1
|
Sonzogni A, Cabrera G, Lupi G, Gugliotta L, Gonzalez V, Marcipar I, Minari R. Film Forming Nanogels for Needle-free Transdermal Vaccination. Macromol Biosci 2022; 22:e2100515. [PMID: 35388617 DOI: 10.1002/mabi.202100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Indexed: 11/06/2022]
Abstract
Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by the low permeability of the stratum corneum. Although nanogels (NGs) have proven to enhance skin penetration of macromolecules with minimum damage, their use in TCI remains almost unexplored. In this context, this article evaluates the performance of novel film forming NGs (FF-NGs) as TCI. This TCI platform consists of NGs with multilobular morphology that positively combines the properties of crosslinked poly(N-vinylcaprolactam), like thermoresponsiveness and the ability to load and release a cargo, with the film forming capacity of low Tg lobes. FF-NGs and formed films were characterized at different levels. Formed films show to be able to uniformly load an antigenic protein and release it with a profile depending on the temperature and on their FF-NGs content. In-vivo studies have demonstrated that FF-NGs promote the penetration of not only an antigenic protein but also an adjuvant until the immunocompetent area of skin, generating an adjuvant-dependent specific immune response. Finally, this study provides a successful proof of concept that FF-NGs could be a powerful tool for transcutaneous release of complex formulations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ana Sonzogni
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giuliana Lupi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luis Gugliotta
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santa Fe, Argentina
| | - Verónica Gonzalez
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Roque Minari
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santa Fe, Argentina
| |
Collapse
|
2
|
Lee S, Woo C, Ki CS. Pectin nanogel formation via thiol-norbornene photo-click chemistry for transcutaneous antigen delivery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
4
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Andreata-Santos R, Alves RPDS, Pereira SA, Pereira LR, de Freitas CL, Pereira SS, Venceslau-Carvalho AA, Castro-Amarante MF, Favaro MTP, Mathias-Santos C, Amorim JH, Ferreira LCDS. Transcutaneous Administration of Dengue Vaccines. Viruses 2020; 12:v12050514. [PMID: 32384822 PMCID: PMC7290698 DOI: 10.3390/v12050514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
In the present study, we evaluated the immunological responses induced by dengue vaccines under experimental conditions after delivery via a transcutaneous (TC) route. Vaccines against type 2 Dengue virus particles (DENV2 New Guinea C (NGC) strain) combined with enterotoxigenic Escherichia coli (ETEC) heat-labile toxin (LT) were administered to BALB/c mice in a three-dose immunization regimen via the TC route. As a control for the parenteral administration route, other mouse groups were immunized with the same vaccine formulation via the intradermic (ID) route. Our results showed that mice vaccinated either via the TC or ID routes developed similar protective immunity, as measured after lethal challenges with the DENV2 NGC strain. Notably, the vaccine delivered through the TC route induced lower serum antibody (IgG) responses with regard to ID-immunized mice, particularly after the third dose. The protective immunity elicited in TC-immunized mice was attributed to different antigen-specific antibody properties, such as epitope specificity and IgG subclass responses, and cellular immune responses, as determined by cytokine secretion profiles. Altogether, the results of the present study demonstrate the immunogenicity and protective properties of a dengue vaccine delivered through the TC route and offer perspectives for future clinical applications.
Collapse
Affiliation(s)
- Robert Andreata-Santos
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Rúbens Prince dos Santos Alves
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Sara Araujo Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Carla Longo de Freitas
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Samuel Santos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Alexia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Maria Fernanda Castro-Amarante
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Marianna Teixeira Pinho Favaro
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Camila Mathias-Santos
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
| | - Jaime Henrique Amorim
- Center for Biological and Health Sciences, Federal University of Western Bahia, Bahia 47810-047, Brazil;
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.-S.); (R.P.d.S.A.); (S.A.P.); (L.R.P.); (C.L.d.F.); (S.S.P.); (A.A.V.-C.); (M.F.C.-A.); (M.T.P.F.); (C.M.-S.)
- Correspondence: ; Tel.: +55-11-3091-7356
| |
Collapse
|
6
|
Kaurav M, Kumar R, Jain A, Pandey RS. Novel Biomimetic Reconstituted Built-in Adjuvanted Hepatitis B Vaccine for Transcutaneous Immunization. J Pharm Sci 2019; 108:3550-3559. [PMID: 31348940 DOI: 10.1016/j.xphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Transcutaneous immunization is the administration of a vaccine on the skin to generate efficient systemic and mucosal immune responses against an antigen. In the present study, reconstituted hepatitis B surface antigen vesicles (HBsAg-REVs) integrated with monophosphoryl lipid A were prepared by the delipidation-reconstitution method and tested as built-in adjuvanted vaccine, system for transcutaneous immunization using a combined approach of tape strippings, and enhanced antigen skin contact time. Prepared vesicles were extensively characterized for size, shape, zeta potential, and antigen protein loading efficiency. Following topical application, HBsAg-REVs skin permeation on isolated rat skin and cell uptake by bone marrow-derived dendritic cells were determined by confocal laser scanning microscopy and flow cytometry, respectively. The humoral and cellular immune responses elicited by HBsAg-REVs via transcutaneous immunization were comparable to the marketed intramuscular hepatitis B vaccine formulation with predefined immunization protocols. This study supports that delivery of reconstituted HBsAg vesicles via transcutaneous route may open a new vista for designing topical vaccines with possible immune protection against hepatitis B in future.
Collapse
Affiliation(s)
- Monika Kaurav
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Rajendra Kumar
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Atul Jain
- National UGC Centre of Excellence in NanoBiomedical Applications, Panjab University, Chandigarh 160014, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| |
Collapse
|
7
|
Lower-Sized Chitosan Nanocapsules for Transcutaneous Antigen Delivery. NANOMATERIALS 2018; 8:nano8090659. [PMID: 30149658 PMCID: PMC6164329 DOI: 10.3390/nano8090659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022]
Abstract
Transcutaneous vaccination has several advantages including having a noninvasive route and needle-free administration; nonetheless developing an effective transdermal formulation has not been an easy task because skin physiology, particularly the stratum corneum, does not allow antigen penetration. Size is a crucial parameter for successful active molecule administration through the skin. Here we report a new core-shell structure rationally developed for transcutaneous antigen delivery. The resulting multifunctional carrier has an oily core with immune adjuvant properties and a polymeric corona made of chitosan. This system has a size of around 100 nm and a positive zeta potential. The new formulation is stable in storage and physiological conditions. Ovalbumin (OVA) was used as the antigen model and the developed nanocapsules show high association efficiency (75%). Chitosan nanocapsules have high interaction with the immune system which was demonstrated by complement activation and also did not affect cell viability in the macrophage cell line. Finally, ex vivo studies using a pig skin model show that OVA associated to the chitosan nanocapsules developed in this study penetrated and were retained better than OVA in solution. Thus, the physicochemical properties and their adequate characteristics make this carrier an excellent platform for transcutaneous antigen delivery.
Collapse
|
8
|
Sulima A, Jalah R, Antoline JFG, Torres OB, Imler GH, Deschamps JR, Beck Z, Alving CR, Jacobson AE, Rice KC, Matyas GR. A Stable Heroin Analogue That Can Serve as a Vaccine Hapten to Induce Antibodies That Block the Effects of Heroin and Its Metabolites in Rodents and That Cross-React Immunologically with Related Drugs of Abuse. J Med Chem 2017; 61:329-343. [PMID: 29236495 PMCID: PMC5767880 DOI: 10.1021/acs.jmedchem.7b01427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
An
improved synthesis of a haptenic heroin surrogate 1 (6-AmHap)
is reported. The intermediate needed for the preparation
of 1 was described in the route in the synthesis of 2 (DiAmHap). A scalable procedure was developed to install
the C-3 amido group. Using the Boc protectng group in 18 allowed preparation of 1 in an overall yield of 53%
from 4 and eliminated the necessity of preparing the
diamide 13. Hapten 1 was conjugated to tetanus
toxoid and mixed with liposomes containing monophosphoryl lipid A
as an adjuvant. The 1 vaccine induced high anti-1 IgG levels that reduced heroin-induced antinociception and
locomotive behavioral changes following repeated subcutaneous and
intravenous heroin challenges in mice and rats. Vaccinated mice had
reduced heroin-induced hyperlocomotion following a 50 mg/kg heroin
challenge. The 1 vaccine-induced antibodies bound to
heroin and other abused opioids, including hydrocodone, oxycodone,
hydromorphone, oxymorphone, and codeine.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Rashmi Jalah
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Joshua F G Antoline
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gregory H Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Jeffrey R Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory , Washington D.C. 20375, United States
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , 6720A Rockledge Drive, Bethesda, Maryland 20817, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Carl R Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services , 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research , 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
9
|
Saliba H, Heurtault B, Bouharoun-Tayoun H, Flacher V, Frisch B, Fournel S, Chamat S. Enhancing tumor specific immune responses by transcutaneous vaccination. Expert Rev Vaccines 2017; 16:1079-1094. [DOI: 10.1080/14760584.2017.1382357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hanadi Saliba
- Laboratory of Design and Application of Bioactive Molecules, University of Strasbourg, Illkirch Cedex, France
- Laboratory of Immunology, Lebanese University, Fanar, Lebanon
| | - Béatrice Heurtault
- Laboratory of Design and Application of Bioactive Molecules, University of Strasbourg, Illkirch Cedex, France
| | | | - Vincent Flacher
- Laboratory of Immunopathology and Therapeutic Chemistry, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Benoît Frisch
- Laboratory of Design and Application of Bioactive Molecules, University of Strasbourg, Illkirch Cedex, France
| | - Sylvie Fournel
- Laboratory of Design and Application of Bioactive Molecules, University of Strasbourg, Illkirch Cedex, France
| | - Soulaima Chamat
- Laboratory of Immunology, Lebanese University, Fanar, Lebanon
- Faculty of Medicine, Lebanese University, Hadath, Lebanon
| |
Collapse
|
10
|
Ono A, Ito S, Sakagami S, Asada H, Saito M, Quan YS, Kamiyama F, Hirobe S, Okada N. Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery. Pharmaceutics 2017; 9:pharmaceutics9030027. [PMID: 28771172 PMCID: PMC5620568 DOI: 10.3390/pharmaceutics9030027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.
Collapse
Affiliation(s)
- Akihiko Ono
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sayami Ito
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shun Sakagami
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideo Asada
- Department of Dermatology, Nara Medical University, 840 Shin-cho, Kashihara, Nara 634-8522, Japan.
| | - Mio Saito
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Caimi AT, Parra F, de Farias MA, Portugal RV, Perez AP, Romero EL, Morilla MJ. Topical vaccination with super-stable ready to use nanovesicles. Colloids Surf B Biointerfaces 2016; 152:114-123. [PMID: 28103528 DOI: 10.1016/j.colsurfb.2016.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 12/28/2022]
Abstract
Ultradeformable archaeosomes (UDA) are nanovesicles made of total polar archaeolipids (TPA) from the archaea Halorubrum tebenquichense, soybean phosphatidylcholine and sodium cholate (3:3:1w/w). Fresh dispersions of UDA including different type of antigens are acknowledged as efficient topical vaccination agents. UDA dispersions however, if manufactured for pharmaceutical use, have to maintain colloidal stability upon liposomicidal processes such as sterilization and lyophilization (SLRUDA), needed to extend shelf life during storage. The remaining capacity of SLRUDA to act as adjuvants was therefore tested here for the first time. Another unexplored issue addressed here, is the outcome of replacing classical antigen inclusion into nanovesicles by their physical mixture. Our results showed that UDA behaved as super-stable nanovesicles because of its high endurance during heat sterilization and storage for 5 months at 40°C. The archaeolipid content of UDA however, was insufficient to protect it against lyophilization, which demanded the addition of 2.5% v/v glycerol plus 0.07% w/v glucose. No significant differences were found between serum anti-ovalbumin (OVA) IgG titers induced by fresh or SLRUDA upon topical application of 4 weekly doses at 600μg lipids/75μg OVA to Balb/c mice. Finally, SLRUDA mixed with OVA elicited the same Th2 biased plus a non-specific cell mediated response than OVA encapsulated within UDA. Concluding, we showed that TPA is key component of super-stable nanovesicles that confers resistance to heat sterilization and to storage under cold-free conditions. The finding of SLRUDA as ready-to-use topical adjuvant would lead to simpler manufacture processing and cheaper products. .
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Federico Parra
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
12
|
Bobbala S, Hook S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm Res 2016; 33:2078-97. [DOI: 10.1007/s11095-016-1979-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
|
13
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 2015; 9:3109-18. [PMID: 26124635 PMCID: PMC4476457 DOI: 10.2147/dddt.s79322] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients' (and diabetologists') ideal requirements that organic chemistry could meet.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Ottavio Giampietro
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Vera Covolan
- Department of Chemistry and Industrial Chemistry, University of Pisa, Siena, Italy
| | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| | - Paolo Fanti
- Division of Nephrology, University of Texas Health Science Center San Antonio, South Texas Veteran Health Care System, San Antonio, Texas, USA
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| |
Collapse
|
15
|
van de Wijdeven GG, Hirschberg HJ, Weyers W, Schalla W. Phase 1 clinical study with Bioneedles, a delivery platform for biopharmaceuticals. Eur J Pharm Biopharm 2015; 89:126-33. [DOI: 10.1016/j.ejpb.2014.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
|
16
|
Kitaoka M, Naritomi A, Hirakawa Y, Kamiya N, Goto M. Transdermal immunization using solid-in-oil nanodispersion with CpG oligodeoxynucleotide adjuvants. Pharm Res 2014; 32:1486-92. [PMID: 25361868 DOI: 10.1007/s11095-014-1554-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Simple and noninvasive vaccine administration alternatives to injections are desired. A solid-in-oil (S/O) nanodispersion system was able to overcome skin barriers and induce an immune response; however, antibody levels remained low. We applied an immune potentiator, CpG oligodeoxynucleotide (ODN), to enhance the immune response by controlling the T helper 1 (Th1)/T helper 2 (Th2) balance. METHODS S/O nanodispersions containing ovalbumin (OVA) and CpG ODN (CpG-A or CpG-B) were characterized by size distribution analysis and a protein release test. The skin permeation of fluorescence-labeled OVA was observed by fluorescence microscopy. Antigen-specific IgG, IgG1, and IgG2a responses were measured by enzyme-linked immunosorbent assay. RESULTS Co-encapsulation of CpG ODNs in S/O nanodispersions enhanced induction of OVA-specific IgG. S/O nanodispersion containing OVA and CpG-A had a smaller mean particle size and permeated the skin more efficiently. In contrast, CpG-B showed the highest protein release and induction of OVA-specific IgG. IgG subclass analysis revealed that OVA induced a Th2-dominant immune response, while the S/O nanodispersion containing CpG-A skewed the immune response toward a Th1-bias. CONCLUSIONS In combination with CpG ODN, the S/O nanodispersion system efficiently induced an antigen-specific antibody response. The Th1/Th2 immune balance could be controlled by the selection of CpG ODN type.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, 819-0395, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
17
|
Kim TG, Kim DS, Kim HP, Lee MG. The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep 2014; 47:60-8. [PMID: 24411465 PMCID: PMC4163895 DOI: 10.5483/bmbrep.2014.47.2.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a chronic inflammatory disorder characterized by an erythematous scaly plaque of the skin and is occasionally accompanied by systemic complications. In the psoriatic lesions, an increased number of cytokine-producing dendritic cells and activated T cells are observed, which indicate that psoriasis is a prototype of an immune-mediated dermatosis. During the last decade, emerging studies demonstrate novel roles for the dendritic cell subsets in the process of disease initiation and maintenance of psoriasis. In addition, recently discovered anti-psoriatic therapies, which specifically target inflammatory cytokines produced by lesional dendritic cells, bring much better clinical improvement compared to conventional treatments. These new therapies implicate the crucial importance of dendritic cells in psoriasis pathogenesis. This review will summarize and discuss the dendritic cell subsets of the human skin and their pathophysiological involvement in psoriasis based on mouse- and patient-oriented studies. [BMB Reports 2014; 47(2): 60-68]
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Dae Suk Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Geol Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
18
|
Rancan F, Amselgruber S, Hadam S, Munier S, Pavot V, Verrier B, Hackbarth S, Combadiere B, Blume-Peytavi U, Vogt A. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells. J Control Release 2013; 176:115-22. [PMID: 24384300 DOI: 10.1016/j.jconrel.2013.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/02/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Transcutaneous immunization is a promising vaccination strategy for the treatment of infectious diseases and cancer. In this study, we investigate the combination of cyanoacrylate skin surface stripping (CSSS) and particle-based antigen delivery to target the HIV-1 p24 protein to skin antigen presenting cells (APC). The CSSS treatment pre-activates skin APC and opens hair follicles, where protein-loaded particles accumulate and allow for sustained delivery of the loaded antigen to perifollicular APC. We found that poly-lactic acid (PLA) and polystyrene (PS) particles targeted the adsorbed HIV-1 p24 protein to the hair follicles. Small amounts of PS and PLA particles were found to translocate to the epidermis and be internalized by skin cells, whereas most of the particles aggregated in the hair follicle canal, where they released the loaded antigen. The p24 protein diffused to the epidermis and dermis and was detected in skin cells, especially in Langerhans cells and dermal dendritic cells. Furthermore, the combination of CSSS and particle-based delivery resulted in activation and maturation of Langerhans cells (HLA-DR, CD80 and CD83). We conclude that particle-based antigen delivery across partially disrupted skin barrier is a feasible and effective approach to needle-free transcutaneous vaccination.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sarah Amselgruber
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sevérine Munier
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | - Vincent Pavot
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines UMR 5305, CNRS/Université de Lyon, France
| | | | - Behazine Combadiere
- Laboratory of Immunity and Infection, Université Pierre et Marie Curie (UPMC University Paris 06), Paris Cedex 13, France
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|