1
|
Yang JL, Wu JY, Liu JJ, Zheng GQ. Herbal medicines for SOD1 G93A mice of amyotrophic lateral sclerosis: preclinical evidence and possible immunologic mechanism. Front Immunol 2024; 15:1433929. [PMID: 39355247 PMCID: PMC11442286 DOI: 10.3389/fimmu.2024.1433929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Currently, there is no cure or effective treatment for Amyotrophic Lateral Sclerosis (ALS). The mechanisms underlying ALS remain unclear, with immunological factors potentially playing a significant role. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), a systematic review of preclinical studies was conducted, searching seven databases including PubMed, covering literature from the inception of the databases to April 10, 2024. Methodological quality of the included literature was assessed using CAMARADES, while the risk of bias in the included studies was evaluated using SYRCLE's ROB tool. Review Manager 5.4.1 statistical software was used for meta-analysis of the outcomes. The scoping review followed the Joanna Briggs Institute Methodological Guidelines and reporting of this review followed the PRISMA-extension for Scoping Reviews (PRISMA -ScR) checklist to explore the immunological mechanisms of Herbal Medicine (HM) in treating ALS. This systematic review and meta-analysis involved 18 studies with a total of 443 animals. The studies scored between 4 to 8 for methodological quality and 3 to 7 for risk of bias, both summing up to 10.A remarkable effects of HM in ALS mice, including onset time(Standardized Mean Difference(SMD): 1.75, 95% Confidence Interval(CI) (1.14 ~ 2.36), Z = 5.60, P < 0.01), survival time(SMD = 1.42, 95% CI (0.79 ~ 2.04), Z = 4.44, P < 0.01), stride length(SMD=1.90, 95% CI (1.21 to 2.59), Z = 5.39, P < 0.01) and duration time (Mean Difference(MD)=6.79, 95% CI [-0.28, 13.87], Z=1.88, P =0.06), showing HM's certain efficiency in treating ALS mice. The scoping review ultimately included 35 articles for review. HMs may treat ALS through mechanisms such as combating oxidative stress, excitatory amino acid toxicity, and calcium cytotoxicity, understanding and exploring the mechanisms will bring hope to patients. Individual herbs and their formulations within HM address ALS through a variety of immune pathways, including safeguarding the blood-brain barrier, countering neuroinflammation, impeding complement system activation, mitigating natural killer cell toxicity, and regulating T cell-mediated immune pathways. The preclinical evidence supports the utilization of HM as a conventional treatment for ALS mice. Growing evidence indicates that HM may potentially delay neurological degeneration in ALS by activating diverse signaling pathways, especially immune pathways.
Collapse
Affiliation(s)
| | | | | | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Atella TC, Medina JM, Atella GC, Allodi S, Kluck GEG. Neuroprotective Effects of Metformin Through AMPK Activation in a Neurotoxin-Based Model of Cerebellar Ataxia. Mol Neurobiol 2024; 61:5102-5116. [PMID: 38165584 DOI: 10.1007/s12035-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Cerebellar ataxia is a heterogeneous group of neural disorders clinically characterized by cerebellar dysfunction. The diagnosis of patients with progressive cerebellar ataxia is complex due to the direct correlation with other neuron diseases. Although there is still no cure for this pathological condition, some metabolic, hereditary, inflammatory, and immunological factors affecting cerebellar ataxia are being studied and may become therapeutic targets. Advances in studying the neuroanatomy, pathophysiology, and molecular biology of the cerebellum (CE) contribute to a better understanding of the mechanisms behind the development of this disorder. In this study, Wistar rats aged 30 to 35 days were injected intraperitoneally with 3-acetylpyridine (3-AP) and/or metformin (for AMP-activated protein kinase (AMPK) enzyme activation) and euthanized in 24 hours and 4 days after injection. We analyzed the neuromodulatory role of the AMPK on cerebellar ataxia induced by the neurotoxin 3-AP in the brain stem (BS) and CE, after pre-treatment for 7 and 15 days with metformin, a pharmacological indirect activator of AMPK. The results shown here suggest that AMPK activation in the BS and CE leads to a significant reduction in neuroinflammation in these regions. AMPK was able to restore the changes in fatty acid composition and pro-inflammatory cytokines caused by 3-AP, suggesting that the action of AMPK seems to result in a possible neuroprotection on the cerebellar ataxia model.
Collapse
Affiliation(s)
- Tainá C Atella
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George E G Kluck
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario, L8L 2X2, Canada.
| |
Collapse
|
3
|
Shen T, Cui G, Chen H, Huang L, Song W, Zu J, Zhang W, Xu C, Dong L, Zhang Y. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res 2024; 19:1375-1384. [PMID: 37905888 PMCID: PMC11467918 DOI: 10.4103/1673-5374.385843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson’s disease. Triggering receptor expressed on myeloid cell-1 (TREM-1) can amplify the inherent immune response, and crucially, regulate inflammation. In this study, we found marked elevation of serum soluble TREM-1 in patients with Parkinson’s disease that positively correlated with Parkinson’s disease severity and dyskinesia. In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease, we found that microglial TREM-1 expression also increased in the substantia nigra. Further, TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson’s disease and reduced dopaminergic neuronal injury. Meanwhile, TREM-1 knockout attenuated the neuroinflammatory response, dopaminergic neuronal injury, and neutrophil migration. Next, we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson’s disease and treated the cells with the TREM-1 inhibitory peptide LP17. We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration. Moreover, inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide. TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK. These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson’s disease by regulating the interaction between microglia and peripheral neutrophils.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Zaccai S, Nemirovsky A, Lerner L, Alfahel L, Eremenko E, Israelson A, Monsonego A. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2024; 21:17. [PMID: 38212835 PMCID: PMC10782641 DOI: 10.1186/s12974-023-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons in the brain and spinal cord. Accumulating evidence suggests that ALS is not solely a neuronal cell- or brain tissue-autonomous disease and that neuroinflammation plays a key role in disease progression. Furthermore, whereas both CD4 and CD8 T cells were observed in spinal cords of ALS patients and in mouse models of the disease, their role in the neuroinflammatory process, especially considering their functional changes with age, is not fully explored. In this study, we revealed the structure of the CD4 T-cell compartment during disease progression of early-onset SOD1G93A and late-onset SOD1G37R mouse models of ALS. We show age-related changes in the CD4 T-cell subset organization between these mutant SOD1 mouse models towards increased frequency of effector T cells in spleens of SOD1G37R mice and robust infiltration of CD4 T cells expressing activation markers and the checkpoint molecule PD1 into the spinal cord. The frequency of infiltrating CD4 T cells correlated with the frequency of infiltrating CD8 T cells which displayed a more exhausted phenotype. Moreover, RNA-Seq and immunohistochemistry analyses of spinal cords from SOD1G37R mice with early clinical symptoms demonstrated immunological trajectories reminiscent of a neurotoxic inflammatory response which involved proinflammatory T cells and antigen presentation related pathways. Overall, our findings suggest that age-related changes of the CD4 T cell landscape is indicative of a chronic inflammatory response, which aggravates the disease process and can be therapeutically targeted.
Collapse
Affiliation(s)
- Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Anna Nemirovsky
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Livnat Lerner
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
5
|
Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metab Brain Dis 2023; 38:1513-1529. [PMID: 36847968 PMCID: PMC10185619 DOI: 10.1007/s11011-023-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.
Collapse
Affiliation(s)
- Engy K Tharwat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Amena S El-Feky
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Sakraan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hossam A Ismail
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Dokki, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
7
|
Thomas CM, Peebles RS. Neural regulation of ILC2s in allergic airway inflammation. FRONTIERS IN ALLERGY 2023; 3:1094259. [PMID: 36704754 PMCID: PMC9872007 DOI: 10.3389/falgy.2022.1094259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) regulate the effector functions of group 2 innate lymphoid cells (ILC2s) through β2 adrenergic receptor (ADRB2) and nicotinic/muscarinic cholinergic receptor signaling, respectively. To further maintain the critical balance between host-protective and pathogenic type 2 inflammation in the lungs, neuropeptides neuromedin B (NMB) and neuromedin U (NMU) function to suppress or promote ILC2 responses in synergy with IL-33/IL-25, respectively. Additionally, the release of ATP into the extracellular environment in response to cell death caused by challenge to the airway epithelial barrier quickly becomes converted into adenosine, which helps keep the inflammatory response in check by suppressing ILC2 responses. Besides neurotransmitter and neuropeptides derived from other cells, ILC2s further regulate allergic airway inflammation through the production of acetylcholine (ACh) and calcitonin gene-related peptide (CGRP). In this article we review the neuromodulation of ILC2s through cholinergic and adrenergic signaling, neuropeptides, and adenosine and its role in allergic airway inflammation. Furthermore, we discuss the potential clinical utility of targeting these pathways for therapeutic goals and address directions for future research.
Collapse
Affiliation(s)
- Christopher M. Thomas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States,Research Service, Tennessee Valley Healthcare System, United States Department of Veterans Affairs, Nashville, TN, United States,Correspondence: R. Stokes Peebles
| |
Collapse
|
8
|
Sharif N. Neuroaxonal and cellular damage/protection by prostanoid receptor ligands, fatty acid derivatives and associated enzyme inhibitors. Neural Regen Res 2023; 18:5-17. [PMID: 35799502 PMCID: PMC9241399 DOI: 10.4103/1673-5374.343887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical, mechanical, noxious and other stimuli. Prostaglandin D2, prostaglandin E2, prostaglandin F2α, prostaglandin I2 and thromboxane-A2 interact with five major receptors (and their sub-types) to elicit specific downstream cellular and tissue actions. In general, prostaglandins have been associated with pain, inflammation, and edema when they are present at high local concentrations and involved on a chronic basis. However, in acute settings, certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation, providing cellular protection, regulating sleep, and enhancing blood flow, to lowering intraocular pressure to prevent the development of glaucoma, a blinding disease. Several classes of prostaglandins are implicated (or are considered beneficial) in certain central nervous system dysfunctions (e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases; amyotrophic lateral sclerosis and multiple sclerosis; stroke, traumatic brain injuries and pain) and in ocular disorders (e.g., ocular hypertension and glaucoma; allergy and inflammation; edematous retinal disorders). This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease, and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists, polyunsaturated fatty acids, and cyclooxygenase inhibitors.
Collapse
|
9
|
Skok M, Deryabina O, Lykhmus O, Kalashnyk O, Uspenska K, Shuvalova N, Pokholenko I, Lushnikova I, Smozhanyk K, Skibo G, Kordyum V. Mesenchymal stem cell application for treatment of neuroinflammation-induced cognitive impairment in mice. Regen Med 2022; 17:533-546. [PMID: 35638401 DOI: 10.2217/rme-2021-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The present research has been undertaken to study the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of neuroinflammation-induced cognitive disorders. Methods: Either umbilical cord or adipose MSCs were injected into mice treated with lipopolysaccharide. The mice were studied in behavioral tests, and their brains were examined by means of immunohistochemistry, electron microscopy and sandwich ELISA. Results: MSCs, introduced either intravenously or intraperitoneally, restored episodic memory of mice disturbed by inflammation, normalized nAChR and Aβ1-42 levels and stimulated proliferation of neural progenitor cells in the brain. The effect of MSCs was observed for months, whereas that of MSC-conditioned medium was transient and stimulated an immune reaction. SDF-1α potentiated the effects of MSCs on the brain and memory. Conclusion: MSCs of different origins provide a long-term therapeutic effect in the treatment of neuroinflammation-induced episodic memory impairment.
Collapse
Affiliation(s)
- Maryna Skok
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Deryabina
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Kateryna Uspenska
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, 01054, Ukraine
| | - Nadia Shuvalova
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine
| | - Ianina Pokholenko
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Iryna Lushnikova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Kateryna Smozhanyk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Galyna Skibo
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vitalii Kordyum
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, 04114, Ukraine.,Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| |
Collapse
|
10
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
11
|
Hong AR, Jang JG, Chung YC, Won SY, Jin BK. Interleukin 13 on Microglia is Neurotoxic in Lipopolysaccharide-injected Striatum in vivo. Exp Neurobiol 2022; 31:42-53. [PMID: 35256543 PMCID: PMC8907255 DOI: 10.5607/en21032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.
Collapse
Affiliation(s)
- Ah Reum Hong
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae Geun Jang
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
12
|
He D, Hu G, Zhou A, Liu Y, Huang B, Su Y, Wang H, Ye B, He Y, Gao X, Fu S, Liu D. Echinocystic Acid Inhibits Inflammation and Exerts Neuroprotective Effects in MPTP-Induced Parkinson’s Disease Model Mice. Front Pharmacol 2022; 12:787771. [PMID: 35126128 PMCID: PMC8807489 DOI: 10.3389/fphar.2021.787771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Parkinson’s disease (PD), the second primary neurodegenerative disease affecting human health, is mainly characterized by dopaminergic neuron damage in the midbrain and the clinical manifestation of movement disorders. Studies have shown that neuroinflammation plays an important role in the progression of PD. Excessively activated microglia produce several pro-inflammatory mediators, leading to damage to the surrounding neurons and finally inducing neurodegeneration. Echinocystic acid (EA) exhibits an anti-inflammatory effect in peripheral tissues. However, whether it inhibited neuroinflammation remains unclear. Therefore, the current study investigates the effect of EA on neuroinflammation and whether it can improve PD symptoms through inhibiting neuroinflammation. In our experiments, we discovered that EA inhibited the production of pro-inflammatory mediators in LPS-exposed BV2 cells. Further mechanism-related studies revealed that EA inhibited inflammation by activating PI3K/Akt and inhibiting NF-κB and MAPK signal pathways in LPS-induced BV2 cells. Research revealed that EA eases microglia-mediated neuron death in SN4741 and SHSY5Y cells. In in vivo studies, the results demonstrated that EA improves weight loss and behavioral impairment in MPTP-induced mice. Further studies have revealed that EA inhibited dopaminergic neuron damage and inflammation in the mice midbrain. In conclusion, our study demonstrated that EA inhibits neuroinflammation and exerts neuroprotective effects by activating PI3K/Akt and inhibiting NF-κB and MAPK signal pathways in vivo and in vitro.
Collapse
Affiliation(s)
- Dewei He
- College of Animal Science, Jilin University, Changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ang Zhou
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanting Liu
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bingxu Huang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yingchun Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hefei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bojian Ye
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuan He
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiyu Gao
- College of Animal Science, Jilin University, Changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
13
|
Jang J, Hong A, Chung Y, Jin B. Interleukin-4 Aggravates LPS-Induced Striatal Neurodegeneration In Vivo via Oxidative Stress and Polarization of Microglia/Macrophages. Int J Mol Sci 2022; 23:ijms23010571. [PMID: 35008995 PMCID: PMC8745503 DOI: 10.3390/ijms23010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
The present study investigated the effects of interleukin (IL)-4 on striatal neurons in lipopolysaccharide (LPS)-injected rat striatum in vivo. Either LPS or PBS as a control was unilaterally injected into the striatum, and brain tissues were processed for immunohistochemical and Nissl staining or for hydroethidine histochemistry at the indicated time points after LPS injection. Analysis by NeuN and Nissl immunohistochemical staining showed a significant loss of striatal neurons at 1, 3, and 7 days post LPS. In parallel, IL-4 immunoreactivity was upregulated as early as 1 day, reached a peak at 3 days, and was sustained up to 7 days post LPS. Increased levels of IL-4 immunoreactivity were exclusively detected in microglia/macrophages, but not in neurons nor astrocytes. The neutralizing antibody (NA) for IL-4 significantly protects striatal neurons against LPS-induced neurotoxicity in vivo. Accompanying neuroprotection, IL-4NA inhibited activation of microglia/macrophages, production of reactive oxygen species (ROS), ROS-derived oxidative damage and nitrosative stress, and produced polarization of microglia/macrophages shifted from M1 to M2. These results suggest that endogenous IL-4 expressed in LPS-activated microglia/macrophages contributes to striatal neurodegeneration in which oxidative/nitrosative stress and M1/M2 polarization are implicated.
Collapse
Affiliation(s)
- Jaegeun Jang
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
| | - Ahreum Hong
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
| | - Youngcheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
- Correspondence: (Y.C.); (B.J.); Tel.: +82-42-610-8383 (Y.C.); +82-2-961-9288 (B.J.); Fax: +82-2-969-4570 (Y.C.); +82-42-610-8148 (B.J.)
| | - Byungkwan Jin
- Department of Neuroscience, Graduate School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.J.); (A.H.)
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (Y.C.); (B.J.); Tel.: +82-42-610-8383 (Y.C.); +82-2-961-9288 (B.J.); Fax: +82-2-969-4570 (Y.C.); +82-42-610-8148 (B.J.)
| |
Collapse
|
14
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
15
|
Skok M. Universal nature of cholinergic regulation demonstrated with nicotinic acetylcholine receptors. BBA ADVANCES 2022; 2:100061. [PMID: 37082580 PMCID: PMC10074969 DOI: 10.1016/j.bbadva.2022.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian nicotinic acetylcholine receptors (nAChRs) were initially discovered as ligand-gated ion channels mediating fast synaptic transmission in the neuro-muscular junctions and autonomic ganglia. They were further found to be involved in a wide range of basic biological processes within the brain and in non-excitable tissues. The present review summarizes the data obtained in our laboratory during last two decades. Investigation of autonomic ganglia with the nAChR subunit-specific antibodies was followed by identification of nAChRs in B lymphocytes, discovery of mitochondrial nAChRs and their role in mitochondrial apoptosis pathway, and revealing the role of α7 nAChRs and α7-specific antibodies in neuroinflammation-related Alzheimer disease and COVID-19. The data obtained demonstrate the involvement of nAChRs in cell survival, proliferation, cell-to-cell communication and inflammatory reaction. Together with the ability of nAChRs to function in both ionotropic and metabotropic way, these data illustrate the universal nature of cholinergic regulation mediated by nAChRs.
Collapse
|
16
|
Yoshioka Y, Sugino Y, Yamamuro A, Ishimaru Y, Maeda S. Dopamine inhibits the expression of proinflammatory cytokines of microglial cells through the formation of dopamine quinone in the mouse striatum. J Pharmacol Sci 2022; 148:41-50. [PMID: 34924128 DOI: 10.1016/j.jphs.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
We previously reported that dopamine (DA) attenuated lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines through the formation of DA quinone (DAQ) in murine microglial cell line BV-2 and primary murine microglial cells. To reveal whether DA inhibits the expression of proinflammatory cytokines of microglial cells through the formation of DAQ in the central nervous system (CNS), in this study, we examined the effect of DAQ on LPS-induced mRNA expression of proinflammatory cytokines in C57BL/6 mouse brain under two experimental conditions: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and l-dopa/carbidopa administration. Acute MPTP administration reduced the number of tyrosine hydroxylase-positive cells in the substantia nigra, and decreased the level of quinoprotein, an indicator of DAQ formation, in the striatum. Real-time RT-PCR analysis revealed that intraperitoneal administration of LPS increased the mRNA levels of proinflammatory cytokines, including tumor-necrosis factor-α and interleukin-1β, in the striatum. These increases were enhanced in MPTP-treated mice. On the other hand, l-dopa/carbidopa administration increased the level of quinoprotein, attenuated the LPS-induced mRNA expression of proinflammatory cytokines, and reduced the LPS-induced increase in the number of microglial cells in the striatum. These results suggest that DA attenuate the expression of proinflammatory cytokines in microglia through the formation of DAQ in the CNS.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuta Sugino
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Akiko Yamamuro
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Sadaaki Maeda
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
17
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
18
|
Skok M. Mesenchymal stem cells as a potential therapeutic tool to cure cognitive impairment caused by neuroinflammation. World J Stem Cells 2021; 13:1072-1083. [PMID: 34567426 PMCID: PMC8422935 DOI: 10.4252/wjsc.v13.i8.1072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
An established contribution of neuroinflammation to multiple brain pathologies has raised the requirement for therapeutic strategies to overcome it in order to prevent age- and disease-dependent cognitive decline. Mesenchymal stem cells (MSCs) produce multiple growth and neurotrophic factors and seem to evade immune rejection due to low expression of major histocompatibility complex class I molecules. Therefore, MSCs are widely used in experiments and clinical trials of regenerative medicine. This review summarizes recent data concerning the optimization of MSC use for therapeutic purposes with the emphasis on the achievements of the last 2 years. Specific attention is paid to extracellular vesicles secreted by MSCs and to the role of α7 nicotinic acetylcholine receptors. The reviewed data demonstrate that MSCs have a significant therapeutic potential in treating neuroinflammation-related cognitive disfunctions including age-related neurodegenerative diseases. The novel data demonstrate that maximal therapeutic effect is being achieved when MSCs penetrate the brain and produce their stimulating factors in situ. Consequently, therapeutic application using MSCs should include measures to facilitate their homing to the brain, support the survival in the brain microenvironment, and stimulate the production of neurotrophic and anti-inflammatory factors. These measures include but are not limited to genetic modification of MSCs and pre-conditioning before transplantation.
Collapse
Affiliation(s)
- Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, Kyiv 01054, Ukraine
| |
Collapse
|
19
|
Yang H. LncRNA MALAT1 potentiates inflammation disorder in Parkinson's disease. Int J Immunogenet 2021; 48:419-428. [PMID: 34291564 DOI: 10.1111/iji.12549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
With this investigation, we investigated on the contribution of lncRNA MALAT1 to inflammation disorder in Parkinson's Disease (PD). Serum samples were gathered from sporadic PD patients and healthy controls, and single nucleotide polymorphisms (SNPs) of MALAT1, including rs11227209, rs3200401, rs4102217, rs591291, rs619586 and rs664589, were identified. Serum level of MALAT1 was quantified using RT-PCR, and IL-1β, IL-6, TNF-α and IFN-γ levels in serum were measured with ELISA kits. Inflammation cell models were established by treating PC12 cells with LPS, and cytokine production of pcDNA3.1-MALAT1/si-MALAT1-transfected PC12 cells was evaluated. The results showed that PD patients with high serum level of MALAT1 were associated with lower MMSE score and higher serum levels of IL-1β, IL-6, TNF-α and IFN-γ than patients carrying low serum level of MALAT1 (p < .05). Mutant alleles of SNPs in MALAT1, including rs3200401 (C>T) and rs4102217 (G>C), tended to elevate PD susceptibility and facilitate cytokine production, as compared with their wild alleles (p < .05). And LPS-exposed PC12 cells secreted larger amounts of inflammation cytokines in the pcDNA3.1-MALAT1 group than in the Mock group (p < .05). In conclusion, MALAT1 participated in modifying inflammation disorder underlying PD aetiology, suggesting that it might be a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Huimin Yang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats. Biomedicines 2021; 9:biomedicines9070789. [PMID: 34356853 PMCID: PMC8301489 DOI: 10.3390/biomedicines9070789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The major surgical treatment for Parkinson’s disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25–0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25–0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device.
Collapse
|
21
|
Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2021; 68:3375-3387. [PMID: 33830916 DOI: 10.1109/tbme.2021.3071807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuroinflammation contributes to the development and progression of Parkinson's disease (PD). The aim of this study was to examine whether ultrasound (US) stimulation of the subthalamic nucleus (STN) could suppress the neuroinflammation in a chronic PD mouse model induced by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). METHODS A chronic PD mouse model was built by injections of 20mg/kg MPTP and 250 mg/kg probenecid at 3.5-day intervals for 5 weeks. Mice were randomized into control+sham, MPTP+sham and MPTP+STN+US group. For MPTP+STN+US group, ultrasound wave (3.8 MHz, 50% duty cycle, 1 kHz pulse repetition frequency, 30 min/day) was delivered to the STN the day after MPTP and probenecid injection (the early stage of PD progression). The rotarod test and pole test were performed to evaluate the behavioral changes after ultrasound treatment. Then, the activity of microglia and astrocyte were measured to evaluate the inflammation level in the brain. RESULTS Ultrasound stimulation improved the latency to falls in the rotarod test (p = 0.033) and decreased the climbing time in the pole test (p = 0.016) compared with MPTP+sham group. Moreover, ultrasound stimulation reduced the chronic inflammation response as shown in microglia (p = 0.007) and astrocyte (p = 0.032) activation. In addition, HE, Nissl and Tunel staining showed that no brain tissue injury was induced by US. CONCLUSION These findings demonstrated that ultrasound stimulation could suppress neuroinflammation in PD mice. SIGNIFICANCE Transcranial ultrasound neuromodulation offers a novel approach for Parkinson's disease intervention, potentially through its anti-neuroinflammation functions.
Collapse
|
22
|
He D, Fu S, Zhou A, Su Y, Gao X, Zhang Y, Huang B, Du J, Liu D. Camptothecin Regulates Microglia Polarization and Exerts Neuroprotective Effects via Activating AKT/Nrf2/HO-1 and Inhibiting NF-κB Pathways In Vivo and In Vitro. Front Immunol 2021; 12:619761. [PMID: 33868235 PMCID: PMC8047064 DOI: 10.3389/fimmu.2021.619761] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia, the main immune cells in the brain, participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidence suggests that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson's disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However, the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. In our study we found that CPT improved motor performance of mice and reduced the loss of neurons in the substantia nigra (SN) of the midbrain in LPS-injected mice. In the mechanism study, we found that CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1 and NF-κB signals. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from damage mediated by microglia activation. In conclusion, our results demonstrate that CPT regulates the microglia polarization phenotype via activating AKT/Nrf2/HO-1 and inhibiting NF-κB pathways, inhibits neuro-inflammatory responses, and exerts neuroprotective effects in vivo and in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dianfeng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
23
|
Jeong JY, Wi R, Chung YC, Jin BK. Interleukin-13 Propagates Prothrombin Kringle-2-Induced Neurotoxicity in Hippocampi In Vivo via Oxidative Stress. Int J Mol Sci 2021; 22:ijms22073486. [PMID: 33801783 PMCID: PMC8036367 DOI: 10.3390/ijms22073486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.
Collapse
Affiliation(s)
- Jae Yeong Jeong
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Rayul Wi
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
- Correspondence: (Y.C.C.); (B.K.J.)
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (Y.C.C.); (B.K.J.)
| |
Collapse
|
24
|
Yuan F, Jiang L, Li Q, Sokulsky L, Wanyan Y, Wang L, Liu X, Zhou L, Tay HL, Zhang G, Yang M, Li F. A Selective α7 Nicotinic Acetylcholine Receptor Agonist, PNU-282987, Attenuates ILC2s Activation and Alternaria-Induced Airway Inflammation. Front Immunol 2021; 11:598165. [PMID: 33597946 PMCID: PMC7883686 DOI: 10.3389/fimmu.2020.598165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Background The anti-inflammatory effect of an α7nAChR agonist, PNU-282987, has previously been explored in the context of inflammatory disease. However, the effects of PNU-282987 on type 2 innate lymphoid cells (ILC2s)-mediated allergic airway inflammation has not yet been established. Aims To determine the effects of PNU-282987 on the function of ILC2s in the context of IL-33– or Alternaria Alternata (AA)– induced airway inflammation. Methods PNU-282987 was administered to mice that received recombinant IL-33 or AA intranasal challenges. Lung histological analysis and flow cytometry were performed to determine airway inflammation and the infiltration and activation of ILC2s. The previously published α7nAChR agonist GTS-21 was employed as a comparable reagent. ILC2s were isolated from murine lung tissue and cultured in vitro in the presence of IL-33, IL-2, and IL-7 with/without either PNU-282987 or GTS-21. The expression of the transcription factors GATA3, IKK, and NF-κB were also determined. Results PNU-282987 and GTS-21 significantly reduced goblet cell hyperplasia in the airway, eosinophil infiltration, and ILC2s numbers in BALF, following IL-33 or AA challenge. In vitro IL-33 stimulation of isolated lung ILC2s showed a reduction of GATA3 and Ki67 in response to PNU-282987 or GTS-21 treatments. There was a significant reduction in IKK and NF-κB phosphorylation in the PNU-282987–treated group when compared to the GTS-21–treated ILC2s. Conclusion PNU-282987 inhibits ILC2-associated airway inflammation, where its effects were comparable to that of GTS-21.
Collapse
Affiliation(s)
- Fang Yuan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Medical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Jiang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leon Sokulsky
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Yuanyuan Wanyan
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lingli Wang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojie Liu
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lujia Zhou
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yang
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Priority Research Centre for Healthy Lungs, Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Fuguang Li
- Academy of Medical Sciences and Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Chung YC, Jeong JY, Jin BK. Interleukin-4-Mediated Oxidative Stress Is Harmful to Hippocampal Neurons of Prothrombin Kringle-2-Lesioned Rat In Vivo. Antioxidants (Basel) 2020; 9:antiox9111068. [PMID: 33143310 PMCID: PMC7692580 DOI: 10.3390/antiox9111068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the effects of reactive microglia/macrophages-derived interleukin-4 (IL-4) on hippocampal neurons in prothrombin kringle-2 (pKr-2)-lesioned rats. pKr-2 was unilaterally injected into hippocampus in the absence or presence of IL-4 neutralizing antibody (IL-4Nab). Immunohistochemical analysis showed a significant loss of Nissl+ and NeuN+ cells and activation of microglia/macrophages (increase in reactive OX-42+ and OX-6+ cells) in the hippocampus at 7 days after pKr-2 injection. The levels of IL-4 expression were upregulated in the reactive OX-42+ microglia/macrophages as early as 1 day, maximal at 3 days and maintained up to 7 days after pKr-2 injection. Treatment with IL-4Nab significantly increased neuronal survival in pKr-2-treated CA1 layer of hippocampus in vivo. Accompanying neuroprotection, IL-4 neutralization inhibited activation of microglia/macrophages, reactive oxygen species-derived oxidative damages, production of myeloperoxidase- and inducible nitric oxide synthase-derived reactive nitrogen species and nitrosative damages as analyzed by immunohistochemistry and hydroethidine histochemistry. These results suggest that endogenous IL-4 expressed on reactive microglia/macrophages mediates oxidative/nitrosative stress and play a critical role on neurodegeneration of hippocampal CA1 layer in vivo.
Collapse
Affiliation(s)
- Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jae Yeong Jeong
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9288; Fax: +82-2-969-4570
| |
Collapse
|
26
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
27
|
Fan S, Yin Q, Li D, Ma J, Li L, Chai S, Guo H, Yang Z. Anti-neuroinflammatory effects of Eucommia ulmoides Oliv. In a Parkinson's mouse model through the regulation of p38/JNK-Fosl2 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113016. [PMID: 32464317 DOI: 10.1016/j.jep.2020.113016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv., a Chinese medicinal herb called "Duzhong" from the bark of Eucommia ulmoides Oliv., has been shown to possess significant protective effects in Parkinson's disease (PD). However, the molecular mechanism remains unclear. AIM OF THE STUDY In this study, we explored the anti-neuroinflammatory mechanisms of Duzhong on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model to elucidate the traditional medical theories with modern pharmacological methods and to provide a reference for further clarifying its mechanisms of action. MATERIALS AND METHODS The representative components in Duzhong extract were identified by UPLC-Q-TOF/MS. Male C57BL/6J mice were intraperitoneally injected with MPTP to establish an in vivo PD model. The pole, rotarod, and grip strength tests were performed to evaluate the motor coordination ability of the PD mice. HPLC-ECD was used to detect the striatal levels of dopamine (DA), 3,4- dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). The expression of tyrosine hydroxylase (TH) was studied by immunohistochemistry (IHC) and Western blot assays. ELISA and Q-PCR were used examined the levels of proinflammatory cytokines in the serum and midbrain, respectively. Whole-transcriptome analysis of the midbrain was performed to explore the therapeutic effect of Duzhong on PD mice, and Q-PCR was then used to validate the differential gene expression changes in the PD mice treated with Duzhong. RESULTS Ten compounds were identified from Duzhong extract. Duzhong significantly alleviated the behavioral impairments and dopaminergic neuron degeneration of PD mice, and inhibited the expression of proinflammatory cytokines. Whole-transcriptome analysis revealed nine oppositely regulated genes, and the Fosl2 gene was consistent with the trend of observed by RNA-seq. Furthermore, Duzhong downregulated mRNA expression of p38 and JNK, which are key upstream genes of Fosl2. CONCLUSIONS Duzhong has promising therapeutic potential in PD mice, and its molecular mechanism is mediated by downregulating p38/JNK-Fosl2 gene expression to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Shanshan Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Dongna Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jing Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China
| | - Lili Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiwei Chai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hong Guo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, #10 Boyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
28
|
Functional Crosstalk between CB and TRPV1 Receptors Protects Nigrostriatal Dopaminergic Neurons in the MPTP Model of Parkinson's Disease. J Immunol Res 2020; 2020:5093493. [PMID: 33062722 PMCID: PMC7539109 DOI: 10.1155/2020/5093493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The present study examined whether crosstalk between cannabinoid (CB) and transient potential receptor vanilloid type 1 (TRPV1) could contribute to the survival of nigrostriatal dopamine neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). MPTP induced a significant loss of nigrostriatal dopamine neurons and glial activation in the substantia nigra (SN) and striatum (STR) as visualized by tyrosine hydroxylase (TH) or macrophage antigen complex-1 (MAC-1) or glial fibrillary acidic protein (GFAP) immunocytochemistry, respectively. RT-PCR analysis shows the upregulation of inducible nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α in microglia in the SN in vivo, indicating the activation of the inflammatory system. By contrast, treatment with capsaicin (a specific TRPV1 agonist) increased the survival of dopamine neurons in the SN and their fibers and dopamine levels in the STR in MPTP mice. Capsaicin neuroprotection is accompanied by inhibiting MPTP-induced glial activation and production of inflammatory cytokines. Treatment with AM251 and AM630 (CB1/2 antagonists) abolished capsaicin-induced beneficial effects, indicating the existence of a functional crosstalk between CB and TRPV1. Moreover, treatment with anandamide (an endogenous agonist for both CB and TRVP1) rescued nigrostriatal dopamine neurons and reduced gliosis-derived neuroinflammatory responses in MPTP mice. These results suggest that the cannabinoid and vanilloid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with neuroinflammation.
Collapse
|
29
|
Gonzalo-Gobernado R, Reimers D, Casarejos MJ, Calatrava Ferreras L, Vallejo-Muñoz M, Jiménez-Escrig A, Diaz-Gil JJ, Ulzurrun de Asanza GM, Bazán E. Liver Growth Factor Induces Glia-Associated Neuroprotection in an In Vitro Model of Parkinson´s Disease. Brain Sci 2020; 10:brainsci10050315. [PMID: 32455921 PMCID: PMC7287666 DOI: 10.3390/brainsci10050315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the progressive death of dopaminergic (DA) neurons in the substantia nigra (SN), which leads to a loss of the neurotransmitter dopamine in the basal ganglia. Current treatments relieve the symptoms of the disease, but none stop or delay neuronal degeneration. Liver growth factor (LGF) is an albumin-bilirubin complex that stimulates axonal growth in the striatum and protects DA neurons in the SN of 6-hydroxydopamine-lesioned rats. Our previous results suggested that these effects observed in vivo are mediated by microglia and/or astrocytes. To determine if these cells are LGF targets, E14 (embryos from Sprague Dawley rats of 14 days) rat mesencephalic glial cultures were used. Treatment with 100 pg/mL of LGF up-regulated the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases 1/2 (ERK1/2) and the cyclic AMP response element binding protein (CREB) phosphorylation in glial cultures, and it increased the microglia marker Iba1 and tumor necrosis factor alpha (TNF-alpha) protein levels. The treatment of E14 midbrain neurons with a glial-conditioned medium from LGF-treated glial cultures (GCM-LGF) prevented the loss of DA neurons caused by 6-hydroxy-dopamine. This neuroprotective effect was not observed when GCM-LGF was applied in the presence of a blocking antibody of TNF-alpha activity. Altogether, our findings strongly suggest the involvement of microglia and TNF-alpha in the neuroprotective action of LGF on DA neurons observed in vitro.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
- National Centre for Biotechnology (CNB), CSIC, 28049 Madrid, Spain
- Correspondence: (R.G.-G.); (E.B.); Tel.: +34-913-368-168 (R.G.-G. & E.B.)
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - María José Casarejos
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Lucía Calatrava Ferreras
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Manuela Vallejo-Muñoz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | | | - Juan José Diaz-Gil
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Gonzalo M. Ulzurrun de Asanza
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (D.R.); (M.J.C.); (L.C.F.); (M.V.-M.); (J.J.D.-G.); (G.M.U.d.A.)
- Correspondence: (R.G.-G.); (E.B.); Tel.: +34-913-368-168 (R.G.-G. & E.B.)
| |
Collapse
|
30
|
Morales I, Sanchez A, Puertas-Avendaño R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020; 68:2277-2299. [PMID: 32415886 DOI: 10.1002/glia.23839] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Mitophagy is essential for the health of dopaminergic neurons because mitochondrial damage is a keystone of Parkinson's disease. The aim of the present work was to study the degradation of mitochondria in the degenerating dopaminergic synapse. Adult Sprague-Dawley rats and YFP-Mito-DAn mice with fluorescent mitochondria in dopaminergic neurons were injected in the lateral ventricles with 6-hydroxydopamine, a toxic that inhibits the mitochondrial chain of dopaminergic neurons and blockades the axonal transport. Dopaminergic terminals closest to the lateral ventricle showed an axonal fragmentation and an accumulation of damaged mitochondria in 2-9 μ saccular structures (spheroids). Damaged mitochondria accumulated in spheroids initiated (showing high Pink1, parkin, ubiquitin, p-S65-Ubi, AMBRA1, and BCL2L13 immunoreactivity and developing autophagosomes) but did not complete (mitochondria were not polyubiquitinated, autophagosomes had no STX17, and no lysosomes were found in spheroids) the mitophagy process. Then, spheroids were penetrated by astrocytic processes and DAergic mitochondria were transferred to astrocytes where they were polyubiquitinated (UbiK63+) and linked to mature autophagosomes (STX17+) which became autophagolysosomes (Lamp1/Lamp2 which co-localized with LC3). Present data provide evidence that the mitophagy of degenerating dopaminergic terminals starts in the dopaminergic spheroids and finishes in the surrounding astrocytes (spheroid-mediated transmitophagy). The neuron-astrocyte transmitophagy could be critical for preventing the release of damaged mitochondria to the extracellular medium and the neuro-inflammatory activity which characterizes Parkinson's disease.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | | | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, La Laguna University, La Laguna, Tenerife, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
31
|
Aksoz BE, Aksoz E. Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology. Comb Chem High Throughput Screen 2020; 23:877-886. [PMID: 32077819 DOI: 10.2174/1386207323666200220115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression. OBJECTIVE In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research. CONCLUSION Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.
Collapse
Affiliation(s)
- Begum E Aksoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Aksoz
- Department of Pharmacology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
32
|
Lykhmus O, Kalashnyk O, Uspenska K, Horid’ko T, Kosyakova H, Komisarenko S, Skok M. Different Effects of Nicotine and N-Stearoyl-ethanolamine on Episodic Memory and Brain Mitochondria of α7 Nicotinic Acetylcholine Receptor Knockout Mice. Biomolecules 2020; 10:E226. [PMID: 32028688 PMCID: PMC7072576 DOI: 10.3390/biom10020226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) are involved in regulating neuroinflammation and cognitive functions. Correspondingly, α7-/- mice demonstrate pro-inflammatory phenotype and impaired episodic memory. In addition, nAChRs expressed in mitochondria regulate the release of pro-apoptotic factors like cytochrome c. Here we studied whether the cognitive deficiency of α7-/- mice can be cured by oral consumption of either nicotine or N-stearoylethanolamine (NSE), a lipid possessing anti-inflammatory, cannabimimetic and membrane-stabilizing activity. Mice were examined in Novel Object Recognition behavioral test, their blood, brains and brain mitochondria were tested for the levels of interleukin-6, various nAChR subtypes and cytochrome c released by ELISA. The data presented demonstrate that both substances stimulated the raise of interleukin-6 in the blood and improved episodic memory of α7-/- mice. However, NSE improved, while nicotine worsened the brain mitochondria sustainability to apoptogenic stimuli, as shown by either decreased or increased amounts of cytochrome c released. Both nicotine and NSE up-regulated α4β2 nAChRs in the brain; NSE up-regulated, while nicotine down-regulated α9-containing nAChRs in the brain mitochondria. It is concluded that the level of alternative nAChR subtypes in the brain is critically important for memory and mitochondria sustainability in the absence of α7 nAChRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, 01030 Kyiv, Ukraine; (O.L.); (O.K.); (K.U.); (T.H.); (H.K.); (S.K.)
| |
Collapse
|
33
|
Lykhmus O, Kalashnyk O, Uspenska K, Skok M. Positive Allosteric Modulation of Alpha7 Nicotinic Acetylcholine Receptors Transiently Improves Memory but Aggravates Inflammation in LPS-Treated Mice. Front Aging Neurosci 2020; 11:359. [PMID: 31998114 PMCID: PMC6966166 DOI: 10.3389/fnagi.2019.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation accompanies or even precedes the development of cognitive changes in many brain pathologies, including Alzheimer’s disease. Therefore, dampening inflammatory reactions within the brain is a promising strategy for supporting cognitive functions in elderly people and for preventing the development of neurodegenerative disorders. Nicotinic acetylcholine receptors containing α7 subunits (α7 nAChRs) are involved in regulating cell survival, inflammation, and memory. The aim of our study was to evaluate the efficiency of α7-specific therapy at different stages of inflammation and to compare the effects of orthosteric agonist PNU282987 and type 2 positive allosteric modulator (PAM) PNU120596 in mice after a single injection of lipopolysaccharide (LPS). The data presented demonstrate that PNU282987 protected mice from LPS-induced impairment of episodic memory by decreasing IL-6 levels in the blood, stabilizing the brain mitochondria and up-regulating the brain α7-, α3-, and α4-containing nAChRs. Such treatment was efficient when given simultaneously with LPS or a week after LPS injection and was not efficient if LPS had been injected 2 months before. PNU120596 also decreased IL-6, stabilized mitochondria and up-regulated the brain nAChRs. However, its memory-improving effect was transient and disappeared after the end of the injection cycle. Moreover, cessation of PNU120596 treatment resulted in a sharp increase in IL-1β and IL-6 levels in the blood. It is concluded that activating α7 nAChRs protects the mouse brain from the pathogenic effect of LPS in the early stages of inflammation but is not efficient when irreversible changes have already occurred. The use of a PAM does not improve the effect of the agonist, possibly potentiates the effect of endogenous agonists, and results in undesirable effects after treatment cessation.
Collapse
Affiliation(s)
- Olena Lykhmus
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Olena Kalashnyk
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Kateryna Uspenska
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Maryna Skok
- Immunology of Cellular Receptors, Department of Molecular Immunology, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
34
|
Lyu Y, Bai L, Qin C. Long noncoding RNAs in neurodevelopment and Parkinson's disease. Animal Model Exp Med 2019; 2:239-251. [PMID: 31942556 PMCID: PMC6930994 DOI: 10.1002/ame2.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lncRNAs are involved in regulating a variety of biological processes, including immune, cancer, stress, development and differentiation at the transcriptional, epigenetic or post-transcriptional levels. Here, we review the role of lncRNAs in the process of neurodevelopment, neural differentiation, synaptic function, and pathogenesis of Parkinson's disease (PD). These pathomechanisms include protein misfolding and aggregation, disordered protein degradation, mitochondrial dysfunction, oxidative stress, autophagy, apoptosis, and neuroinflammation. This information will provide the basis of lncRNA-based disease diagnosis and drug treatment for PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Lin Bai
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| | - Chuan Qin
- Institute of Medical Laboratory Animal ScienceChinese Academy of Medical Sciences & Comparative Medical CenterPeking Union Medical CollegeBeijingChina
| |
Collapse
|
35
|
Yoshioka Y, Sugino Y, Shibagaki F, Yamamuro A, Ishimaru Y, Maeda S. Dopamine attenuates lipopolysaccharide-induced expression of proinflammatory cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglia. Eur J Pharmacol 2019; 866:172826. [PMID: 31790652 DOI: 10.1016/j.ejphar.2019.172826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/14/2023]
Abstract
Many reports have indicated that dopamine has immunomodulatory effects on peripheral immune cells. The purpose of this study was to reveal the immunomodulatory effect of dopamine on the expression of proinflammatory cytokines in microglial cells, which are the immune cells of the central nervous system. In murine microglial cell line BV-2 cells, pretreatment with dopamine for 24 h attenuated the lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines such as tumor-necrosis factor-α, interleukin-1β, and interleukin-6. Neither (5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol; hydrochloride (SCH-23390) nor sulpiride, which are dopamine D1-like and D2-like receptor antagonists, respectively, affected the attenuation of LPS-induced expression of cytokines by dopamine. In addition, pretreatment with neither (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY208-243) nor bromocriptine, dopamine D1-like and D2-like receptor agonists, respectively, was effective in doing so. However, N-acetylcysteine (NAC), which inhibits dopamine oxidation to dopamine quinone, did inhibit this attenuated expression. Dopamine increased the level of quinoproteins, and this increase was inhibited by NAC. Western blot and immunocytochemical analyses revealed that dopamine inhibited LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB) p65. Dopamine also attenuated the expression of cytokines and the nuclear translocation of NF-κB p65 induced by LPS in mouse microglial cells in primary culture. These results suggest that dopamine attenuated LPS-induced expression of cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglial cells.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuta Sugino
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Fumiya Shibagaki
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Akiko Yamamuro
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Sadaaki Maeda
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
36
|
Wang LY, Yu X, Li XX, Zhao YN, Wang CY, Wang ZY, He ZY. Catalpol Exerts a Neuroprotective Effect in the MPTP Mouse Model of Parkinson's Disease. Front Aging Neurosci 2019; 11:316. [PMID: 31849636 PMCID: PMC6889905 DOI: 10.3389/fnagi.2019.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The degeneration of dopaminergic (DA) neurons in Parkinson’s disease (PD) is related to inflammation and oxidative stress. Anti-inflammatory agents could reduce the risk or slow the progression of PD. Catalpol, an iridoid glycoside extracted from the roots of Rehmannia radix, has been reported to reduce the release of inflammatory factors and exert neuroprotective effects. 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP)-treated mice were used as the PD model and the roles of catalpol on DA neurons and its potential mechanism were investigated in this study. We found that catalpol administration mitigated the loss of DA neurons induced by MPTP and increased exploratory behavior along with tyrosine hydroxylase (TH) expression, which was accompanied by astrocyte and microglia activation. Importantly, catalpol administration significantly inhibited MPTP-triggered oxidative stress, restored growth-associated protein 43 (GAP43) and vascular endothelial growth factor (VEGF) levels. Further, we found that catalpol suppressed the activation of MKK4/JNK/c-Jun signaling, and reduced the pro-inflammatory factors and inflammasome in the mouse model of PD. Our results suggest that catalpol relieves MPTP-triggered oxidative stress, which may benefit to avoid the occurrence of chronic inflammatory reaction. Catalpol alleviates MPTP-triggered oxidative stress and thereby prevents neurodegenerative diseases-related inflammatory reaction, highlighting its therapeutic potential for the management of PD symptoms.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Xin Yu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Xiao-Xi Li
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Yi-Nan Zhao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhi-Yi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Msibi ZNP, Mabandla MV. Oleanolic Acid Mitigates 6-Hydroxydopamine Neurotoxicity by Attenuating Intracellular ROS in PC12 Cells and Striatal Microglial Activation in Rat Brains. Front Physiol 2019; 10:1059. [PMID: 31496954 PMCID: PMC6712087 DOI: 10.3389/fphys.2019.01059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Oleanolic acid (OA), a biologically active pentacyclic triterpenoid compound, has been implicated in a number of clinical benefits including antioxidant, and anti-inflammatory properties. OA has been previously shown to ameliorate the toxic effects of 6-hydroxydopamine (6-OHDA), however, the mechanism by which this effect is exhibited is not clearly understood. In the present study, we investigated the role of OA in attenuation of microglial activation in 6-OHDA induced Parkinsonian rat model. We also explored the ability of OA to attenuate 6-OHDA-induced intracellular reactive oxygen species (ROS), and thus prevent cell death in PC12 cells. We accessed the utility of immunohistochemistry to assess striatal microglial activation, where shape descriptors such as area, perimeter, Feret's diameter, aspect ratio and solidity were determined using the Fiji ImageJ software. Intracellular ROS and cell viability were assessed in PC12 cells using the OxiSelectTM Intracellular ROS Assay Kit and MTT assay, respectively. We found that microglial activation was decreased in rats pre-treated with OA prior to 6-OHDA insult as well as in rats treated with OA 1 day post 6-OHDA exposure when compared to untreated rats, as determined by shape descriptors. This finding was in correlation with significantly improved motor symptoms and increased striatal dopamine in treated rats as compared to non-treated rats. Flow cytometry assessment of PC12 cells revealed a decreased amount of intracellular ROS in cells pre-treated with OA 6 h prior to 6-OHDA exposure and cells treated with OA 1 h post 6-OHDA exposure, suggesting that OA provides neuroprotection in PC12 cells by removing intracellular ROS, thereby reducing oxidative stress. Our finding suggest that OA exhibits its neuroprotective effect by attenuating striatal microglial activation, which results in neuroinflammation that is implicated in Parkinson's disease pathology. Further studies detailing the mechanism by which OA interacts with microglia may be useful in understanding the role of OA in attenuating neuroinflammation.
Collapse
Affiliation(s)
- Zama N P Msibi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa V Mabandla
- Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Lykhmus O, Kalashnyk O, Koval L, Voytenko L, Uspenska K, Komisarenko S, Deryabina O, Shuvalova N, Kordium V, Ustymenko A, Kyryk V, Skok M. Mesenchymal Stem Cells or Interleukin-6 Improve Episodic Memory of Mice Lacking α7 Nicotinic Acetylcholine Receptors. Neuroscience 2019; 413:31-44. [DOI: 10.1016/j.neuroscience.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
39
|
Huang M, Li Y, Wu K, Yan W, Tian T, Wang Y, Yang H. Paraquat modulates microglia M1/M2 polarization via activation of TLR4-mediated NF-κB signaling pathway. Chem Biol Interact 2019; 310:108743. [PMID: 31299241 DOI: 10.1016/j.cbi.2019.108743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Paraquat (PQ) is a widely characterized neurotoxicant able to induce a series of nervous system disorders, including neurobehavioral defects and neurodegenerative diseases. Despite the direct evidence that PQ could induce inflammatory responses in central nervous system and largely contribute to neurotoxicity, the putative adverse effects of PQ on the neuroimmune interactions have rarely been investigated. Therefore, the present study investigated underlying mechanisms of PQ-induced inflammatory response in BV-2 microglia cells. Proliferation, migration and phagocytosis of BV-2 cells upon PQ exposure were first investigated to demonstrate that PQ did stimulate BV-2 microglia into an active phenotype. Increased microglia M1 markers expression and decreased microglia M2 markers expression confirmed that PQ induces BV-2 cells towards M1 activation. The levels of pro-inflammatory cytokines were determined using ELISA and western blotting assays, showing that paraquat significantly promote the secretion of pro-inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). The up-regulation of TLR4/MyD88 protein expressions and enhanced translocation of NF-κB p65 protein upon PQ exposure were further demonstrated. Taken together, our results suggested that PQ induces M1 microglia polarization by increased production of pro-inflammatory molecules, which could be explained by the activation of the TLR4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Min Huang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Yingying Li
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Kexin Wu
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Weiguang Yan
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Tian Tian
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Yifan Wang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China
| | - Huifang Yang
- The Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Yin Chuan, China.
| |
Collapse
|
40
|
Dai D, Yuan J, Wang Y, Xu J, Mao C, Xiao Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci Rep 2019; 9:8034. [PMID: 31142803 PMCID: PMC6541652 DOI: 10.1038/s41598-019-44573-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic neuroinflammation is known to contributes to the toxicity of neurodegeneration of Parkinson’s disease (PD). However, the molecular and cellular mechanisms controlling inflammatory responses in the central nervous system remain poorly understood. Here we found that a E3 ubiquitin ligase Peli1 is dramatically induced only in the substantia nigra (SN) of the human and mouse PD brains. The ablation of Peli1 significantly suppressed LPS-induced production of neurotoxic mediators and proinflammatory cytokines in SN and in primary microglia, whereas Peli1 is dispensable for the inflammatory responses in astrocyte. Accordingly, Peli1 deficiency markedly inhibited neuron death induced by the conditioned medium from LPS-stimulated microglia. Mechanistical study suggested that Peli1 acts as a positive regulator of inflammatory response in microglia through activation of NF-κB and MAP kinase. Our results established Peli1 as a critical mediator in the regulation of microglial activation and neuroinflammation-induced death of dopaminergic neurons during PD pathogenesis, suggesting that targeting Peli1 may have therapeutic effect in neuroinflammation.
Collapse
Affiliation(s)
- Dongfang Dai
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yichuan Xiao
- Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
41
|
Interleukin-4 and Interleukin-13 Exacerbate Neurotoxicity of Prothrombin Kringle-2 in Cortex In Vivo via Oxidative Stress. Int J Mol Sci 2019; 20:ijms20081927. [PMID: 31010119 PMCID: PMC6515094 DOI: 10.3390/ijms20081927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the effects of activated microglia-derived interleukin-4 (IL-4) and IL-13 on neurodegeneration in prothrombin kringle-2 (pKr-2)-treated rat cortex. pKr-2 was unilaterally injected into the Sprague–Dawley rat cerebral cortex and IL-4 and IL-13 neutralizing antibody was used to block the function of IL-4 and IL-13. Immunohistochemical analysis showed a significant loss of NeuN+ and Nissl+ cells and an increase of OX-42+ cells in the cortex at seven days post pKr-2. The levels of IL-4 and IL-13 expression were upregulated in the activated microglia as early as 12 hours post pKr-2 and sustained up to seven days post pKr-2. Neutralization by IL-4 or IL-13 antibodies (NA) significantly increased neuronal survival in pKr-2-treated rat cortex in vivo by suppressing microglial activation and the production of reactive oxygen species, as analyzed by immunohisotochemistry and hydroethidine histochemistry. These results suggest that IL-4 and IL-13 that were endogenously expressed from reactive microglia may play a critical role on neuronal death by regulating oxidative stress during the neurodegenerative diseases, such as Alzheimer’s disease and dementia.
Collapse
|
42
|
Norfluoxetine Prevents Degeneration of Dopamine Neurons by Inhibiting Microglia-Derived Oxidative Stress in an MPTP Mouse Model of Parkinson's Disease. Mediators Inflamm 2018; 2018:4591289. [PMID: 30692871 PMCID: PMC6332876 DOI: 10.1155/2018/4591289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022] Open
Abstract
Neuroinflammation is the neuropathological feature of Parkinson's disease (PD) and causes microglial activation and activated microglia-derived oxidative stress in the PD patients and PD animal models, resulting in neurodegeneration. The present study examined whether norfluoxetine (a metabolite of fluoxetine) could regulate neuroinflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine (MPTP) mouse model of PD and rescue dopamine neurons. Analysis by tyrosine hydroxylase (TH) immunohistochemistry demonstrated that norfluoxetine prevents degeneration of nigrostriatal dopamine neurons in vivo in MPTP-lesioned mice compared to vehicle-treated MPTP-lesioned control mice. MAC-1 immunostaining and hydroethidine histochemical staining showed that norfluoxetine neuroprotection is accompanied by inhibiting MPTP-induced microglial activation and activated microglia-derived reactive oxygen species production in vivo, respectively. In the separate experiments, treatment with norfluoxetine inhibited NADPH oxidase activation and nitrate production in LPS-treated cortical microglial cultures in vitro. Collectively, these in vivo and in vitro results suggest that norfluoxetine could be employed as a novel therapeutic agent for treating PD, which is associated with neuroinflammation and microglia-derived oxidative stress.
Collapse
|
43
|
Inhibition of Microglia-Derived Oxidative Stress by Ciliary Neurotrophic Factor Protects Dopamine Neurons In Vivo from MPP⁺ Neurotoxicity. Int J Mol Sci 2018; 19:ijms19113543. [PMID: 30423807 PMCID: PMC6274815 DOI: 10.3390/ijms19113543] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/03/2023] Open
Abstract
We demonstrated that capsaicin (CAP), an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), inhibits microglia activation and microglia-derived oxidative stress in the substantia nigra (SN) of MPP⁺-lesioned rat. However, the detailed mechanisms how microglia-derived oxidative stress is regulated by CAP remain to be determined. Here we report that ciliary neurotrophic factor (CNTF) endogenously produced by CAP-activated astrocytes through TRPV1, but not microglia, inhibits microglial activation and microglia-derived oxidative stress, as assessed by OX-6 and OX-42 immunostaining and hydroethidine staining, respectively, resulting in neuroprotection. The significant increase in levels of CNTF receptor alpha (CNTFRα) expression was evident on microglia in the MPP⁺-lesioned rat SN and the observed beneficial effects of CNTF was abolished by treatment with CNTF receptor neutralizing antibody. It is therefore likely that CNTF can exert its effect via CNTFRα on microglia, which rescues dopamine neurons in the SN of MPP⁺-lesioned rats and ameliorates amphetamine-induced rotations. Immunohistochemical analysis revealed also a significantly increased expression of CNTFRα on microglia in the SN from human Parkinson's disease patients compared with age-matched controls, indicating that these findings may have relevance to the disease. These data suggest that CNTF originated from TRPV1 activated astrocytes may be beneficial to treat neurodegenerative disease associated with neuro-inflammation such as Parkinson's disease.
Collapse
|
44
|
Erekat N, Al-Jarrah MD. Interleukin-1 Beta and Tumor Necrosis Factor Alpha Upregulation and Nuclear Factor Kappa B Activation in Skeletal Muscle from a Mouse Model of Chronic/Progressive Parkinson Disease. Med Sci Monit 2018; 24:7524-7531. [PMID: 30344306 PMCID: PMC6402272 DOI: 10.12659/msm.909032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy has been reported in patients with Parkinson disease (PD). The purpose of this study was to examine the potential implication of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and nuclear factor kappa B (NF kappa B) in skeletal muscle atrophy following PD induction. MATERIAL AND METHODS Chronic Parkinsonism was induced in 10 albino mice by MPTP/probenecid treatment, while 10 other albino mice remained without treatment and were subsequently used as controls. Gastrocnemius muscles were examined for the expression of IL-1β and TNF-α, as well as the nuclear localization of NF kappa B, indicative of its activation, using immunohistochemistry in the 2 different groups. RESULTS IL-1β and TNF-α expression and NF kappa B nuclear localization were significantly higher in the PD skeletal muscle compared with those in the controls (P value <0.01). CONCLUSIONS The present data are indicative of an association of PD with IL-1β and TNF-α upregulation and NF kappa B activation in gastrocnemius muscles, potentially promoting the atrophy frequently observed in PD.
Collapse
Affiliation(s)
- Nour Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammed D Al-Jarrah
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
45
|
Chiang PL, Chen HL, Lu CH, Chen YS, Chou KH, Hsu TW, Chen MH, Tsai NW, Li SH, Lin WC. Interaction of systemic oxidative stress and mesial temporal network degeneration in Parkinson's disease with and without cognitive impairment. J Neuroinflammation 2018; 15:281. [PMID: 30257698 PMCID: PMC6158841 DOI: 10.1186/s12974-018-1317-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background To identify the vulnerable areas associated with systemic oxidative stress and further disruption of these vulnerable areas by measuring the associated morphology and functional network alterations in Parkinson’s disease (PD) patients with and without cognitive impairment. Methods This prospective study was approved by the institutional review board of KCGMH, and written informed consent was obtained. Between December 2010 and May 2015, 41 PD patients with different levels of cognitive functions and 29 healthy volunteers underwent peripheral blood sampling to quantify systemic oxidative stress, as well as T1W volumetric and resting state functional MRI (rs-fMRI) scans. Rs-fMRI was used to derive the healthy intrinsic connectivity patterns seeded by the vulnerable areas associated with any of the significant oxidative stress markers. The two groups were compared in terms of the functional connectivity correlation coefficient (fc-CC) and gray matter volume (GMV) of the network seeded by the vulnerable areas. Results The levels of oxidative stress markers, including leukocyte apoptosis and adhesion molecules, were significantly higher in the PD group. Using whole-brain VBM-based correlation analysis, the bilateral mesial temporal lobes (MTLs) were identified as the most vulnerable areas associated with lymphocyte apoptosis (P < 0.005). We found that the MTL network of healthy subjects resembled the PD-associated atrophy pattern. Furthermore, reduced fc-CC and GMV were further associated with the aggravated cognitive impairment. Conclusion The MTLs are the vulnerable areas associated with peripheral lymphocyte infiltration, and disruptions of the MTL functional network in both architecture and functional connectivity might result in cognitive impairments in Parkinson’s disease. Electronic supplementary material The online version of this article (10.1186/s12974-018-1317-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pi-Ling Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Department of Hematology and Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, 83305, Taiwan.
| |
Collapse
|
46
|
Haghshomar M, Dolatshahi M, Ghazi Sherbaf F, Sanjari Moghaddam H, Shirin Shandiz M, Aarabi MH. Disruption of Inferior Longitudinal Fasciculus Microstructure in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Front Neurol 2018; 9:598. [PMID: 30093877 PMCID: PMC6070770 DOI: 10.3389/fneur.2018.00598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder accompanied by a series of pathological mechanisms which contribute to a variety of motor and non-motor symptoms. Recently, there has been an increasing interest in structural diffusion tensor imaging (DTI) in PD which has shed light on our understanding of structural abnormalities underlying PD symptoms or its associations with pathological mechanisms. One of the white matter tracts shown to be disrupted in PD with a possible contribution to some PD symptoms is the inferior longitudinal fasciculus (ILF). On the whole, lower ILF integrity contributes to thought disorders, impaired visual emotions, cognitive impairments such as semantic fluency deficits, and mood disorders. This review outlines the microstructural changes in ILF associated with systemic inflammation and various PD symptoms like cognitive decline, facial emotion recognition deficit, depression, color discrimination deficit, olfactory dysfunction, and tremor genesis. However, few studies have investigated DTI correlates of each symptom and larger studies with standardized imaging protocols are required to extend these preliminary findings and lead to more promising results.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mehdi Shirin Shandiz
- Department of Medical Physics, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
47
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
48
|
Bok E, Chung YC, Kim KS, Baik HH, Shin WH, Jin BK. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp Mol Med 2018; 50:1-14. [PMID: 29968707 PMCID: PMC6030094 DOI: 10.1038/s12276-018-0111-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
The present study examined the neuroprotective effects of capsaicin (CAP) and explored their underlying mechanisms in a lipopolysaccharide (LPS)-lesioned inflammatory rat model of Parkinson’s dieases (PD). LPS was unilaterally injected into the substantia nigra (SN) in the absence or presence of CAP or capsazepine (CZP, a TRPV1 antagonist). The SN tissues were prepared for immunohistochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, western blot analysis, blood–brain barrier (BBB) permeability evaluation, and reactive oxygen species (ROS) detection. We found that CAP prevented the degeneration of nigral dopamine neurons in a dose-dependent manner and inhibited the expression of proinflammatory mediators in the LPS-lesioned SN. CAP shifted the proinflammatory M1 microglia/macrophage population to an anti-inflammatory M2 state as demonstrated by decreased expression of M1 markers (i.e., inducible nitric oxide synthase; iNOS and interleukin-6) and elevated expression of M2 markers (i.e., arginase 1 and CD206) in the SN. RT-PCR, western blotting, and immunohistochemical analysis demonstrated decreased iNOS expression and increased arginase 1 expression in the CAP-treated LPS-lesioned SN. Peroxynitrate production, reactive oxygen species levels and oxidative damage were reduced in the CAP-treated LPS-lesioned SN. The beneficial effects of CAP were blocked by CZP, indicating TRPV1 involvement. The present data indicate that CAP regulated the M1 and M2 activation states of microglia/macrophage in the LPS-lesioned SN, which resulted in the survival of dopamine neurons. It is therefore likely that TRPV1 activation by CAP has therapeutic potential for treating neurodegenerative diseases, that are associated with neuroinflammation and oxidative stress, such as PD. A drug that activates a neuron-protecting protein in the brain may help treat Parkinson’s disease (PD). Scientists believe neurons die during PD because of an over-activation of proinflammatory markers within immune cell populations, such as the microglia and macrophage cells found in the central nervous system and the brain. Now, Byung Kwan Jin at Kyung Hee University in Seoul and Won-Ho Shin at the Korea Institute of Toxicology in Daejeon and co-workers have demonstrated that a proinflammatory state can be reversed in rat PD models by administering capsaicin, an analgesic drug. Capsaicin activates a receptor protein that is highly expressed in neurons, microglia and astrocytes, and may play a role in neuronal function and motor control. The protein activation reversed the inflammatory state of the immune cells, providing a more protective environment for neurons.
Collapse
Affiliation(s)
- Eugene Bok
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Young Cheul Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
49
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
50
|
Ball S, Al-Bachari S, Parkes LM, Emsley HC, McCollum CN. Extracranial arterial wall volume is increased and shows relationships with vascular MRI measures in idiopathic Parkinson’s disease. Clin Neurol Neurosurg 2018; 167:54-58. [DOI: 10.1016/j.clineuro.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/02/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|