1
|
Kim M, Kim C, Zheng H, Kim Y, Cho PS, Lim JY, Choi W, Kim M, Kim Y, Kim HR, Lee GY, Hwang SW. Pharmacologic inhibition of Il6st/gp130 improves dermatological inflammation and pruritus. Biomed Pharmacother 2024; 178:117155. [PMID: 39047422 DOI: 10.1016/j.biopha.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic dermatitis is a disease with large unmet need for pharmacological improvement. Dermatitis conditions are maintained and exacerbated by various cytokine actions in the context of inflammation. Interleukin 6 signal transducer (Il6st), also known as glycoprotein 130 (Gp130), is a key component for surface reception of a multitude of cytokines and transduction and amplification of their pro-inflammatory signals. We hypothesized accordingly that pharmacological inhibition of Il6st can alter dermatitis pathology. Treatment with SC-144 and bazedoxifene, two representative small molecule Il6st inhibitors with different binding modes led to moderate but significant improvement of skin conditions in a 1-chloro-2,4-dinitrobenzene animal model. Part of cytokine expressions indicating the dermatological index were normalized particularly when treated with SC-144. Pruritic behaviors were blunted, also possibly giving limited contribution to disease improvement. In psoriatic skin and itch of an imiquimod animal model, those two treatments appeared to be relatively moderate. Collectively, pharmacological inhibition of Il6st seems to lessen pathological irritation. Inversely, this experimental attempt newly implies that Il6st participates in pathological mechanisms. In conclusion, we suggest Il6st as a novel target for improving dermatitis, and that agents with suitable efficacy and safety for its modulation are translatable.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chaeeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yerin Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - WonSeok Choi
- Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Miri Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yebeen Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Gi Young Lee
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea; Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
McMullen E, Maazi M, Te B, Donovan J. Folliculitis decalvans as a potential risk factor for cutaneous malignancy. Int J Dermatol 2024; 63:e223-e224. [PMID: 39014522 DOI: 10.1111/ijd.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Affiliation(s)
- Eric McMullen
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mahan Maazi
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bianca Te
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Donovan
- Department of Dermatology, University of British Columbia, Vancouver, BC, Canada
- Donovan Hair Clinic, Whistler, BC, Canada
| |
Collapse
|
3
|
Wroński A, Jarocka-Karpowicz I, Surażyński A, Gęgotek A, Zarkovic N, Skrzydlewska E. Modulation of Redox and Inflammatory Signaling in Human Skin Cells Using Phytocannabinoids Applied after UVA Irradiation: In Vitro Studies. Cells 2024; 13:965. [PMID: 38891097 PMCID: PMC11171479 DOI: 10.3390/cells13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
UVA exposure disturbs the metabolism of skin cells, often inducing oxidative stress and inflammation. Therefore, there is a need for bioactive compounds that limit such consequences without causing undesirable side effects. The aim of this study was to analyse in vitro the effects of the phytocannabinoids cannabigerol (CBG) and cannabidiol (CBD), which differ in terms of biological effects. Furthermore, the combined use of both compounds (CBG+CBD) has been analysed in order to increase their effectiveness in human skin fibroblasts and keratinocytes protection against UVA-induced alternation. The results obtained indicate that the effects of CBG and CBD on the redox balance might indeed be enhanced when both phytocannabinoids are applied concurrently. Those effects include a reduction in NOX activity, ROS levels, and a modification of thioredoxin-dependent antioxidant systems. The reduction in the UVA-induced lipid peroxidation and protein modification has been confirmed through lower levels of 4-HNE-protein adducts and protein carbonyl groups as well as through the recovery of collagen expression. Modification of antioxidant signalling (Nrf2/HO-1) through the administration of CBG+CBD has been proven to be associated with reduced proinflammatory signalling (NFκB/TNFα). Differential metabolic responses of keratinocytes and fibroblasts to the effects of the UVA and phytocannabinoids have indicated possible beneficial protective and regenerative effects of the phytocannabinoids, suggesting their possible application for the purpose of limiting the harmful impact of the UVA on skin cells.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Swiat 17/5, 15-453 Bialystok, Poland;
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, HR-10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| |
Collapse
|
4
|
Luo M, Zheng Y, Zhuo Q, Lin L, Han Y. The causal effects of atopic dermatitis on the risk of skin cancers: A two-sample Mendelian randomization study. J Eur Acad Dermatol Venereol 2024; 38:703-709. [PMID: 38009387 DOI: 10.1111/jdv.19674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Observational and epidemiological studies show conflicting results on the relationship between atopic dermatitis and skin cancer. Additionally, observational studies are susceptible to the reverse causation and confounders, thus, may not interpret true causal relationships. The causal effects of atopic dermatitis on the risk of skin cancers remains unclear. OBJECTIVES To investigate the causal relationship between atopic dermatitis and skin cancer including cutaneous malignant melanoma, cutaneous squamous cell carcinoma, basal cell carcinoma and actinic keratosis. METHODS We performed a two-sample Mendelian randomization analysis based on summary datasets of public genome-wide association studies of European ancestry. The inverse variance-weighted approach was applied as the main analysis. MR-Egger and weighted median methods were used to complement the inverse variance-weighted results. A series of sensitivity analyses were used to ensure the robustness of the causality estimates. RESULTS Inverse variance-weighted method showed that genetically predicted dermatitis patients were significantly associated with an increased incidence of basal cell carcinoma (OR, 1.20; 95% CI, 1.10-1.31; p = 4.07E-05) and cutaneous squamous cell carcinoma (OR, 1.14; 95% CI, 1.10-1.19; p = 1.05E-11). However, we did not find a significant causality for atopic dermatitis on melanoma neither did we find actinic keratosis. Subsequent sensitive analyses supported these results. CONCLUSIONS Our study identified the causality between atopic dermatitis basal cell carcinoma and squamous cell carcinoma. Accordingly, regular skin cancer screening is recommended for patients with atopic dermatitis.
Collapse
Affiliation(s)
- Min Luo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yaxuan Zheng
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qianwei Zhuo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Lihang Lin
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yue Han
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Ho PY, Lin YT. Mal de Meleda. JAMA Dermatol 2024; 160:464-465. [PMID: 38477895 DOI: 10.1001/jamadermatol.2024.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This case report describes diffuse waxy palmoplantar hyperkeratosis in a symmetrically well-demarcated “gloves and socks” distribution with nail dystrophy.
Collapse
Affiliation(s)
- Pei-Yun Ho
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Tsz Lin
- Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Camicia A, Foppiani JA, Raska O, Hernandez Alvarez A, Lee D, Taritsa IC, Schuster KA, Wan R, Neradová S, Lin GJ, Lee TC, Molitor M, Zikan M, Lin SJ. From Case Reports to Molecular Insight: Examining the Outcomes and Underlying Mechanisms of Squamous Cell Carcinoma in Breast Implant Patients-A Systematic Review. Int J Mol Sci 2024; 25:2872. [PMID: 38474119 PMCID: PMC10932080 DOI: 10.3390/ijms25052872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There is extensive coverage in the existing literature on implant-associated lymphomas like anaplastic large-cell lymphoma, but breast implant-associated squamous cell carcinoma (BIA-SCC) has received limited scholarly attention since its first case in 1992. Thus, this study aims to conduct a qualitative synthesis focused on the underexplored association between breast implants and BIA-SCC. A systematic review was conducted utilizing the PubMed, Web of Science, and Cochrane databases to identify all currently reported cases of BIA-SCC. Additionally, a literature review was performed to identify potential biochemical mechanisms that could lead to BIA-SCC. Studies were vetted for quality using the NIH quality assessment tool. From an initial pool of 246 papers, 11 met the quality criteria for inclusion, examining a total of 14 patients aged between 40 and 81 years. BIA-SCC was found in a diverse range of implants, including those with smooth and textured surfaces, as well as those filled with saline and silicone. The condition notably manifested a proclivity for aggressive clinical progression, as evidenced by a mortality rate approximating 21.4% within a post-diagnostic interval of six months. Our literature review reveals that chronic inflammation, driven by various external factors such as pathogens and implants, can initiate carcinogenesis through epigenetic modifications and immune system alterations. This includes effects from exosomes and macrophage polarization, showcasing potential pathways for the pathogenesis of BIA-SCC. The study highlights the pressing need for further investigation into BIA-SCC, a subject hitherto inadequately addressed in the academic sphere. This necessitates the urgency for early screening and intervention to improve postoperative outcomes. While the review is confined by its reliance on case reports and series, it serves as a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Alexandra Camicia
- Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Jose A. Foppiani
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Otakar Raska
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Angelica Hernandez Alvarez
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Daniela Lee
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Iulianna C. Taritsa
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Kirsten A. Schuster
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| | - Rou Wan
- Mayo Clinic, Rochester, MN 55902, USA;
| | - Sylva Neradová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
| | - Gavin J. Lin
- Nobles and Greenough School, Dedham, MA 02026, USA
| | | | - Martin Molitor
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
- Department of Plastic Surgery, Bulovka University Hospital, 46401 Praha, Czech Republic
| | - Michal Zikan
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Praha, Czech Republic; (S.N.); (M.M.); (M.Z.)
- Department of Obstetrics and Gynecology, Bulovka University Hospital, 46401 Praha, Czech Republic
| | - Samuel J. Lin
- Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.A.F.); (A.H.A.); (D.L.); (I.C.T.); (K.A.S.); (S.J.L.)
| |
Collapse
|
7
|
Vishwas S, Paul SD, Singh D. An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs. Curr Drug Deliv 2024; 21:852-869. [PMID: 37496132 DOI: 10.2174/1567201820666230726150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 07/28/2023]
Abstract
Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer. The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients' therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.
Collapse
Affiliation(s)
- Suraj Vishwas
- Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
- Sanskar City College of Pharmacy, Rajnandgaon, Bhilai (C.G.) India
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai (C.G.) India
| | - Deepika Singh
- Shri Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
| |
Collapse
|
8
|
Bryson AM, Dominiak N, Frank PW. Giant Basal Cell Carcinoma of the Lateral Neck: A Case Study. Cureus 2023; 15:e44487. [PMID: 37791186 PMCID: PMC10544438 DOI: 10.7759/cureus.44487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
A giant basal cell carcinoma (GBCC) is a rare variant of basal cell carcinoma (BCC) that is larger (>5 cm) and more aggressive. While BCC is usually surgically excised as a small, local tumor, cases of GBCC represent a considerable portion of BCC malignancies and mortality. The growth of GBCC is hypothesized to be multifactorial, and due to the successful treatment of BCC, available data is limited. We present a case of GBCC found during routine post-mortem dissection in a 92-year-old male cadaver. The neoplasm showed predilection to periauricular soft tissue invasion, despite demonstrating high-risk characteristics for metastasis. Microscopic analysis demonstrated an infiltrative growth pattern and neurotropism. Perineural spread could be observed on gross dissection, indicating a worse prognosis, but there was no evidence of lymphatic or hematogenous spread. This is most likely due to the stromal dependence of BCC. Local invasion of the primary tumor likely compromised head and neck function, but there was no secondary tumor evidence. There were no histopathological findings that indicate an aggressive growth or metastatic transformation of the tumor. Therefore, while a conclusion about duration cannot be made due to the anonymity of the cadaver, duration of growth likely was a significant factor in mortality.
Collapse
Affiliation(s)
- Alec M Bryson
- Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, USA
| | - Nicole Dominiak
- Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, USA
| | - Patrick W Frank
- Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, USA
| |
Collapse
|
9
|
Kehrmann J, Koch F, Zumdick S, Höwner A, Best L, Masshöfer L, Scharfenberg S, Zeschnigk M, Becker JC, Schadendorf D, Buer J, Roesch A. Reduced Staphylococcus Abundance Characterizes the Lesional Microbiome of Actinic Keratosis Patients after Field-Directed Therapies. Microbiol Spectr 2023; 11:e0440122. [PMID: 37212689 PMCID: PMC10269920 DOI: 10.1128/spectrum.04401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 05/23/2023] Open
Abstract
Skin microbiome dysbiosis with a Staphylococcus overabundance is a feature of actinic keratosis (AK) and squamous skin carcinoma (SCC) patients. The impact of lesion-directed treatments for AK lesions such as diclofenac (DIC) and cold atmospheric plasma (CAP) on the lesional microbiome is not established. We studied 321 skin microbiome samples of 59 AK patients treated with DIC 3% gel versus CAP. Microbial DNA from skin swabs taken before start of treatment (week 0), at the end of the treatment period (week 24), and 3 months after end of treatment (week 36) was analyzed after sequencing the V3/V4 region of the 16S rRNA gene. The relative abundance of S. aureus was scrutinized by a tuf gene specific TaqMan PCR assay. The total bacterial load and both, relative and absolute abundance of Staphylococcus genus was reduced upon both therapies at week 24 and 36 compared to week 0. Notably, the lesional microbiome of patients responding to CAP therapy at week 24 was characterized by an increased relative abundance of Corynebacterium genus compared to nonresponders. A higher relative abundance of Staphylococcus aureus at week 36 was a feature of patients classified as nonresponders for both treatments 12 weeks after therapy completion. The reduction of the Staphylococcus abundance after treatment of AK lesions and alterations linked to treatment response encourage further studies for investigation of the role of the skin microbiome for both, the carcinogenesis of epithelial skin cancer and its function as predictive therapeutic biomarker in AK. IMPORTANCE The relevance of the skin microbiome for development of actinic keratosis (AK), its progression into squamous skin cancer, and for field-directed treatment response is unknown. An overabundance of staphylococci characterizes the skin microbiome of AK lesions. In this study, analyses of the lesional microbiome from 321 samples of 59 AK patients treated with diclophenac gel versus cold atmospheric plasma (CAP) revealed a reduced total bacterial load and reduced relative and absolute Staphylococcus genus abundance upon both treatments. A higher relative Corynebacterium abundance was a feature of patients classified as responders at the end of CAP-treatment period (week 24) compared with nonresponders and the Staphylococcus aureus abundance of patients classified as responders 3 months after treatment completion was significantly lower than in nonresponders. The alterations of the skin microbiome upon AK treatment encourage further investigations for establishing its role for carcinogenesis and its function as predictive biomarker in AK.
Collapse
Affiliation(s)
- Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fiona Koch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Partner site Essen/Düsseldorf, Essen, Germany
| | - Skrollan Zumdick
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Höwner
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Partner site Essen/Düsseldorf, Essen, Germany
| | - Lara Best
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Masshöfer
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sarah Scharfenberg
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Partner site Essen/Düsseldorf, Essen, Germany
| | - Michael Zeschnigk
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jürgen C. Becker
- Departments of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Partner site Essen/Düsseldorf, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen and German Cancer Partner site Essen/Düsseldorf, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel) 2023; 12:antiox12030546. [PMID: 36978794 PMCID: PMC10045429 DOI: 10.3390/antiox12030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mounting evidence indicates that the microbiota, the unique combination of micro-organisms residing in a specific environment, plays an essential role in the development of a wide range of human diseases, including skin cancer. Moreover, a persistent imbalance of microbial community, named dysbiosis, can also be associated with oxidative stress, a well-known emerging force involved in the pathogenesis of several human diseases, including cutaneous malignancies. Although their interplay has been somewhat suggested, the connection between microbiota, oxidative stress, and skin cancer is a largely unexplored field. In the present review, we discuss the current knowledge on these topics, suggesting potential therapeutic strategies.
Collapse
|
11
|
(Jitian) Mihulecea CR, Rotaru M. Review: The Key Factors to Melanomagenesis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010181. [PMID: 36676131 PMCID: PMC9866207 DOI: 10.3390/life13010181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Melanoma is the most dangerous form of skin cancer that develops from the malignant transformation of the melanocytes located in the basal layer of the epidermis (cutaneous melanoma). Melanocytes may also be found in the meninges, eyes, ears, gastrointestinal tract, genito-urinary system, or other mucosal surfaces (mucosal melanoma). Melanoma is caused by an uncontrolled proliferation of melanocytes, that at first may form a benign lesion (nevogenesis), but in time, it may transition to melanoma, determining what it is named, melanomagenesis. Some tumors may appear spontaneously (de novo melanoma) or on preexisting lesions (nevus-associated melanoma). The exact cause of melanoma may not be fully understood yet, but there are some factors that initiate and promote this malignant process. This study aims to provide a summary of the latest articles regarding the key factors that may lead to melanomagenesis. The secondary objectives are to reveal the relationship between nevi and melanoma, to understand the cause of "de novo" and "nevus-associated melanoma" and highlight the differences between these subtypes.
Collapse
Affiliation(s)
- Cristina-Raluca (Jitian) Mihulecea
- Doctoral Studies, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, 300041 Timișoara, Romania
- Dermatology Clinic, Emergency Clinical County Hospital of Sibiu, 550245 Sibiu, Romania
- Correspondence:
| | - Maria Rotaru
- Doctoral Studies, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, 300041 Timișoara, Romania
- Dermatology Clinic, Emergency Clinical County Hospital of Sibiu, 550245 Sibiu, Romania
- Dermatology Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
12
|
Ran Y, Yan Z, Jiang B, Liang P. N6-methyladenosine functions and its role in skin cancer. Exp Dermatol 2023; 32:4-12. [PMID: 36314059 DOI: 10.1111/exd.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 01/06/2023]
Abstract
N6-methyladenosine (m6A) methylation is the most abundant mammalian mRNA modification. m6A regulates RNA processing, splicing, nucleation, translation and stability by transferring, removing and recognizing m6A methylation sites, which are critical for cancer initiation, progression, metabolism and metastasis. m6A is involved in pathophysiological tumour development by altering m6A modification and expression levels in tumour oncogenes and suppressor genes. Skin cancers are by far the most common malignancies in humans, with well over a million cases diagnosed each year. Skin cancers are grouped into two main categories: melanoma and non-melanoma skin cancers (NMSC), based on cell origin and clinical behaviour. In this review, we summarize m6A methylation functions in different skin cancers, and discuss how m6A methylation is involved in disease development and progression. Moreover, we review potential prognostic biomarkers and molecular targets for early skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yanqin Ran
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhuoxian Yan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Bimei Jiang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
13
|
Cho SI, Lee H, Cho S. Risk of Skin Cancer and Actinic Keratosis in Patients with Rosacea: A Nationwide Population-based Cohort Study. Acta Derm Venereol 2022; 102:adv00803. [PMID: 36250731 PMCID: PMC9677253 DOI: 10.2340/actadv.v102.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The association between rosacea and skin cancer remains inconclusive, with conflicting reports. The aim of this nationwide population-based cohort study was to determine the risk of skin cancer in patients with rosacea. A rosacea cohort (n = 11,420) was formulated and evaluated from 2010 to 2019. The incidence rate ratios of actinic keratosis, cutaneous melanoma, keratinocyte carcinoma and gastric, colorectal, and liver cancer were analysed in comparison with a matched control group, and multivariable stratified Cox proportional hazards model analysis was performed. The risk of actinic keratosis and keratinocyte carcinoma was increased in the rosacea group compared with the control group, with adjusted hazard ratios of 6.05 (95% confidence interval 3.63–10.09) and 2.66 (1.53–4.61), respectively. The risk of cutaneous melanoma and gastric, colorectal and liver cancer was not increased, with adjusted hazard ratios of 1.69 (0.25–11.37), 0.81 (0.59–1.10), 0.91 (0.69–1.18) and 1.32 (0.89–1.95), respectively. These results reveal an increased risk of actinic keratosis and keratinocyte carcinoma in patients with rosacea.
Collapse
Affiliation(s)
- Soo Ick Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Hanjae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Soyun Cho
- Department of Dermatology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, 20 Boramae Road 5-gil. Dongjak-gu, Seoul 07061, Korea.
| |
Collapse
|
14
|
Chikhaoui A, Jones M, Režen T, Ben Ahmed M, Naouali C, Komel R, Zghal M, Boubaker S, Abdelhak S, Yacoub-Youssef H. Inflammatory landscape in Xeroderma pigmentosum patients with cutaneous melanoma. Sci Rep 2022; 12:13854. [PMID: 35974070 PMCID: PMC9381529 DOI: 10.1038/s41598-022-17928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a DNA repair disease that predisposes to early skin cancers as cutaneous melanoma. Melanoma microenvironment contains inflammatory mediators, which would be interesting biomarkers for the prognosis or for the identification of novel therapeutic targets. We used a PCR array to evaluate the transcriptional pattern of 84 inflammatory genes in melanoma tumors obtained from XP patients (XP-Mel) and in sporadic melanoma (SP-Mel) compared to healthy skin. Commonly expressed inflammatory genes were further explored via GTEx and GEPIA databases. The differentially expressed inflammatory genes in XP were compared to their expression in skin exposed to UVs, and evaluated on the basis of the overall survival outcomes of patients with melanoma. Monocyte subsets of patients with SP-Mel, XP and healthy donors were also assessed. PCR array data revealed that 34 inflammatory genes were under-expressed in XP-Mel compared to SP-Mel. Differentially expressed genes that were common in XP-Mel and SP-Mel were correlated with the transcriptomic datasets from GEPIA and GTEx and highlighted the implication of KLK1 and IL8 in the tumorigenesis. We showed also that in XP-Mel tumors, there was an overexpression of KLK6 and KLK10 genes, which seems to be associated with a bad survival rate. As for the innate immunity, we observed a decrease of intermediate monocytes in patients with SP-Mel and in XP. We highlight an alteration in the immune response in XP patients. We identified candidate biomarkers involved in the tumorigenesis, and in the survival of patients with melanoma. Intermediate monocyte's in patients at risk could be a prognostic biomarker for melanoma outcome.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Meriem Jones
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Tadeja Režen
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Contrôle Et Immunobiologie de L'infection, LR16IPT02, Institut Pasteur de Tunis Université de Tunis El Manar I, 2092, Tunis, Tunisia
| | - Chokri Naouali
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Radovan Komel
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Mohamed Zghal
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Samir Boubaker
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia. .,Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
15
|
Photo-Protective and Anti-Inflammatory Effects of Antidesma thwaitesianum Müll. Arg. Fruit Extract against UVB-Induced Keratinocyte Cell Damage. Molecules 2022; 27:molecules27155034. [PMID: 35956984 PMCID: PMC9370488 DOI: 10.3390/molecules27155034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The main cause of most skin cancers is damage from UVB from sunlight, which penetrate the skin surface and induce inflammation. For this reason, this study aims to identify natural products with photo-protection properties and their mode of action by using the UVB-irradiated HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level. The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which have been previously described as antioxidant and anti-inflammation. Together, we demonstrated that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.
Collapse
|
16
|
Lipocalin 2 potentially contributes to tumorigenesis from colitis via IL-6/STAT3/NF-kB signaling pathway. Biosci Rep 2022; 42:231201. [PMID: 35470375 PMCID: PMC9109459 DOI: 10.1042/bsr20212418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Lipocalin 2 (LCN2), a member of the lipocalin superfamily, plays an important role in oncogenesis and progression in various types of cancer. However, the role of LCN2 in inflammation-associated cancer remains unknown. Here, we explored the functional role and mechanisms of LCN2 in tumorigenesis using murine colitis-associated cancer (CAC) models and human colorectal cancer (CRC) cells. Using murine CAC models, we found that LCN2 was preferentially expressed in colonic tissues from CAC models compared to tissues from normal mice. In vitro results demonstrated that the levels of LCN2 mRNA and protein were markedly up-regulated by Interleukin-6 (IL-6) in human CRC cells. Interestingly, we found LCN2 up-regulation by IL-6 is diminished by NF-kB and STAT3 inhibition using specific inhibitors and siRNA. Reporter assay results determined that IL-6 induces LCN2 gene promoter activity under control of NF-kB/STAT3 activation. IL-6-induced LCN2 regulated cell survival and susceptibility of developmental factors to the NF-kB/STAT3 pathway. Taken together, our results highlight the unknown role of LCN2 in CAC progression and suggest that increased LCN2 may serve as an indicator of CRC development in the setting of chronic inflammation.
Collapse
|
17
|
Ge X, Niture S, Lin M, Cagle P, Li PA, Kumar D. MicroRNA-205-5p inhibits skin cancer cell proliferation and increase drug sensitivity by targeting TNFAIP8. Sci Rep 2021; 11:5660. [PMID: 33707587 PMCID: PMC7952414 DOI: 10.1038/s41598-021-85097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3'UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAFV600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8.
Collapse
Affiliation(s)
- Xinhong Ge
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.,Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| | - Minghui Lin
- Department of Respiratory Diseases, The Forth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Bio-Manufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| |
Collapse
|
18
|
Mirlekar B, Pylayeva-Gupta Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 2021; 13:E167. [PMID: 33418929 PMCID: PMC7825035 DOI: 10.3390/cancers13020167] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The IL-12 family cytokines are a group of unique heterodimeric cytokines that include IL-12, IL-23, IL-27, IL-35 and, most recently, IL-39. Recent studies have solidified the importance of IL-12 cytokines in shaping innate and adaptive immune responses in cancer and identified multipronged roles for distinct IL-12 family members, ranging from effector to regulatory immune functions. These cytokines could serve as promising candidates for the development of immunomodulatory therapeutic approaches. Overall, IL-12 can be considered an effector cytokine and has been found to engage anti-tumor immunity by activating the effector Th1 response, which is required for the activation of cytotoxic T and NK cells and tumor clearance. IL-23 and IL-27 play dual roles in tumor immunity, as they can both activate effector immune responses and promote tumor growth by favoring immune suppression. IL-35 is a potent regulatory cytokine and plays a largely pro-tumorigenic role by inhibiting effector T cells. In this review, we summarize the recent findings on IL-12 family cytokines in the control of tumor growth with an emphasis primarily on immune regulation. We underscore the clinical implications for the use of these cytokines either in the setting of monotherapy or in combination with other conventional therapies for the more effective treatment of malignancies.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Mizutani K, Nakanishi T, Ikejiri M, Yuasa H, Matsushima Y, Kondo M, Nakai Y, Habe K, Nakatani K, Yamanaka K. Development of cutaneous squamous cell carcinoma during pembrolizumab therapy. J Dermatol 2020; 48:e7-e8. [PMID: 32940367 DOI: 10.1111/1346-8138.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kento Mizutani
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takehisa Nakanishi
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Makoto Ikejiri
- Department of, Clinical Laboratory, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hiroto Yuasa
- Department of, Pathology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yoshiaki Matsushima
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Makoto Kondo
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yasuo Nakai
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Koji Habe
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kaname Nakatani
- Department of, Clinical Laboratory, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Keiichi Yamanaka
- Departments of, Department of, Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
20
|
Lex K, Maia Gil M, Lopes-Bastos B, Figueira M, Marzullo M, Giannetti K, Carvalho T, Ferreira MG. Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proc Natl Acad Sci U S A 2020; 117:15066-15074. [PMID: 32554492 PMCID: PMC7334448 DOI: 10.1073/pnas.1920049117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.
Collapse
Affiliation(s)
- Kirsten Lex
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Mariana Maia Gil
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Bruno Lopes-Bastos
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, UMR7284 U1081 UNS, 06107 Nice, France
| | - Margarida Figueira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Marta Marzullo
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Kety Giannetti
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Tânia Carvalho
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal
| | - Miguel Godinho Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal;
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, UMR7284 U1081 UNS, 06107 Nice, France
| |
Collapse
|
21
|
Choquet H, Ashrafzadeh S, Kim Y, Asgari MM, Jorgenson E. Genetic and environmental factors underlying keratinocyte carcinoma risk. JCI Insight 2020; 5:134783. [PMID: 32434987 PMCID: PMC7259534 DOI: 10.1172/jci.insight.134783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent large-scale GWAS and large epidemiologic studies have accelerated the discovery of genes and environmental factors that contribute to the risk of keratinocyte carcinoma (KC), which includes basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This Review summarizes the genomic regions associated with SCC and BCC risk, examines the genetic overlap between SCC and BCC, and discusses biological pathways involved in SCC and BCC development. Next, we review environmental factors that are associated with KC risk, including those that are shared between SCC and BCC as well as others that associated with only one type of KC. We conclude with a critical appraisal of current research and potential directions for future research.
Collapse
Affiliation(s)
- Hélène Choquet
- Kaiser Permanente Northern California, Division of Research, Oakland, California, USA
| | - Sepideh Ashrafzadeh
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Maryam M. Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Jorgenson
- Kaiser Permanente Northern California, Division of Research, Oakland, California, USA
| |
Collapse
|
22
|
Shah SM, Starr MR, Dalvin LA, Comfere NI, AbouChehade JE, Hodge DO, Iezzi R, Bakri SJ. INCREASED INCIDENCE OF CUTANEOUS KERATINOCYTIC AND MELANOCYTIC MALIGNANCIES IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION. Retina 2020; 40:857-865. [PMID: 30986797 PMCID: PMC8210636 DOI: 10.1097/iae.0000000000002506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The relationship between age-related macular degeneration (AMD) and malignancy, especially cutaneous malignancies, is not well studied. We investigated a possible association between AMD and cutaneous malignancies. METHODS A retrospective, consecutive review of all patients who had received at least 1 intravitreal injection for wet AMD between January 1, 2004, and December 31, 2013, was conducted using the Rochester Epidemiology Project in Olmsted County, Minnesota. Age- and sex-matched control groups included 473 pre-anti-vascular endothelial growth factor era wet AMD patients, 504 concurrent time dry AMD patients, and 504 patients with no AMD. The rates of AMD and overall malignancy, cutaneous malignancies, and specific types of cutaneous malignancies were compared between groups of patients. RESULTS Patients with wet AMD incurred an increased rate of overall malignancies compared to patients with dry AMD {52.8% wet AMD (confidence interval [CI]: 48.3-57.2) vs. 43.7% dry AMD (CI: 39.3-48.1); P= 0.003} or those without AMD (52.8% wet AMD [CI: 48.3-57.2] vs. 35.3% no AMD [CI: 31.1-39.7]; P = <0.001). Patients with dry AMD also had higher rates of malignancy than those without AMD (43.7% dry AMD [CI: 39.3-48.1] vs. 35.3% no AMD [CI: 31.1-39.7]; P = 0.007). Rate of cutaneous malignancies was increased in patients with wet AMD compared to patients with dry AMD (24.4% wet AMD [CI: 20.7-28.4] vs. 14.6% dry AMD [CI: 11.5-17.9]; P = <0.001) and those with no AMD (24.4% wet AMD [CI: 20.7-28.4] vs. 9.7% no AMD [CI: 7.3-12.7]; P = <0.001). CONCLUSION AND RELEVANCE To the best of our knowledge, this is the first report to establish an association between AMD and cutaneous malignancies, supporting a possible discussion of the association when a patient presents with one of the two conditions.
Collapse
Affiliation(s)
| | | | | | - Nneka I. Comfere
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | | | - David O. Hodge
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905
| | - Raymond Iezzi
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905
| | - Sophie J. Bakri
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
23
|
Aida Maranduca M, Liliana Hurjui L, Constantin Branisteanu D, Nicolae Serban D, Elena Branisteanu D, Dima N, Lacramioara Serban I. Skin - a vast organ with immunological function (Review). Exp Ther Med 2020; 20:18-23. [PMID: 32508987 DOI: 10.3892/etm.2020.8619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
The skin is an organ with multiple functions, where important inflammatory and immunological processes take place. The integrity of the skin barrier is necessary for it to fulfill its roles. An intact skin barrier requires a physiological keratinization process, but also a normal cutaneous microbial flora. Any change in the proliferation and differentiation of keratinocytes entails the disruption of the skin barrier and the triggering of inflammatory and immunological processes at this level, in response to the aggression of external pathogens. Also, there are several specialised immune cells in the skin (Langerhans cells, T regulator cells, T helper cells), that maintain a balance between pro-inflammatory and anti-inflammatory processes at this level. Disturbing the immune homeostasis causes inflammation and allergic skin reaction. Psoriasis and atopic dermatitis are two inflammatory diseases of the skin, characterized by perturbation of the mechanisms of skin barrier formation. The immune system of the skin is also involved in the pathophysiology of vitiligo and pemphigus. The aim of this review is to offer a brief presentation of the inflammatory and immunological processes that occur in the skin.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Department of Physiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Physiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Dragomir Nicolae Serban
- Department of Physiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daciana Elena Branisteanu
- Department of Dermatology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Physiology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
24
|
Lundsgaard NU, Cramp RL, Franklin CE. Effects of ultraviolet-B radiation on physiology, immune function and survival is dependent on temperature: implications for amphibian declines. CONSERVATION PHYSIOLOGY 2020; 8:coaa002. [PMID: 32467758 PMCID: PMC7245394 DOI: 10.1093/conphys/coaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 12/11/2019] [Accepted: 01/17/2020] [Indexed: 05/10/2023]
Abstract
Multiple environmental changes are thought to be contributing to the widespread decline of amphibians in montane regions, but interactions between drivers of decline are not well understood. It has been proposed previously that elevated ultraviolet-B radiation (UBVR) and low temperatures may interact in their negative effects on health, immune function and disease susceptibility in exposed amphibians. In the present study, we chronically exposed larvae of the striped-marsh frog (Limnodynastes peronii) to a factorial combination of high and low UVBR and high and low temperature to assess interactive effects on growth, survival and indices of immune function. The high UVBR treatment reduced growth and survival of larvae compared to the low UVBR treatment at both temperatures, but the effects were significantly enhanced at low temperature. High UVBR exposure also induced a chronic inflammatory response as evidenced by an increase in the leucocyte proportion of total cells and altered the ratio of neutrophils to lymphocytes in the blood, highlighting a potential mechanistic basis for increased disease susceptibility in amphibians living at high altitudes. Our findings stress the importance of investigating environmental factors in combination when assessing their effects and highlight the mechanistic basis for how key environmental drivers in montane regions affect amphibian health. Continuation of this work is necessary for the development of targeted conservation strategies that tackle the root causes of montane amphibian declines.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Goddard Building (8), St Lucia, Queensland 4072, Australia
| | - Craig E Franklin
- Corresponding author: School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia. Tel: +61 416 801 116;
| |
Collapse
|
25
|
Shankar G. M, Alex VV, Nisthul A. A, Bava SV, Sundaram S, Retnakumari AP, Chittalakkottu S, Anto RJ. Pre-clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif 2020; 53:e12710. [PMID: 31663659 PMCID: PMC6985671 DOI: 10.1111/cpr.12710] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Clinical trials have demonstrated the efficacy of indigo naturalis, a traditional Chinese medicine ingredient, against psoriasis, a skin disease characterized by keratinocyte hyperproliferation and inflammation. The present study investigates the efficacy of tryptanthrin, a bioactive compound in indigo naturalis, against non-melanoma skin cancer (NMSC) and the signalling events involved. METHODS Efficacy of tryptanthrin against NMSC was assessed using DMBA/PMA-induced skin carcinogenesis model in Swiss albino mice. Immunostaining for PCNA and ki-67 was used to mark proliferating cells in tissues. Haematoxylin and eosin staining and toluidine staining were employed to assess inflammation, and TUNEL assay was used to detect apoptosis in tissues. The signalling events were evaluated using Western blot, imunohistochemistry and immunofluorescence staining. MTT assay and clonogenic assay were performed to assess the viability and proliferation of cancer cells, in vitro. RESULTS In mice, topical application of tryptanthrin suppressed skin carcinogenesis. It attenuated inflammation, impeded the proliferation of hair follicle (HF) cells and suppressed the activation of β-catenin, a major driver of HF cell proliferation. Additionally tryptanthrin suppressed the activation of ERK1/2 and p38, both of which promote β-catenin activation and lowered the expression of c-Myc and cyclin-D1. Tryptanthrin suppressed the proliferation of the human NMSC cell line, A431 and abrogated EGF-induced activation of β-catenin and subsequent cytoskeletal rearrangement. CONCLUSION The study demonstrates with molecular evidence that tryptanthrin is an effective suppressor of NMSC.
Collapse
Affiliation(s)
- Mohan Shankar G.
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
- Research ScholarManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Vijai V. Alex
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | - Amrutha Nisthul A.
- Department of Biotechnology and MicrobiologyKannur UniversityKannurKeralaIndia
| | - Smitha V. Bava
- Department of BiotechnologyUniversity of CalicutCalicutKeralaIndia
| | - Sankar Sundaram
- Department of PathologyGovernment Medical CollegeKottayamKeralaIndia
| | - Archana P. Retnakumari
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | | | - Ruby John Anto
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| |
Collapse
|
26
|
Mahamat-Saleh Y, Cervenka I, Al Rahmoun M, Savoye I, Mancini FR, Trichopoulou A, Boutron-Ruault MC, Kvaskoff M. Mediterranean dietary pattern and skin cancer risk: A prospective cohort study in French women. Am J Clin Nutr 2019; 110:993-1002. [PMID: 31380561 DOI: 10.1093/ajcn/nqz173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Mediterranean diet (MD) has been reported to be associated with lower cancer risk. However, while previous studies explored major single components of the MD, only 1 previous study has investigated adherence to the MD in relation to melanoma risk. OBJECTIVE The aim of this study was to explore the relations between adherence to the MD and the risk of skin cancer, including melanomas, basal cell carcinomas (BCCs), and squamous cell carcinomas (SCCs). DESIGN Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale (E3N) is a prospective cohort of 98,995 French women aged 40-65 y in 1990. Dietary data were collected via a validated food questionnaire in 1993. Adherence to the MD was assessed using a 9-unit dietary score that incorporates intakes of fruit, vegetables, legumes, cereal products, olive oil, fish, dairy products, meat products, and alcohol. We used Cox proportional hazards regression models to compute HRs and 95% CIs adjusted for age and main known skin cancer risk factors. RESULTS From 1993 to 2008, a total of 2003 skin cancer cases were ascertained among 67,332 women, including 404 melanomas, 1367 BCCs, and 232 SCCs. Score of adherence to the MD was associated with lower risk of skin cancer (HR: 0.83; 95% CI: 0.73, 0.93 for high compared with low score, Ptrend = 0.001). MD score was also inversely and linearly associated with risks of melanoma (HR: 0.72; 95% CI: 0.54, 0.96; Ptrend = 0.02) and BCC (HR: 0.77; 95% CI: 0.66, 0.90; Ptrend = 0.0006) but not SCC (HR: 1.08; 95% CI: 0.75, 1.55; Ptrend = 0.68), although with no heterogeneity across skin cancer types (Pheterogeneity = 0.23). CONCLUSION These findings suggest that adherence to the MD is associated with a lower skin cancer risk in women, particularly melanoma and BCC. If confirmed in future research, these findings may have important implications in skin cancer prevention.
Collapse
Affiliation(s)
- Yahya Mahamat-Saleh
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Iris Cervenka
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Marie Al Rahmoun
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Isabelle Savoye
- Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium
| | - Francesca Romana Mancini
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece.,WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Marina Kvaskoff
- Centre for Research in Epidemiology and Population Health (CESP) - School of Medicine, Université Paris Sud - School of Medicine, Université Versailles Saint-Quentin-en-Yvelines (UVSQ); INSERM (French National Institute for Health and Medical Research), Université Paris Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| |
Collapse
|
27
|
Gómez-Abenza E, Ibáñez-Molero S, García-Moreno D, Fuentes I, Zon LI, Mione MC, Cayuela ML, Gabellini C, Mulero V. Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J Exp Clin Cancer Res 2019; 38:405. [PMID: 31519199 PMCID: PMC6743187 DOI: 10.1186/s13046-019-1389-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most lethal form of skin cancer and while incidence rates are declining for most cancers, they have been steadily rising for SKCM. Serine protease inhibitor, kunitz-type, 1 (SPINT1) is a type II transmembrane serine protease inhibitor that has been shown to be involved in the development of several types of cancer, such as squamous cell carcinoma and colorectal cancer. METHODS We used the unique advantages of the zebrafish to model the impact of Spint1a deficiency in early transformation, progression and metastatic invasion of SKCM together with in silico analysis of the occurrence and relevance of SPINT1 genetic alterations of the SKCM TCGA cohort. RESULTS We report here a high prevalence of SPINT1 genetic alterations in SKCM patients and their association with altered tumor immune microenvironment and poor patient survival. The zebrafish model reveals that Spint1a deficiency facilitates oncogenic transformation, regulates the tumor immune microenvironment crosstalk, accelerates the onset of SKCM and promotes metastatic invasion. Notably, Spint1a deficiency is required at both cell autonomous and non-autonomous levels to enhance invasiveness of SKCM. CONCLUSIONS These results reveal a novel therapeutic target for SKCM.
Collapse
Affiliation(s)
- Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofía Ibáñez-Molero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Inmaculada Fuentes
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA USA
| | - Maria C. Mione
- Laboratory of Experimental Cancer Biology, Cibio, University of Trento, Trento, Italy
| | - María L. Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Chiara Gabellini
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Present Address: Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, Pisa, Italy
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
28
|
Lennon RP, Lopez KCO, Socha JAM, Montealegre FEG, Chandler JW, Sweet NN, Hawley LA, Smith DK, Sanchack KE. Health Characteristics of the Wayuu Indigenous People. Mil Med 2019; 184:e230-e235. [PMID: 30793185 DOI: 10.1093/milmed/usz021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The identified number of isolated populations with unique medical characteristics is growing. These populations are difficult to study. Civil-military humanitarian operations are part of our medical force readiness training, and are also a venue through which unique populations can be simultaneously served and evaluated. Continuing Promise 2017 was a collaborative effort between the US Navy, non-governmental organizations, and the Colombian Ministry of Health, Navy and Army to provide primary medical care to the Wayuu indigenous people in the La Guajira Department of Colombia. MATERIALS AND METHODS In the course of providing primary care services, demographic and health data of the Wayuu people were collected. Descriptive statistics were used to generate averages, and t-tests were used to compare Wayuu means with age and gender matched US means for weight and age in children and blood pressure in adults. Observational data on skin afflictions and arthritis were also collected. This project was approved by Naval Medical Center Portsmouth Institutional Review Board. RESULTS Although the Wayuu live in an arid desert with chronic sun exposure, they have no apparent affliction from squamous cell carcinoma or melanoma. They live almost exclusively through manual labor, yet rarely develop osteoarthritic joint disease. Their incidence of hypertension is 35% lower than their US age and gender matched cohort. Although their region is known for extreme poverty and malnutrition, their weight-for-age curve from 2 months through 17 years is similar to their US cohort. CONCLUSIONS This study is the first to document the general health characteristics of the Wayuu people. It demonstrates that in addition to providing important readiness training to our own personnel, humanitarian missions can provide medical care and explore unique, isolated populations. Although retrospective and limited in size, it can be used to shape future medical missions to their region, and will hopefully stimulate formal research into their remarkable characteristics.
Collapse
Affiliation(s)
- Robert P Lennon
- Naval Hospital Jacksonville, 2080 Child Street, Jacksonville, FL
| | - Kristian Camilo Orduña Lopez
- Universidad Nacional de Colombia - Bogotá Campus - Faculty of Medicine. Medical School. Cra 45, Bogotá, D.C. - Colombia
| | - Javier Andres Moreno Socha
- Universidad Nacional de Colombia - Bogotá Campus - Faculty of Medicine. Medical School. Cra 45, Bogotá, D.C. - Colombia
| | | | - Jerry W Chandler
- Naval Hospital Jacksonville, 2080 Child Street, Jacksonville, FL
| | - Nicholas N Sweet
- Naval Medical Center Camp Lejeune Radiology Department, Naval Medical Center Camp Lejeune, 100 Brewster Blvd., Camp Lejeune, NC
| | - Lesley A Hawley
- Naval Medical Center Portsmouth Dermatology Department, Naval Medical Center Portsmouth, 620 John Paul Jones Cir., Portsmouth, VA
| | - Dustin K Smith
- Naval Hospital Jacksonville, 2080 Child Street, Jacksonville, FL
| | | |
Collapse
|
29
|
Anti-Irritant and Anti-Inflammatory Effects of DHA Encapsulated in Resveratrol-Based Solid Lipid Nanoparticles in Human Keratinocytes. Nutrients 2019; 11:nu11061400. [PMID: 31234344 PMCID: PMC6627705 DOI: 10.3390/nu11061400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
We recently found that the dietary long chain omega-3 polyunsaturated fatty acid (LC-ω-3 PUFA), docosahexaenoic acid (DHA), showed enhanced antineoplastic activity against colon cancer cells if encapsulated in resveratrol-based solid lipid nanoparticles (RV-SLNs). In the present study, we investigated whether the DHA enclosed in RV-SLNs (DHA-RV-SLNs) could have the potential of attenuating irritation and inflammation caused by environmental factors at the skin level. To this aim, we used two keratinocyte lines (HaCaT and NCTC 2544 cells) and exposed them to the cytotoxic action of the surfactant, sodium dodecyl sulfate (SDS), as an in vitro model of irritation, or to the pro-inflammatory activity of the cytokine TNF-α. We found that DHA enclosed in RV-SLNs significantly enhanced its ability to contrast the cytotoxic effect of SDS and to inhibit the SDS- and TNF-α-induced production of the inflammatory cytokines IL-1β, IL-6, and 1 MCP-1, in the two keratinocyte cell lines, as well as the NLRP3 inflammasome activation. Moreover, it more efficiently reduced the upsurge of reactive oxygen species (ROS) levels obtained in the presence of a pro-oxidant (H2O2). Overall, our findings suggest the possibility that a sustained dietary supplementation with DHA-RV-SLNs could efficiently protect skin from the pro-irritant and pro-inflammatory activity of environmental attacks.
Collapse
|
30
|
Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-Delivery Nanosystems for Cancer Treatment: A Review. Pharm Nanotechnol 2019; 7:90-112. [PMID: 30907329 DOI: 10.2174/2211738507666190321112237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Massive data available on cancer therapy more than ever lead our mind to the general concept that there is no perfect treatment for cancer. Indeed, the biological complexity of this disease is too excessive to be treated by a single therapeutic approach. Current delivery systems containing a specific drug or gene have their particular opportunities and restrictions. It is worth noting that a considerable number of studies suggest that single- drug delivery systems result in insufficient suppression of cancer growth. Therefore, one of the main ideas of co-delivery system designing is to enhance the intended response or to achieve the synergistic/combined effect compared to the single drug strategy. This review focuses on various strategies for co-delivery of therapeutic agents in the treatment of cancer. The primary approaches within the script are categorized into co-delivery of conventional chemotherapeutics, gene-based molecules, and plant-derived materials. Each one is explained in examples with the recent researches. In the end, a brief summary is provided to conclude the gist of the review.
Collapse
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Samimi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zamzami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Anjana S, Joseph J, John J, Balachandran S, Kumar TRS, Abraham A. Novel flourescent spiroborate esters: potential therapeutic agents in in vitro cancer models. Mol Biol Rep 2018; 46:727-740. [PMID: 30554314 DOI: 10.1007/s11033-018-4529-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The current treatment system in cancer therapy, which includes chemotherapy/radiotherapy is expensive and often deleterious to surrounding healthy tissue. Presently, several medicinal plants and their constituents are in use to manage the development and progression of these diseases.They have been found effective, safe, and less expensive. In the present study, we are proposing the utility of a new class of curcumin derivative, Rubrocurcumin, the spiroborate ester of curcumin with boric acid and oxalic acid (1:1:1), which have enhanced biostability for therapeutic applications. In vitro cytocompatibility of this drug complex was analysed using MTT assay, neutral red assay, lactate dehydrogenase assay in 3T3L1 adipocytes. Anti tumour activity of this drug complex on MCF7 and A431 human cancer cell line was studied by morphological analysis using phase contrast microscopy, Hoechst staining and cell cycle analysis by FACS. To explore the chemotherapeutic effect, the cytotoxic effect of this compound was also carried out. Rubrocurcumin is more biostable than natural curcumin in physiological medium. Our results prove that this curcumin derivative drug complex possess more efficacy and anti-cancer activity compared with curcumin. The findings out of this study suggests this novel compound as potential candidate for site targeted drug delivery.
Collapse
Affiliation(s)
- S Anjana
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Josna Joseph
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Jeena John
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - S Balachandran
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - T R Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
32
|
Bridge JA, Lee JC, Daud A, Wells JW, Bluestone JA. Cytokines, Chemokines, and Other Biomarkers of Response for Checkpoint Inhibitor Therapy in Skin Cancer. Front Med (Lausanne) 2018; 5:351. [PMID: 30631766 PMCID: PMC6315146 DOI: 10.3389/fmed.2018.00351] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy for skin malignancies has ushered in a new era for cancer treatments by demonstrating unprecedented durable responses in the setting of metastatic Melanoma. Consequently, checkpoint inhibitors are now the first-line treatment of metastatic melanoma and widely used as adjuvant therapy for stage III disease. With the observation that higher tumor mutational burden correlates with a better response, checkpoint inhibitors are tested in other skin cancer types of known high tumor mutational burden with promising results and recently became the first-ever FDA-approved treatment for metastatic Merkel cell carcinoma. The emerging new standards-of-care will necessitate more precise biomarkers and predictors for treatment response and immune-related adverse events. Measurable immune-related mediators are currently under investigation as factors that promote or block the response to cancer immunotherapy and may provide insights into the underlying immune response to the tumor. Cytokines and chemokines are such mediators and are crucial for facilitating the recruitment and activation of specific subsets of leukocytes within the microenvironment of skin cancers. The exact mechanisms of how these meditators, both immunological and non-immunological, operate in the tumor microenvironment is an area of active research, so to reliable biomarkers of responses to cancer immunotherapy. Here, we will review and summarize the expanding body of literature for immune-related biomarkers pertaining to Melanoma, Basal cell carcinoma, Squamous cell carcinoma, and Merkel cell carcinoma, highlighting clinically relevant checkpoint inhibitor therapy biomarker advancements.
Collapse
Affiliation(s)
- Jennifer A Bridge
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - James C Lee
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - Adil Daud
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - James W Wells
- The Faculty of Medicine, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
33
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res 2018; 37:293. [PMID: 30486830 PMCID: PMC6263970 DOI: 10.1186/s13046-018-0943-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) has been associated with various diseases. Previous studies have shown that IL-32 inhibited the development of several tumors. However, the role of IL-32γ, an isotype of IL-32, in skin carcinogenesis remains unknown. METHODS We compared 7,12-Dimethylbenz[a]anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis in wild type (WT) and IL-32γ-overexpressing mice to evaluate the role of IL-32γ. We also analyzed cancer stemness and NF-κB signaling in skin cancer cell lines with or without IL-32γ expression by western blotting, quantitative real-time PCR and immunohistochemistry analysis. RESULTS Carcinogen-induced tumor incidence in IL-32γ mice was significantly reduced in comparison to that in WT mice. Infiltration of inflammatory cells and the expression levels of pro-inflammatory mediators were decreased in the skin tumor tissues of IL-32γ mice compared with WT mice. Using a genome-wide association study analysis, we found that IL-32 was associated with integrin αV (ITGAV) and tissue inhibitor of metalloproteinase-1 (TIMP-1), which are critical factor for skin carcinogenesis. Reduced expression of ITGAV and TIMP-1 were identified in DMBA/TPA-induced skin tissues of IL-32γ mice compared to that in WT mice. NF-κB activity was also reduced in DMBA/TPA-induced skin tissues of IL-32γ mice. IL-32γ decreased cancer cell sphere formation and expression of stem cell markers, and increased chemotherapy-induced cancer cell death. IL-32γ also downregulated expression of ITGAV and TIMP-1, accompanied with the inhibition of NF-κB activity. In addition, IL-32γ expression with NF-κB inhibitor treatment further reduced skin inflammation, epidermal hyperplasia, and cancer cell sphere formation and downregulated expression levels of ITGAV and TIMP-1. CONCLUSIONS These findings indicated that IL-32γ suppressed skin carcinogenesis through the inhibition of both stemness and the inflammatory tumor microenvironment by the downregulation of TIMP-1 and ITGAV via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Chung Hee Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
- Hanbul Co, Ltd. R&D center, 634 Eon Ju-Ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jun Tae Bae
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Hyoung Ok Jun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam 50463 Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
34
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci 2018; 19:E2795. [PMID: 30227629 PMCID: PMC6164993 DOI: 10.3390/ijms19092795] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperthermia is a cancer treatment where tumor tissue is heated to around 40 °C. Hyperthermia shows both cancer cell cytotoxicity and immune response stimulation via immune cell activation. Immunogenic responses encompass the innate and adaptive immune systems, involving the activation of macrophages, natural killer cells, dendritic cells, and T cells. Moreover, hyperthermia is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In this review, we will focus on hyperthermia-induced immunogenic effects and molecular events to improve radiotherapy efficacy. The beneficial potential of integrating radiotherapy with hyperthermia is also discussed.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
35
|
Albuquerque KRS, Pacheco NM, del Rosario Loyo Casao T, de Melo FCSA, Novaes RD, Gonçalves RV. Applicability of Plant Extracts in Preclinical Studies of Melanoma: A Systematic Review. Mediators Inflamm 2018; 2018:6797924. [PMID: 30147443 PMCID: PMC6083739 DOI: 10.1155/2018/6797924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and arises from melanocyte gene mutation. This disease is multifactorial, but its main cause is the excessive exposure to ultraviolet radiation. Currently, available chemotherapy has shown little expressive results, which may justify the high use of natural products to treat this cancer. We performed a systematic review to compile the results of studies carried out in murine models and investigated the effect of plant extracts on melanoma treatment. Papers were selected in MEDLINE/Pubmed and Scopus according to the PRISM statement. Search filters were developed using three parameters: plant extract, melanoma, and animal model. The 35 identified studies were all submitted to the criteria described in the ARRIVE guidelines. The different extracts showed antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory activity, and also proved to be effective in cell cycle modulation and apoptosis evasion. Bias analysis evidenced the absence of standardized experimental designs, as well as failures in statistical tests and in the presentation of results. The analysis of the studies suggests that the use of plant extracts is effective for the treatment of melanoma in murine models.
Collapse
Affiliation(s)
| | - Nívea Maria Pacheco
- Department of Biochemistry and Biotechnology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|