1
|
Kuwabara A, Uenishi K, Tanaka K. Vitamin K intake and health, consideration from the epidemiological studies. J Clin Biochem Nutr 2021; 69:111-121. [PMID: 34616102 PMCID: PMC8482381 DOI: 10.3164/jcbn.20-64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
The most fundamental function of vitamin K is to activate the blood coagulation factors in the liver. Despite the recent recognition of its extra-hepatic actions, the current Dietary Reference Intakes for vitamin K is based on the amount necessary for maintaining the normal blood coagulation in many countries. To define the Dietary Reference Intake for vitamin K, appropriate biomarkers well-reflecting the vitamin K status are essential. Unfortunately, however, no markers are currently available with properties enabling us to properly define the vitamin K status; i.g., no interference by other factors and the presence of widely approved cut-off values. Thus, Adequate Intake is determined, which is an index based on the representative dietary intake data from healthy individuals. Recently, epidemiological studies have been reported regarding the relationship between vitamin K and noncommunicable diseases including osteoporotic fracture. Furthermore, studies focusing on the relationship between vitamin K intake and metabolic syndrome, physical function, depression, cognition, and all-cause mortality have become available, although limited in number. This review summarizes the recent findings in favor of the novel functions of vitamin K. More epidemiological studies are needed to define the appropriate vitamin K intake value based on the prevention of various disorders.
Collapse
Affiliation(s)
- Akiko Kuwabara
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 3-7-30 Habikino, Habikino city, Osaka 583-8555, Japan
| | - Kazuhiro Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado city, Saitama 350-0288, Japan
| | - Kiyoshi Tanaka
- Faculty of Nutrition, Kobe Gakuin University, 518 Ikawadanicho-Arise, Nishi-ku, Kobe 651-2180, Japan
| |
Collapse
|
2
|
Hao Z, Jin DY, Chen X, Schurgers LJ, Stafford DW, Tie JK. γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins. Blood 2021; 137:533-543. [PMID: 33507293 PMCID: PMC7845004 DOI: 10.1182/blood.2020006329] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
γ-Glutamyl carboxylase (GGCX) is an integral membrane protein that catalyzes posttranslational carboxylation of a number of vitamin K-dependent (VKD) proteins involved in a wide variety of physiologic processes, including blood coagulation, vascular calcification, and bone metabolism. Naturally occurring GGCX mutations are associated with multiple distinct clinical phenotypes. However, the genotype-phenotype correlation of GGCX remains elusive. Here, we systematically examined the effect of all naturally occurring GGCX mutations on the carboxylation of 3 structure-function distinct VKD proteins in a cellular environment. GGCX mutations were transiently introduced into GGCX-deficient human embryonic kidney 293 cells stably expressing chimeric coagulation factor, matrix Gla protein (MGP), or osteocalcin as VKD reporter proteins, and then the carboxylation efficiency of these reporter proteins was evaluated. Our results show that GGCX mutations differentially affect the carboxylation of these reporter proteins and the efficiency of using vitamin K as a cofactor. Carboxylation of these reporter proteins by a C-terminal truncation mutation (R704X) implies that GGCX's C terminus plays a critical role in the binding of osteocalcin but not in the binding of coagulation factors and MGP. This has been confirmed by probing the protein-protein interaction between GGCX and its protein substrates in live cells using bimolecular fluorescence complementation and chemical cross-linking assays. Additionally, using a minigene splicing assay, we demonstrated that several GGCX missense mutations affect GGCX's pre-messenger RNA splicing rather than altering the corresponding amino acid residues. Results from this study interpreted the correlation of GGCX's genotype and its clinical phenotypes and clarified why vitamin K administration rectified bleeding disorders but not nonbleeding disorders.
Collapse
Affiliation(s)
- Zhenyu Hao
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Xuejie Chen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Darrel W Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| |
Collapse
|
3
|
Kombinierte Vitamin-D- und Vitamin-K-Supplemente für Kinder und Jugendliche: Nutzen oder Risiko? Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ZusammenfassungEine tägliche Vitamin-D-Supplementierung für Säuglinge bis zum zweiten erlebten Frühsommer zur Prävention der Rachitis und die Gabe von Vitamin K1 bei Neugeborenen zur Prävention von Vitamin-K-Mangel-Blutungen sind empfohlen.Seit einiger Zeit sind in Österreich Kombinationsprodukte der beiden fettlöslichen Vitamine D3 und K2 auf dem Markt erhältlich, die mit gesundheitsfördernden Effekten wie verbesserter Knochenmineralisation und Schutz vor vaskulärer Kalkeinlagerung beworben werden.Die Wirkung einer kombinierten Supplementierung von Vitamin D und Vitamin K2 bei Kindern ist aus physiologischer Sicht gesehen zwar potenziell sinnvoll, um Effekt, Risiken oder unerwünschte Nebenwirkungen zu evaluieren. Zuvor werden aber Dosisfindungs- und Sicherheitsstudien für die kombinierte Verabreichung benötigt. Insbesondere sind randomisierte kontrollierte Studien bei Risikokindern und Frühgeborenen notwendig. Solange diese Daten nicht vorliegen, erscheint die Gabe von Vitamin D in Kombination mit Vitamin K2 im Kindesalter nicht gerechtfertigt und kann daher auch nicht empfohlen werden.
Collapse
|
4
|
Establishment of the Variation of Vitamin K Status According to Vkorc1 Point Mutations Using Rat Models. Nutrients 2019; 11:nu11092076. [PMID: 31484376 PMCID: PMC6770205 DOI: 10.3390/nu11092076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/16/2023] Open
Abstract
Vitamin K is crucial for many physiological processes such as coagulation, energy metabolism, and arterial calcification prevention due to its involvement in the activation of several vitamin K-dependent proteins. During this activation, vitamin K is converted into vitamin K epoxide, which must be re-reduced by the VKORC1 enzyme. Various VKORC1 mutations have been described in humans. While these mutations have been widely associated with anticoagulant resistance, their association with a modification of vitamin K status due to a modification of the enzyme efficiency has never been considered. Using animal models with different Vkorc1 mutations receiving a standard diet or a menadione-deficient diet, we investigated this association by measuring different markers of the vitamin K status. Each mutation dramatically affected vitamin K recycling efficiency. This decrease in recycling was associated with a significant alteration of the vitamin K status, even when animals were fed a menadione-enriched diet suggesting a loss of vitamin K from the cycle due to the presence of the Vkorc1 mutation. This change in vitamin K status resulted in clinical modifications in mutated rats only when animals receive a limited vitamin K intake totally consistent with the capacity of each strain to recycle vitamin K.
Collapse
|
5
|
Silaghi CN, Ilyés T, Filip VP, Farcaș M, van Ballegooijen AJ, Crăciun AM. Vitamin K Dependent Proteins in Kidney Disease. Int J Mol Sci 2019; 20:ijms20071571. [PMID: 30934817 PMCID: PMC6479974 DOI: 10.3390/ijms20071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an increased risk of developing vascular calcifications, as well as bone dynamics impairment, leading to a poor quality of life and increased mortality. Certain vitamin K dependent proteins (VKDPs) act mainly as calcification inhibitors, but their involvement in the onset and progression of CKD are not completely elucidated. This review is an update of the current state of knowledge about the relationship between CKD and four extrahepatic VKDPs: matrix Gla protein, osteocalcin, growth-arrest specific protein 6 and Gla-rich protein. Based on published literature in the last ten years, the purpose of this review is to address fundamental aspects about the link between CKD and circulating VKDPs levels as well as to raise new topics about how the interplay between molecular weight and charge could influence the modifications of circulating VKDPs at the glomerular level, or whether distinct renal etiologies have effect on VKDPs. This review is the output of a systematic literature search and may open future research avenues in this niche domain.
Collapse
Affiliation(s)
- Ciprian N Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Vladimir P Filip
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Marius Farcaș
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| | - Adriana J van Ballegooijen
- Department of Nephrology & Epidemiology and Biostatistics, Amsterdam University Medical Center, VUmc, 1117 HV Amsterdam, The Netherlands.
| | - Alexandra M Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy "Iuliu Hațieganu", 400012 Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Bell DSH, Goncalves E. Should we still be utilizing warfarin in the type 2 diabetic patient? Diabetes Obes Metab 2018; 20:2327-2329. [PMID: 29790252 DOI: 10.1111/dom.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Abstract
The frequency of non-valvular atrial fibrillation is increased by 40% in type 2 diabetic individuals and the thromboembolic risk associated with atrial fibrillation is increased by 79% compared with the non-diabetic individual with atrial fibrillation. Warfarin, the traditional anticoagulant used to prevent thromboembolism, is non-specific and affects several proteins outside the coagulation system. Decreasing the levels of matrix Gla protein entails an increase in coronary and renal artery calcification, which has the potential to increase cardiovascular events and accelerate decline in renal function. The direct-acting oral anticoagulants are specific, directly inhibiting either thrombin or factor Xa, and have been shown to be safer and more efficacious in studies of the type 2 diabetic patient.
Collapse
Affiliation(s)
- David S H Bell
- Southside Endocrinology and Diabetes and Thyroid Associates, Birmingham, Alabama
| | - Edison Goncalves
- Southside Endocrinology and Diabetes and Thyroid Associates, Birmingham, Alabama
| |
Collapse
|
7
|
Michaux A, Matagrin B, Debaux JV, Schurgers LJ, Benoit E, Lattard V. Missense mutation of VKORC1 leads to medial arterial calcification in rats. Sci Rep 2018; 8:13733. [PMID: 30214074 PMCID: PMC6137107 DOI: 10.1038/s41598-018-31788-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/21/2018] [Indexed: 01/22/2023] Open
Abstract
Vitamin K plays a crucial role in the regulation of vascular calcifications by allowing activation of matrix Gla protein. The dietary requirement for vitamin K is low because of an efficient recycling of vitamin K by vitamin K epoxide reductase (VKORC1). However, decreased VKORC1 activity may result in vascular calcification. More than 30 coding mutations of VKORC1 have been described. While these mutations have been suspected of causing anticoagulant resistance, their association with an increase in the risk of vascular calcification has never been considered. We thus investigated functional cardiovascular characteristics in a rat model mutated in VKORC1. This study revealed that limited intake in vitamin K in mutated rat induced massive calcified areas in the media of arteries of lung, aortic arch, kidneys and testis. Development of calcifications could be inhibited by vitamin K supplementation. In calcified areas, inactive Matrix Gla protein expression increased, while corresponding mRNA expression was not modified. Mutation in VKORC1 associated with a limited vitamin K intake is thus a major risk for cardiovascular disease. Our model is the first non-invasive rat model that shows spontaneous medial calcifications and would be useful for studying physiological function of vitamin K.
Collapse
Affiliation(s)
- Arnaud Michaux
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280, Marcy l'Etoile, France
| | - Benjamin Matagrin
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280, Marcy l'Etoile, France
| | - Jean-Valéry Debaux
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280, Marcy l'Etoile, France
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Etienne Benoit
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280, Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, INRA, VetAgro Sup, Univ Lyon, F-69280, Marcy l'Etoile, France.
| |
Collapse
|
8
|
van Ballegooijen AJ, van Putten SR, Visser M, Beulens JW, Hoogendijk EO. Vitamin K status and physical decline in older adults-The Longitudinal Aging Study Amsterdam. Maturitas 2018; 113:73-79. [PMID: 29903651 DOI: 10.1016/j.maturitas.2018.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/16/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We examined the association between vitamin K status and physical functioning over 13 years in the Longitudinal Aging Study Amsterdam. STUDY DESIGN Longitudinal cohort study of 633 community-dwelling adults from the Longitudinal Aging Study Amsterdam (LASA) aged 55-65 years (54% women). MAIN OUTCOME MEASURES At baseline (2002-2003), plasma desphospho-uncarboxylated matrix Gla protein (dp-ucMGP) was measured with a sandwich ELISA as a marker of vitamin K status. The outcome measures handgrip strength, calf circumference, self-reported functional limitations and functional performance were obtained at baseline and four follow-up examinations. We used generalized estimating equations to determine the relationship between dp-ucMGP tertiles and the various outcome measurements after adjusting for potential confounders. The lowest dp-ucMGP tertile reflects a high vitamin K status and was the reference. RESULTS Mean dp-ucMGP was 376 ± 233 pmol/L and mean follow-up was 11.1 years. Participants showed a decline in the outcome measures over time. Compared with the lowest tertile, the highest dp-ucMGP tertile had: lower handgrip strength, 1.1 kg (95% confidence interval (-2.1, -0.1; P-trend <0.001); smaller calf circumference, -0.5 cm (-0.9 -0.1; P-trend = 0.018); and, only among women, a 0.7-point poorer functional performance score (-1.1, -0.3; P-interaction = 0.002). Dp-ucMGP was not related to self-reported functional limitations. No interaction effects between time and dp-ucMGP were observed. CONCLUSIONS Low vitamin K status was associated with lower handgrip strength, smaller calf circumference, and, in women only, with poorer functional performance score. A low vitamin K status was however not related to the 13-year decline in these measures.
Collapse
Affiliation(s)
- Adriana J van Ballegooijen
- Department of Health Sciences, Amsterdam Public Health Institute, VU University, Amsterdam, The Netherlands.
| | - Sinony R van Putten
- Department of Health Sciences, Amsterdam Public Health Institute, VU University, Amsterdam, The Netherlands
| | - Marjolein Visser
- Department of Health Sciences, Amsterdam Public Health Institute, VU University, Amsterdam, The Netherlands
| | - Joline W Beulens
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, Amsterdam, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emiel O Hoogendijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Barrett H, O'Keeffe M, Kavanagh E, Walsh M, O'Connor EM. Is Matrix Gla Protein Associated with Vascular Calcification? A Systematic Review. Nutrients 2018; 10:E415. [PMID: 29584693 PMCID: PMC5946200 DOI: 10.3390/nu10040415] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Specific patient cohorts are at increased risk of vascular calcification. Functional matrix-gla protein (MGP), a tissue-derived vitamin K dependent protein, is reported to be an important inhibitor of vascular calcification and may have clinical potential to modify the progression of vascular calcification through regulation of functional MGP fractions. This systematic review examines twenty-eight studies which assess the relationship between circulating protein expressions of MGP species and vascular calcification in different arterial beds. The included studies examined participants with atherosclerosis, chronic kidney disease (CKD), diabetes, healthy participants, vitamin K supplementation, measured plasma vitamin K levels and vitamin K antagonist usage. The current review reports conflicting results regarding MGP fractions with respect to local calcification development indicating that a multifaceted relationship exists between the MGP and calcification. A primary concern regarding the studies in this review is the large degree of variability in the calcification location assessed and the fraction of MGP measured. This review suggests that different underlying molecular mechanisms can accelerate local disease progression within the vasculature, and specific circulating fractions of MGP may be influenced differently depending on the local disease states related to vascular calcification development. Further studies examining the influence of non-functional MGP levels, with respect to specific calcified arterial beds, are warranted.
Collapse
Affiliation(s)
- Hilary Barrett
- Centre for Applied Biomedical Engineering Research (CABER), School of Engineering, Bernal Institute, University of Limerick, Limerick V94 F858, UK.
| | - Mary O'Keeffe
- School of Natural Sciences and Department of Biological Sciences, University of Limerick, Limerick V94 F858, UK.
| | - Eamon Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Limerick V94 F858, UK.
| | - Michael Walsh
- Centre for Applied Biomedical Engineering Research (CABER), School of Engineering, Bernal Institute, University of Limerick, Limerick V94 F858, UK.
- Health Research Institute (HRI), University of Limerick, Limerick V94 F858, UK.
| | - Eibhlís M O'Connor
- School of Natural Sciences and Department of Biological Sciences, University of Limerick, Limerick V94 F858, UK.
- Health Research Institute (HRI), University of Limerick, Limerick V94 F858, UK.
- Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Cork T12 YN60, UK.
| |
Collapse
|
10
|
Abstract
OBJECTIVE Vitamin K antagonists (VKA) are associated with increased vascular calcification which may lead to an elevated cardiovascular risk. If the direct anticoagulants (DOACs) have similar negative vascular effects is unknown. We evaluated the influence of different anticoagulation strategies on coronary artery disease (CAD) using coronary computed tomography angiography (CTA). METHODS Overall 702 consecutive patients with non-valvular atrial fibrillation (AF) who underwent CTA for AF ablation planning were enrolled and stratified according to their anticoagulation into VKA, DOAC (all agents) and a control group without oral anticoagulation. Patients were propensity score matched 1:1:1, significant structural heart disease and comorbidities were excluded. CT images were evaluated for plaque burden (calcium score, segment involvement score (SIS) and non-calcified SIS, stenosis grading) and plaque morphology (high risk plaque features: low attenuation, positive remodeling, napkin-ring sign, spotty calcification). RESULTS Final analysis included 303 patients (101 patients each group) and showed increased overall plaque burden in patients using VKA compared to DOAC users and the control group (mean affected segments 2.58 vs 1.58 vs 2.100, p = 0.008), and a higher prevalence of high-risk plaque (HRP) features (42.6% vs 13.9% vs 26.7%, p < 0.0001). Patients treated with DOACs did not differ in conventional CT findings from the control group and showed an even lower prevalence of selected HRP features compared to the control group: low-attenuation plaques (4.0% vs. 14.4%, p = 0.014) and napkin-ring sign (0 vs. 5.0%, p = 0.029). CONCLUSION Vitamin K antagonists are associated with a higher plaque burden and increased high-risk plaque features, whereas DOACs may yield a benefit in cardiovascular atherosclerosis.
Collapse
|
11
|
|
12
|
De Mauri A, Torreggiani M, Brambilla M, Chiarinotti D. Vitamin K Antagonist Therapy Is a Risk Factor for Ulcer Development and Death Among Dialyzed Patients. Ther Apher Dial 2017; 21:150-156. [PMID: 28194903 DOI: 10.1111/1744-9987.12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 11/27/2022]
Abstract
Peripheral artery disease is a common complication among dialyzed patients. Since Vitamin K antagonists promote metastatic calcifications and these are the main determinants of vascular damage, we investigated their role in the development of lower limb ulcers in dialyzed patients. We retrospectively enrolled 316 dialyzed patients, aged 68 ± 15 years, 65% male, 32% diabetic, 43% with ischemic heart disease and followed them for 36 ± 25 months. 60 patients assumed Vitamin K antagonists: they were older, with a higher prevalence of heart disease, at greater risk of death and they developed more ulcers and underwent more lower limb amputations compared to the rest of our cohort. Peripheral artery disease, Vitamin K antagonists and diabetes were independent risk factors for foot lesions. In addition, Vitamin K antagonists were also an independent risk factor for death. Vitamin K antagonists are a potent independent risk factor for the development of the uremic foot syndrome and death.
Collapse
Affiliation(s)
- Andreana De Mauri
- Nephrology and Dialysis Unit, University Hospital "Maggiore della Carità", Novara, Italy
| | - Massimo Torreggiani
- Unit of Nephrology and Hemodialysis, IRCCS Fondazione Salvatore Maugeri, University of Pavia, Pavia, Italy
| | - Marco Brambilla
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Doriana Chiarinotti
- Nephrology and Dialysis Unit, University Hospital "Maggiore della Carità", Novara, Italy
| |
Collapse
|
13
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
14
|
Farley SM, Leonard SW, Stevens JF, Traber MG. Deuterium-labeled phylloquinone fed to α-tocopherol-injected rats demonstrates sensitivity of low phylloquinone-containing tissues to menaquinone-4 depletion. Mol Nutr Food Res 2014; 58:1610-9. [PMID: 25044667 DOI: 10.1002/mnfr.201300659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/19/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022]
Abstract
SCOPE The influence of excess α-tocopherol (α-T) on tissue depletion of phylloquinone (PK) and menaquinone-4 (MK-4) was evaluated. METHODS AND RESULTS Rats (n = 5 per group) were fed deuterium-labeled PK (2 μmol/kg diet) for 17 days, thereby labeling the conversion from deuterium-labeled PK to d₄-MK-4. Then they were injected subcutaneously daily for the last 7 days with saline, vehicle, or α-T (100 mg/kg body weight). α-T injections (i) increased α-T concentrations by tenfold in liver, doubled them in plasma and most tissues, but they were unchanged in brain; (ii) increased the α-T metabolite, carboxyethyl hydroxychromanol (α-CEHC) concentrations: >25-fold in liver and kidney, tenfold in plasma and lung, and 50-fold in heart; brain contained detectable α-CEHC (0.26 ± 0.03 nmol/g) only in α-T-injected animals; and (iii) depleted most tissues' vitamin K. Compared with vehicle-injected rats, brains from α-T rats contained half the total vitamin K (10.3 ± 0.5 versus 21 ± 2 pmol/g, p = 0.0002) and one-third the d₄-MK-4 (5.8 ± 0.5 versus 14.6 ± 1.7 pmol/g, p = 0.0002). Tissues with high PK concentrations (liver, 21-30 pmol/g and heart, 28-50 pmol/g) were resistant to K depletion. CONCLUSION We propose that α-T-dependent vitamin K depletion is likely mediated at an intermediate step in MK-4 production; thus, tissues with high PK are unaffected.
Collapse
Affiliation(s)
- Sherry M Farley
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Nutrition Graduate Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
15
|
Beazley KE, Reckard S, Nurminsky D, Lima F, Nurminskaya M. Two sides of MGP null arterial disease: chondrogenic lesions dependent on transglutaminase 2 and elastin fragmentation associated with induction of adipsin. J Biol Chem 2013; 288:31400-8. [PMID: 24036114 PMCID: PMC3829453 DOI: 10.1074/jbc.m113.495556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/02/2013] [Indexed: 01/04/2023] Open
Abstract
Mutations in matrix Gla protein (MGP) have been correlated with vascular calcification. In the mouse model, MGP null vascular disease presents as calcifying cartilaginous lesions and mineral deposition along elastin lamellae (elastocalcinosis). Here we examined the mechanisms underlying both of these manifestations. Genetic ablation of enzyme transglutaminase 2 (TG2) in Mgp(-/-) mice dramatically reduced the size of cartilaginous lesions in the aortic media, attenuated calcium accrual more than 2-fold, and doubled longevity as compared with control Mgp(-/-) animals. Nonetheless, the Mgp(-/-);Tgm2(-/-) mice still died prematurely as compared with wild-type and retained the elastocalcinosis phenotype. This pathology in Mgp(-/-) animals was developmentally preceded by extensive fragmentation of elastic lamellae and associated with elevated serine elastase activity in aortic tissue and vascular smooth muscle cells. Systematic gene expression analysis followed by an immunoprecipitation study identified adipsin as the major elastase that is induced in the Mgp(-/-) vascular smooth muscle even in the TG2 null background. These results reveal a central role for TG2 in chondrogenic transformation of vascular smooth muscle and implicate adipsin in elastin fragmentation and ensuing elastocalcinosis. The importance of elastin calcification in MGP null vascular disease is highlighted by significant residual vascular calcification and mortality in Mgp(-/-);Tgm2(-/-) mice with reduced cartilaginous lesions. Our studies identify two potential therapeutic targets in vascular calcification associated with MGP dysfunction and emphasize the need for a comprehensive approach to this multifaceted disorder.
Collapse
Affiliation(s)
- Kelly E. Beazley
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Steven Reckard
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Dmitry Nurminsky
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Florence Lima
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Maria Nurminskaya
- From the Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The objective of this review is to outline the contribution of the gut microbiota to nutritional status and to highlight the mechanisms by which this can occur. RECENT FINDINGS Historically, research linking intestinal bacteria with nutritional status focused on the degradation of indigestible food components by bacterial enzymes and metabolites. Of late, emerging evidence suggests an independent role of the gut microbiota in the regulation of glucose and energy homeostasis via complex interactions between microbially derived metabolites and specific target tissue cells. In addition, novel findings highlight specific microbial species involved in the production of a number of micronutrient components, which could potentially improve nutritional status in certain population groups, if available to the host at sufficiently abundant levels. SUMMARY New insights into the role of the gut microbiota and its holistic effects on the host are now emerging. High-throughput technologies allow for a greater insight into the role of the intestinal microbiota and the mechanisms by which it can contribute to overall nutritional status. Further, exploration of this evolving field of research will advance our understanding of how this complex ecosystem could advance the area of personalized nutrition in the future.
Collapse
|
17
|
Hammed A, Matagrin B, Spohn G, Prouillac C, Benoit E, Lattard V. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy. J Biol Chem 2013; 288:28733-42. [PMID: 23928358 DOI: 10.1074/jbc.m113.457119] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vitamin K is involved in the γ-carboxylation of the vitamin K-dependent proteins, and vitamin K epoxide is a by-product of this reaction. Due to the limited intake of vitamin K, its regeneration is necessary and involves vitamin K 2,3-epoxide reductase (VKOR) activity. This activity is known to be supported by VKORC1 protein, but recently a second gene, VKORC1L1, appears to be able to support this activity when the encoded protein is expressed in HEK293T cells. Nevertheless, this protein was described as being responsible for driving the vitamin K-mediated antioxidation pathways. In this paper we precisely analyzed the catalytic properties of VKORC1L1 when expressed in Pichia pastoris and more particularly its susceptibility to vitamin K antagonists. Vitamin K antagonists are also inhibitors of VKORC1L1, but this enzyme appears to be 50-fold more resistant to vitamin K antagonists than VKORC1. The expression of Vkorc1l1 mRNA was observed in all tissues assayed, i.e. in C57BL/6 wild type and VKORC1-deficient mouse liver, lung, and testis and rat liver, lung, brain, kidney, testis, and osteoblastic cells. The characterization of VKOR activity in extrahepatic tissues demonstrated that a part of the VKOR activity, more or less important according to the tissue, may be supported by VKORC1L1 enzyme especially in testis, lung, and osteoblasts. Therefore, the involvement of VKORC1L1 in VKOR activity partly explains the low susceptibility of some extrahepatic tissues to vitamin K antagonists and the lack of effects of vitamin K antagonists on the functionality of the vitamin K-dependent protein produced by extrahepatic tissues such as matrix Gla protein or osteocalcin.
Collapse
Affiliation(s)
- Abdessalem Hammed
- From the Unité Sous Contrat (USC) 1233 Institut National de Recherche Agronomique (INRA)-Vetagro Sup, Veterinary School of Lyon, 69280 Marcy l'Etoile, France and
| | | | | | | | | | | |
Collapse
|
18
|
Tie JK, Jin DY, Tie K, Stafford DW. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. J Thromb Haemost 2013; 11:1556-64. [PMID: 23710884 PMCID: PMC3745541 DOI: 10.1111/jth.12306] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms in the vitamin K epoxide reductase (VKOR) gene have been successfully used for warfarin dosage prediction. However, warfarin resistance studies of naturally occurring VKOR mutants do not correlate with their clinical phenotype. This discrepancy presumably arises because the in vitro VKOR activity assay is performed under artificial conditions using the non-physiological reductant dithiothreitol. OBJECTIVES The aim of this study is to establish an in vivo VKOR activity assay in mammalian cells (HEK293) where VKOR functions in its native milieu without interference from endogenous enzymes. METHODS Endogenous VKOR activity in HEK293 cells was knocked out by transcription activator-like effector nucleases (TALENs)-mediated genome editing. RESULTS AND CONCLUSIONS Knockout of VKOR in HEK293 cells significantly decreased vitamin K-dependent carboxylation with vitamin K epoxide (KO) as substrate. However, the paralog of VKOR, VKORC1L1, also exhibits substantial ability to convert KO to vitamin K for carboxylation. Using both VKOR and VKORC1L1 knockout cells, we examined the enzymatic activity and warfarin resistance of 10 naturally occurring VKOR mutants that were reported previously to have no activity in an in vitro assay. All 10 mutants are fully active; five have increased warfarin resistance, with the order being W59R>L128R≈W59L>N77S≈S52L. Except for the L128R mutant, this order is consistent with the clinical anticoagulant dosages. The other five VKOR mutants do not change VKOR's warfarin sensitivity, suggesting that factors other than VKOR play important roles. In addition, we confirmed that the conserved loop cysteines in VKOR are not required for active site regeneration after each cycle of oxidation.
Collapse
Affiliation(s)
- J-K Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
19
|
Beazley KE, Eghtesad S, Nurminskaya MV. Quercetin attenuates warfarin-induced vascular calcification in vitro independently from matrix Gla protein. J Biol Chem 2013; 288:2632-40. [PMID: 23223575 PMCID: PMC3554930 DOI: 10.1074/jbc.m112.368639] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/14/2012] [Indexed: 12/20/2022] Open
Abstract
Warfarin can stimulate vascular calcification in vitro via activation of β-catenin signaling and/or inhibition of matrix Gla protein (MGP) carboxylation. Calcification was induced in vascular smooth muscle cells (VSMCs) with therapeutic levels of warfarin in normal calcium and clinically acceptable phosphate levels. Although TGF/BMP and PKA pathways are activated in calcifying VSMCs, pharmacologic analysis reveals that their activation is not contributory. However, β-catenin activity is important because inhibition of β-catenin with shRNA or bioflavonoid quercetin prevents calcification in primary human VSMCs, rodent aortic rings, and rat A10 VSMC line. In the presence of quercetin, reactivation of β-catenin using the glycogen synthase kinase-3β (GSK-3β) inhibitor LiCl restores calcium accumulation, confirming that quercetin mechanism of action hinges on inhibition of the β-catenin pathway. Calcification in VSMCs induced by 10 μm warfarin does not associate with reduced levels of carboxylated MGP, and inhibitory effects of quercetin do not involve induction of MGP carboxylation. Further, down-regulation of MGP by shRNA does not alter the effect of quercetin. These results suggest a new β-catenin-targeting strategy to prevent vascular calcification induced by warfarin and identify quercetin as a potential therapeutic in this pathology.
Collapse
Affiliation(s)
- Kelly E. Beazley
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Saman Eghtesad
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Maria V. Nurminskaya
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
20
|
Vitamin K status in chronic kidney disease: a report of a study and a mini-review. Int Urol Nephrol 2013; 45:1339-44. [PMID: 23296791 DOI: 10.1007/s11255-012-0367-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/15/2012] [Indexed: 01/08/2023]
Abstract
Hepatic vitamin K-dependent proteins (e.g., Factors II, VII, IX and X) form part of the clotting cascade. Factor II (FII)/Prothrombin incorporates 10 Glu residues on the N-terminal region that are γ-carboxylated to Gla residues by the action of γ-glutamyl carboxylase to confer biological activity. Vitamin K is also required for the normal function of Matrix Gla Protein (MGP)--one of several non-clotting-related extra-hepatic vitamin K-dependent proteins. MGP is known to have protective action against vascular calcification--indeed it is a powerful tissue-bound inhibitory mechanism and can be found in blood vessel walls. The mature protein is also dependent on activation by γ-glutamyl carboxylase enzyme to convert Glu residues in its amino acid sequence to Gla. This reaction can only take place when the enzyme is activated in the presence of vitamin K. It is of great potential interest to investigate whether subtle deficiencies of vitamin K may, through its effect on the action of MGP, be a contributing factor to vascular calcification in CKD patients, in whom CV disease is greatly accelerated and in whom vascular calcification is not only common, but progresses aggressively, and is something for which as yet there is no clinically applicable remedy.
Collapse
|
21
|
Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 2012; 11:93. [PMID: 23140417 PMCID: PMC3502319 DOI: 10.1186/1475-2891-11-93] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/03/2012] [Indexed: 02/07/2023] Open
Abstract
Background Vitamin K2 contributes to bone and cardiovascular health. Therefore, two vitamin K2 homologues, menaquinone-4 (MK-4) and menaquinone-7 (MK-7), have been used as nutrients by the food industry and as nutritional supplements to support bone and cardiovascular health. However, little is known about the bioavailability of nutritional MK-4. To investigate MK-4 and MK-7 bioavailability, nutritional doses were administered to healthy Japanese women. Findings Single dose administration of MK-4 (420 μg; 945 nmol) or MK-7 (420 μg; 647 nmol) was given in the morning together with standardized breakfast. MK-7 was well absorbed and reached maximal serum level at 6 h after intake and was detected up to 48 h after intake. MK-4 was not detectable in the serum of all subjects at any time point. Consecutive administration of MK-4 (60 μg; 135 nmol) or MK-7 (60 μg; 92 nmol) for 7 days demonstrated that MK-4 supplementation did not increase serum MK-4 levels. However, consecutive administration of MK-7 increased serum MK-7 levels significantly in all subjects. Conclusions We conclude that MK-4 present in food does not contribute to the vitamin K status as measured by serum vitamin K levels. MK-7, however significantly increases serum MK-7 levels and therefore may be of particular importance for extrahepatic tissues.
Collapse
Affiliation(s)
- Toshiro Sato
- Fine Chemical Laboratory, J-OIL MILLS, INC, 1746 Nakashinden, Fukuroi-city, Shizuoka, 437-1111, Japan.
| | | | | |
Collapse
|
22
|
Schurgers LJ, Joosen IA, Laufer EM, Chatrou MLL, Herfs M, Winkens MHM, Westenfeld R, Veulemans V, Krueger T, Shanahan CM, Jahnen-Dechent W, Biessen E, Narula J, Vermeer C, Hofstra L, Reutelingsperger CP. Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype. PLoS One 2012; 7:e43229. [PMID: 22952653 PMCID: PMC3430691 DOI: 10.1371/journal.pone.0043229] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vitamin K-antagonists (VKA) are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE(-/-) model of atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users) underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD). VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE(-/-) mice (10 weeks) received a Western type diet (WTD) for 12 weeks, after which mice were fed a WTD supplemented with vitamin K(1) (VK(1), 1.5 mg/g) or vitamin K(1) and warfarin (VK(1)&W; 1.5 mg/g & 3.0 mg/g) for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden. CONCLUSIONS/SIGNIFICANCE VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE(-/-) mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Chen J, Zhang Y, Bin L, Sun K, Yu W, Liu J, Zhang C, Shen H, Hou Z, Yu F, Hui R. VKORC1 rs2359612C allele is associated with increased risk of coronary artery disease in the presence of coronary calcification. Hum Genet 2012; 132:29-37. [PMID: 22915323 DOI: 10.1007/s00439-012-1222-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/08/2012] [Indexed: 12/25/2022]
Abstract
VKORC1 genetic polymorphisms affect warfarin dose response, aortic calcification, and the susceptibility of coronary artery disease as shown in our previous study. Little is known regarding the association of VKORC1 polymorphisms with coronary artery calcification (CAC) and the role of CAC in the association with coronary artery disease (CAD). Due to a natural haplotype block in the VKORC1 gene in Chinese, polymorphism rs2359612 was analyzed in a case-control study and a prospective study. The case-control study included 464 CAD patients with non-calcified plaque (NCP), 562 CAD patients with mixed calcified plaque (MCP), 492 subjects with calcified plaque (CP), and 521 controls. The rs2359612C was only associated with increased risk of MCP, the CAD in the presence of CAC; the odds ratio was 1.397 (95 % CI 1.008-1.937, P < 0.05), which was replicated in the second independent population. On the contrary, a negative correlation was observed between rs2359612 and log-transformed Agatston score, and rs2359612 was negatively associated with the number of calcified vessels. Moreover, in a prospective study including 849 CAD patients undergoing revascularization, rs2359612C predicted a higher incidence of cardiovascular events in MCP subgroup; the relative risk was 1.435 (95 % CI 1.008-2.041, P = 0.045), which was not observed in the NCP subgroup. We conclude that the rs2359612C was associated with a higher risk of CAD in the presence of CAC and a higher incidence of cardiovascular events in CAD patients with CAC, but a lower coronary calcification. VKORC1 polymorphisms may be associated with the endophenotype of CAD, calcification-related atherosclerosis.
Collapse
Affiliation(s)
- Yibo Wang
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chatrou MLL, Winckers K, Hackeng TM, Reutelingsperger CP, Schurgers LJ. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev 2012; 26:155-66. [PMID: 22520397 DOI: 10.1016/j.blre.2012.03.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin K-antagonists (VKA) are the most widely used anti-thrombotic drugs with substantial efficacy in reducing risk of arterial and venous thrombosis. Several lines of evidence indicate, however, that VKA inhibit not only post-translational activation of vitamin K-dependent coagulation factors but also synthesis of functional extra-hepatic vitamin K-dependent proteins thereby eliciting undesired side-effects. Vascular calcification is one of the recently revealed side-effects of VKA. Vascular calcification is an actively regulated process involving vascular cells and a number of vitamin K-dependent proteins. Mechanistic understanding of vascular calcification is essential to improve VKA-based treatments of both thrombotic disorders and atherosclerosis. This review addresses vitamin K-cycle and vitamin K-dependent processes of vascular calcification that are affected by VKA. We conclude that there is a growing need for better understanding of the effects of anticoagulants on vascular calcification and atherosclerosis.
Collapse
Affiliation(s)
- Martijn L L Chatrou
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, MUMC, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|