MD, Handorf ED, Bodian DL, Vockley JG, Dunbrack RL, Ross EA, Egleston BL, Hall MJ, Golemis EA, Giri VN, Daly MB. Systematic evaluation of underlying defects in DNA repair as an approach to case-only assessment of familial prostate cancer. Oncotarget 2015; 6:39614-33. [PMID: 26485759 PMCID: PMC4741850 DOI: 10.18632/oncotarget.5554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 01/03/2023] Open
Abstract
Risk assessment for prostate cancer is challenging due to its genetic heterogeneity. In this study, our goal was to develop an operational framework to select and evaluate gene variants that may contribute to familial prostate cancer risk. Drawing on orthogonal sources, we developed a candidate list of genes relevant to prostate cancer, then analyzed germline exomes from 12 case-only prostate cancer patients from high-risk families to identify patterns of protein-damaging gene variants. We described an average of 5 potentially disruptive variants in each individual and annotated them in the context of public databases representing human variation. Novel damaging variants were found in several genes of relevance to prostate cancer. Almost all patients had variants associated with defects in DNA damage response. Many also had variants linked to androgen signaling. Treatment of primary T-lymphocytes from these prostate cancer patients versus controls with DNA damaging agents showed elevated levels of the DNA double strand break (DSB) marker γH2AX (p < 0.05), supporting the idea of an underlying defect in DNA repair. This work suggests the value of focusing on underlying defects in DNA damage in familial prostate cancer risk assessment and demonstrates an operational framework for exome sequencing in case-only prostate cancer genetic evaluation.
Collapse
Affiliation(s)
| | - Sanjeevani Arora
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G. Serebriiskii
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Mark D. Andrake
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Dale L. Bodian
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Joseph G. Vockley
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Roland L. Dunbrack
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric A. Ross
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brian L. Egleston
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J. Hall
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Erica A. Golemis
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Veda N. Giri
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - Mary B. Daly
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
48
|
Linge A, Maurya P, Friedrich K, Baretton GB, Kelly S, Henry M, Clynes M, Larkin A, Meleady P. Identification and Functional Validation of RAD23B as a Potential Protein in Human Breast Cancer Progression. J Proteome Res 2014; 13:3212-22. [DOI: 10.1021/pr4012156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annett Linge
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Priyanka Maurya
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Katrin Friedrich
- Institute
of Pathology, Faculty of Medicine and University Hospital Carl Gustav
Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gustavo B. Baretton
- Institute
of Pathology, Faculty of Medicine and University Hospital Carl Gustav
Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Shane Kelly
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Michael Henry
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Martin Clynes
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Annemarie Larkin
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| | - Paula Meleady
- National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin
9, Ireland
| |
Collapse
|
49
|
Incidence and prognostic value of multiple gene promoter methylations in gliomas. J Neurooncol 2013; 116:349-56. [DOI: 10.1007/s11060-013-1301-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 10/27/2013] [Indexed: 12/14/2022]
|
50
|
Mendes B, Silva P, Aveiro F, Pereira J, Câmara JS. A micro-extraction technique using a new digitally controlled syringe combined with UHPLC for assessment of urinary biomarkers of oxidatively damaged DNA. PLoS One 2013; 8:e58366. [PMID: 23484022 PMCID: PMC3590158 DOI: 10.1371/journal.pone.0058366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/04/2013] [Indexed: 01/24/2023] Open
Abstract
The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVol(®)), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 µL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVol(®) syringe followed by elution using 90 µL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r(2) > 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 µg mL(-1) and the LOQ from 0.00023 to 0.13 µg mL(-1). The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n = 3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVol(®)MEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.
Collapse
Affiliation(s)
- Berta Mendes
- CQM - Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
- Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
- Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| | | | - Jorge Pereira
- CQM - Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| | - José S. Câmara
- CQM - Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
- Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
- * E-mail:
| |
Collapse
|