1
|
Soumya K, Haridas KR, James J, Sudheesh S. Isolation of a novel quercetin derivative from Terminalia chebula and RT-PCR-assisted probing to investigate its DNA repair in hepatoma cells. Res Pharm Sci 2024; 19:303-318. [PMID: 39035817 PMCID: PMC11257194 DOI: 10.4103/rps.rps_56_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose DNA damage can lead to carcinogenesis if replication proceeds without proper repair. This study focused on the purification of a novel quercetin derivative present in Terminalia chebula fruit and studied its protective role in hepatoma cells due to H2O2-DNA damage. Experimental approach The pure compound obtained from the silica gel column was subjected to structural characterization using spectroscopic techniques. MTT assay was employed to select a non-toxic concentration of the isolated compounds on HepG2 and Chang liver cells. The antigenotoxic property of the compound on HepG2 and Chang liver cells was carried out by alkaline comet assay. Analyses of expression levels of mRNA for two DNA repair enzymes, OGG1 and NEIL1, in HepG2 and Chang liver cells, were carried out using the RT-PCR method. Findings/Results The pure compound obtained from the fraction-5 of diethyl ether extract was identified as a novel quercetin derivative and named 7-(but-2-en-1-yloxy)-2-(4(but-2-en-1-yloxy)-3-hydroxyphenyl)-3- (hexa-2,4-dien-1-yloxy)-6-hydroxy-4H-chromen-4-one. This compound recorded modest toxicity at the highest concentration tested (percentage cell viability at 100 μg/mL was 64.71 ± 0.38 for HepG2 and 45.32 ± 0.07 for Chang liver cells). The compound has demonstrated noteworthy protection against H2O2-induced DNA damage in both cell lines. Analyses of mRNA expression levels for enzymes OGGI and NEIL1 enzymes in HepG2 and Chang liver cells asserted the protective role of the isolated compound against H2O2-induced DNA damage. Conclusion and implication The protective effect of a novel quercetin derivative isolated from T. chebula in the hepatoma cells is reported here for the first time.
Collapse
Affiliation(s)
- Kallyadan Soumya
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Karickal Raman Haridas
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Jesna James
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| | - Sudhakaran Sudheesh
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat P.O., Payyanur, Kannur, Kerala, India - 670327
| |
Collapse
|
2
|
Aldayel TS, Abdel-Rahman HG, Gad El-Hak HN, Abdelrazek HMA, Mohamed RM, El-Sayed RM. Assessment of modulatory activity of Uncaria tomentosa extract against fipronil immunotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112674. [PMID: 34438272 DOI: 10.1016/j.ecoenv.2021.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study has investigated the effect of using the Uncaria tomentosa (UT) extract against immunotoxicity that induced by fipronil (FP) in male Wistar rats. Twenty-eight, male Wistar rats were assigned randomly into four groups (7 rats each). Control group received distilled water. FP group received FP 9.7 mg/kg b. wt orally via gastric tube. UT group received 120 mg/kg b. wt. of UT extract orally. FP-UT group received both FP and UT (9.7 and 120 mg/kg b.wt, respectively) for 30 days. Hematological parameters, malondialdehyde (MDA), total antioxidant capacity (TAC), estradiol, histamine and immunoglobulin E (IGE) were assayed. Histopathological and electron microscopical examinations were performed to the lymphoid organs. Hematological parameters, were decreased in the FP group than the control group. There was a rise in MDA of FP group followed by a decrease in TAC content with histological and ultrastructure degenerative changes. UT extract treatment ameliorated the FP-induced perturbations for the former parameters. The results showed that FP treatment exerted an immunotoxic effect through acting as an endocrine disruptor and allergic, pro-inflammatory that was confirmed by histopathological and ultrastructure study of the lymphoid organs. Uncaria tomentosa extract could successfully modulate FP-induced immunotoxicity by diminishing all the studied parameters.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Heba N Gad El-Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha M Mohamed
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish 45513, Egypt
| |
Collapse
|
3
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Murbach TS, Glávits R, Endres JR, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of lithium orotate. Regul Toxicol Pharmacol 2021; 124:104973. [PMID: 34146638 DOI: 10.1016/j.yrtph.2021.104973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Lithium orotate, the salt of lithium and orotic acid, has been marketed for decades as a supplemental source of lithium with few recorded adverse events. Nonetheless, there have been some concerns in the scientific literature regarding orotic acid, and pharmaceutical lithium salts are known to have a narrow therapeutic window, albeit, at lithium equivalent therapeutic doses 5.5-67 times greater than typically recommended for supplemental lithium orotate. To our knowledge, the potential toxicity of lithium orotate has not been investigated in preclinical studies; thus, we conducted a battery of genetic toxicity tests and an oral repeated-dose toxicity test in order to further explore its safety. Lithium orotate was not mutagenic or clastogenic in bacterial reverse mutation and in vitro mammalian chromosomal aberration tests, respectively, and did not exhibit in vivo genotoxicity in a micronucleus test in mice. In a 28-day, repeated-dose oral toxicity study, rats were administered 0, 100, 200, or 400 mg/kg body weight/day of lithium orotate by gavage. No toxicity or target organs were identified; therefore, a no observed adverse effect level was determined as 400 mg/kg body weight/day. These results are supportive of the lack of a postmarket safety signal from several decades of human consumption.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Róbert Glávits
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary.
| | - John R Endres
- AIBMR Life Sciences, Inc., 1425 Broadway, Suite 458, Seattle, WA, 98122, USA.
| | - Gábor Hirka
- Toxi-Coop Zrt., Berlini utca 47-49, H-1045, Budapest, Hungary; Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | - Erzsébet Béres
- Toxi-Coop Zrt., Arácsi út 97, 8230, Balatonfüred, Hungary.
| | | |
Collapse
|
5
|
Koriem KM, Selim AY, Mazen RA. N-acetylcysteine-amide improves tissue oxidative stress, DNA damage, and proteins disappearance in methamphetamine toxicity more efficiently than N-acetyl-L-cysteine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Virk P, Al-Mukhaizeem NAR, Bin Morebah SH, Fouad D, Elobeid M. Protective effect of resveratrol against toxicity induced by the mycotoxin, zearalenone in a rat model. Food Chem Toxicol 2020; 146:111840. [PMID: 33137427 DOI: 10.1016/j.fct.2020.111840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Contamination of cereal crops with zearalenone (ZEA), a mycotoxin produced by Fusarium fungi, is a worldwide health concern. The study assessed the ameliorative potential of resveratrol (RSV), a potent antioxidant against ZEA induced toxicity in adult male Wistar rats. Rats (n = 40), with an average weight of 100-150 g were used for the exposure study for three weeks. The animals were divided into four groups (I to IV) each comprising 10 rats. Group I was kept as negative control and was administered normal saline. Group II and III were exposed to 2 mg/kg of the mycotoxin, ZEA administered intraperitoneally once every week. Group III was treated with resveratrol (RSV) orally (5 mg/kg) daily. Group IV was treated only with resveratrol (5 mg/kg/daily) as a positive control. The protective effect of resveratrol was evaluated on; biochemical variables, biomarkers of oxidative stress, markers of immunotoxicity, and DNA damage. The findings showed that exposure to ZEA elicited oxidative stress and modulated the antioxidant enzyme activities. A disarray in the lipid profile, parameters of the humoral and cellular immune response; serum cytokines and immunoglobulins was also observed. Further, COMET assay showed detectable DNA lesions. Taken together, RSV was efficacious in reducing and/or reversing the ZEA induced toxicity.
Collapse
Affiliation(s)
- Promy Virk
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
| | | | - Sara Hamad Bin Morebah
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia; Department of Zoology and Entomology Department, Faculty of Science, Helwan University, Ein Helwan, Cairo, Egypt
| | - Mai Elobeid
- Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia
| |
Collapse
|
7
|
Xu L, Sun X, Wan X, Li H, Yan F, Han R, Li H, Li Z, Tian Y, Liu X, Kang X, Wang Y. Identification of a Bacillus amyloliquefaciens H6 Thioesterase Involved in Zearalenone Detoxification by Transcriptomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10071-10080. [PMID: 32815728 DOI: 10.1021/acs.jafc.0c03954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum, induces hyperestrogenic responses in mammals and can cause reproductive disorders in farm animals. In this study, a transcriptome analysis of Bacillus amyloliquefaciens H6, which was previously identified as a ZEA-degrading bacterium, was conducted with high-throughput sequencing technology, and the differentially expressed genes were subjected to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Among the 16 upregulated genes, BAMF_RS30125 was predicted to be the key gene responsible for ZEA degradation. The protein encoded by BAMF_RS30125 was then expressed in Escherichia coli, and this recombinant protein (named ZTE138) significantly reduced the ZEA content, as determined by the enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), and decreased the proliferating activity of ZEA in MCF-7 cells. What is more, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results showed that the relative molecular mass and the structure of ZEA also changed. Sequence alignment of the ZTE138 protein showed that it is a protease that belongs to the YBGC/FADM family of coenzyme A thioesterases, and thus, the protein can presumably cleave the ZEA lactone bond and break down its macrolide ring.
Collapse
Affiliation(s)
- Laipeng Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiangli Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Xianhua Wan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Hui Li
- College of Environmental and Resource Sciences, Henan Agricultural University, Zhengzhou 450000, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| |
Collapse
|
8
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
9
|
Soumya K, James J, Archana TM, Dhanya AT, Shahid AP, Sudheesh S. Cytotoxic and antigenotoxic properties of phenolic compound isolated from the fruit of Terminalia chebula on HeLa cell. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0017-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
DNA in a human cell is subjected to constant assault from both environmental factors and normal metabolic processes. Accumulation of DNA damage drives the progression of many health disorders like aging, cancer, diabetes, and neurodegenerative disorders.
Results
The present study focuses on the isolation of phenolic compound from the fruit of Terminalia chebula and its protective role on induced DNA damage. Diethyl ether and ethyl acetate extract of Terminalia chebula fruit were subjected to column chromatographic purification, and the fractions obtained were tested for the presence of phenolics. Fraction-12 isolated from diethyl ether extract was identified as gallic acid, which is used for cytotoxic and DNA damage protection activity assays. To select a non-toxic concentration of isolated compound, cytotoxicity was assessed by MTT assay. Gallic acid showed moderate toxicity at the highest concentration tested (i.e., percentage cell viability at 100 μg/ml is 40.51 ± 1.31). Antigenotoxic effect of gallic acid on HeLa cells was carried by alkaline comet assay. The compound showed significant protective abilities against hydrogen peroxide-induced DNA damage in HeLa cells.
Conclusion
These results show the importance of gallic acid isolated from Terminalia chebula fruit, as protector of oxidative stress-induced DNA damage.
Collapse
|
10
|
Belgacem H, Ben Salah-Abbès J, Ezzdini K, A Abdel-Wahhab M, Zinedine A, Abbès S. Lactobacillus plantarum MON03 counteracts zearalenone génotoxicty in mice: Chromosome aberrations, micronuclei, DNA fragmentation and apoptotique gene expression. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 840:11-19. [PMID: 30857728 DOI: 10.1016/j.mrgentox.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN) is a potent estrogenic metabolite produced by some Fusarium species. No treatment has been successfully employed to get rid against ZEN contained in foods and/or mitigates its genotoxicity. This study was conducted to evaluate the ability of lactic acid bacteria, isolated from Tunisia traditional butter, Lactobacillus plantarum MON03 (LP) to protect mice against cytotoxicity and genotoxicity induced by ZEN. Two doses of LP (2 × 109 CFU/L, ∼2 mg/kg and 4 × 109 CFU/L, ∼4 mg/kg) was added alone or in combination with a toxic intragastric ZEN (40 mg/kg representing 8% of LD50) dose daily for 2 wk by oral gavage. The control group received distilled water. The positive control groups received Colchicin (4 mg/kg bw) for the micronucleus assay and mitomycin C (1 mg/kg bw) for the chromosome aberrations assay. 48 h after treatment, the small intestines, femur and tibia are dissected out. Small intestines were collected for the determination of DNA fragmentation, genes expression and target proteins content. The results show that ZEN was cytotoxic and genotoxic to mice as indicated by the increase in frequencies of polychromatic erythrocytes micronucleated (PCEMN) and chromosomal aberrations in bone marrow cells. In the small intestine ZEN was increased DNA fragmentation, down regulated the expressions of caspase-3, caspase-9, and Bax as well as up-regulated the expression of Bcl-2 and their target proteins. The simultaneous intragastric administration of LP with ZEN resulted in a decrease of PCEMN number and chromosomal aberrations frequency and in an increase of polychromatic erythrocytes (PCE) in bone marrow cells compared with the group treated with ZEN alone. In addition, LP succeeded to alleviate the disturbances in DNA fragmentation and the expression of these genes and their target proteins. It could be concluded that the use of LP induced protective effects against genotoxicity of ZEN in part through adhesion and so likely diminished its bio-availability in gastro-intestinal tract.
Collapse
Affiliation(s)
- Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Khawla Ezzdini
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Abdellah Zinedine
- Team of Applied Microbiology and Biotechnologies, Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences, Chouaïb Doukkali University, El Jadida 24000, Morocco
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Ressources Valorization, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
11
|
Wang J, Li M, Zhang W, Gu A, Dong J, Li J, Shan A. Protective Effect of N-Acetylcysteine against Oxidative Stress Induced by Zearalenone via Mitochondrial Apoptosis Pathway in SIEC02 Cells. Toxins (Basel) 2018; 10:E407. [PMID: 30304829 PMCID: PMC6215273 DOI: 10.3390/toxins10100407] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogen mycotoxin, is widely found in feed and foodstuffs. Intestinal cells may become the primary target of toxin attack after ingesting food containing ZEN. Porcine small intestinal epithelial (SIEC02) cells were selected to assess the effect of ZEN exposure on the intestine. Cells were exposed to ZEN (20 µg/mL) or pretreated with (81, 162, and 324 µg/mL) N-acetylcysteine (NAC) prior to ZEN treatment. Results indicated that the activities of glutathione peroxidase (Gpx) and glutathione reductase (GR) were reduced by ZEN, which induced reactive oxygen species (ROS) and malondialdehyde (MDA) production. Moreover, these activities increased apoptosis and mitochondrial membrane potential (ΔΨm), and regulated the messenger RNA (mRNA) expression of Bax, Bcl-2, caspase-3, caspase-9, and cytochrome c (cyto c). Additionally, NAC pretreatment reduced the oxidative damage and inhibited the apoptosis induced by ZEN. It can be concluded that ZEN-induced oxidative stress and damage may further induce mitochondrial apoptosis, and pretreatment of NAC can degrade this damage to some extent.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Mengmeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Aixin Gu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawen Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Zheng N, Zhang H, Li S, Wang J, Liu J, Ren H, Gao Y. Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 2018; 150:77-85. [PMID: 29753785 DOI: 10.1016/j.toxicon.2018.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 11/16/2022]
Abstract
Aflatoxins, including aflatoxin B1 (AFB1) and M1 (AFM1), are natural potent carcinogens produced by Aspergillus spp. These compounds, which can often be detected in dairy foods, can cause diseases in human beings. However, the molecular mechanisms involved in cytotoxicity, as well as methods for intervention, remain largely unexplored. For example, it is unclear whether lactoferrin (LF), a major antioxidant in milk, can inhibit the cytotoxicity of AFB1 and AFM1. In this study, we assessed AFB1- and AFM1-induced cell toxicity by measuring cell viability, membrane permeability, and genotoxicity, and then investigated the ability of LF to protect cells against AFB1 and AFM1. In Caco-2, HEK, Hep-G2, and SK-N-SH cells, 4 μg/mL AFB1 or AFM1 significantly inhibited cell growth, increased the level of lactate dehydrogenase, induced genetic damage, and increased the levels of signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) (p < 0.05). AFB1 was more genotoxic than AFM1 in all four cell lines, especially in Hep-G2. In Caco-2, Hep-G2, and SK-N-SH, incubation of AF-treated cells with 1000 μg/mL LF significantly decreased cytotoxicity, oxidation level, DNA damage, and levels of ERK1/2 and JNK (p < 0.05). Our data demonstrate that AFB1 or AFM1 induced cytotoxicity and DNA damage in these four cell lines, and that LF alleviated toxicity by decreasing oxidative stress mediated by mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Huan Zhang
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Songli Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jia Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100027, PR China
| | - Hui Ren
- Department of Food Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Milk and Dairy Product Inspection Center of Ministry of Agriculture, Beijing 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
13
|
Liu XL, Wu RY, Sun XF, Cheng SF, Zhang RQ, Zhang TY, Zhang XF, Zhao Y, Shen W, Li L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int J Biol Sci 2018; 14:294-305. [PMID: 29559847 PMCID: PMC5859475 DOI: 10.7150/ijbs.23898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/30/2017] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA), a metabolite of Fusarium fungi, is commonly found on moldy grains. Because it can competitively combine to estrogen receptor to disrupt estrogenic signaling, it has been reported to have serious adverse effects on animal reproduction systems. In order to explore the genotoxic effects of ZEA exposure on ovarian somatic cells, porcine granulosa cells were exposed to 10 μM and 30 μM ZEA for 24 or 72 h in vitro. The results showed that ZEA exposure for 24 h remarkably reduced the proliferation of porcine granulosa cells in a dose-dependent manner as determined by MTT analysis and flow cytometry. Furthermore, exposure to ZEA for 72 h induced apoptosis, and RNA sequence analysis also revealed that the expression of apoptosis related genes were altered. RT-qPCR, immunofluorescence and western blot analysis further confirmed the expression of DNA damage and repair related genes (γ-H2AX, BRCA1, RAD51 and PRKDC) were increased in ZEA exposed granulosa cells. When the estrogen antagonist, tamoxifen, was added with ZEA in the culture medium, the DNA damage and repairment by ZEA returned to normal level. Collectively, these results illustrate that ZEA disrupts genome stability and inhibits growth of porcine granulosa cells via the estrogen receptors which may promote granulosa cell apoptosis when the DNA repair system is not enough to rescue this serious damage.
Collapse
Affiliation(s)
- Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Ying Wu
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Qian Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Yu Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Johnson W, Tchounwou PB, Yedjou CG. Therapeutic Mechanisms of Vernonia amygdalina Delile in the Treatment of Prostate Cancer. Molecules 2017; 22:E1594. [PMID: 28937624 PMCID: PMC5661957 DOI: 10.3390/molecules22101594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer patients have been suffering from limited treatment options due to late diagnosis, poor drug tolerance, and multi-drug resistance to almost all the current drug treatments. Therefore, it is important to seek a new alternative therapeutic medicine that can effectively prevent the disease and even eradicate the progression and metastasis of prostate cancer. Vernonia amygdalina Delile (VAD) is a common edible vegetable in Cameroon that has been used as a traditional medicine for some human diseases. However, to the best of our knowledge, no previous reports have explored its therapeutic efficacy against human prostate cancer. The objective of the present study was to assess the anticancer activities of VAD methanolic extracts in the prevention and treatment of prostate cancer using human androgen-independent prostate cancer (PC-3) cells as a test model. To achieve our objective, PC-3 cells were treated with various doses of VAD for 48 h. Data generated from the trypan blue test and MTT assay demonstrated that VAD extracts exhibited significant growth-inhibitory effects on PC-3 cells. Collectively, we established for the first time the antiproliferative effects of VAD on PC-3 cells, with an IC50 value of about 196.6 µg/mL. Further experiments, including cell morphology, lipid peroxidation and comet assays, and apoptosis analysis showed that VAD caused growth-inhibitory effects on PC-3 cells through the induction of cell growth arrest, DNA damage, apoptosis, and necrosis in vitro and may provide protection from oxidative stress diseases as a result of its high antioxidant content. These results provide useful data on the anticancer activities of VAD for prostate cancer and demonstrate the novel possibilities of this medicinal plant for developing prostate cancer therapies.
Collapse
Affiliation(s)
- William Johnson
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Paul B Tchounwou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| | - Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA.
| |
Collapse
|
15
|
El-Nekeety AA, El-Kady AA, Abdel-Wahhab KG, Hassan NS, Abdel-Wahhab MA. Reduction of individual or combined toxicity of fumonisin B 1 and zearalenone via dietary inclusion of organo-modified nano-montmorillonite in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20770-20783. [PMID: 28718025 DOI: 10.1007/s11356-017-9721-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Fusarium mycotoxins are nature environmental contaminants worldwide in animal feed and human food resulting in a serious health risk. The present study aimed to evaluate the potential role of organo-modified nano-montmorillonite (OMNM) against the health risk and the oxidative stress resulted from the exposure of fumonisin (FB1) and zearalenone (ZEN) individually and in combination in rats. Eight groups of female Sprague Dawley rats were treated orally for 3 weeks including the control group, FB1 alone-treated group (50 mg/kg b.w.), ZEN alone-treated group (40 μg/kg b.w), FB1 plus ZEN-treated group, the group fed basal diet supplemented with OMNM (5 g/kg diet), and the groups fed basal diet supplemented with OMNM and treated with FB1 and/or ZEN. At the end of the experimental period, samples of blood and tissues were collected for different biochemical and histological analyses. The results revealed that administration of FB1 and/or ZEN resulted in significant disturbances in the biochemical parameters tested, lipid profiles, serum cytokines, oxidative stress indices, the activity of antioxidant enzymes, and the histological status of the liver and kidney. Co-administration of both mycotoxins indicated a synergistic effect. OMNM alone was safe and succeeded to reduce and/or prevent most of the toxicity of both mycotoxins. It could be concluded that OMNM is a novel and promising nanograde adsorbent suitable for the protection against the combined exposure to FB1 and ZEN.
Collapse
Affiliation(s)
- Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed A El-Kady
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
16
|
Tatay E, Espín S, García-Fernández AJ, Ruiz MJ. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol In Vitro 2017; 45:334-339. [PMID: 28477956 DOI: 10.1016/j.tiv.2017.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Mycotoxin contamination of foods and feeds represent a serious problem worldwide. Zearalenone (ZEA) is a secondary metabolite produced by Fusarium species. This study explores oxidative cellular damage and intracellular defense mechanisms (enzymatic and non-enzymatic) in the hepatoma cell line HepG2 after exposure to ZEA and its metabolites (α-zearalenol, α-ZOL; β-zearalenol, β-ZOL). Our results demonstrated that HepG2 cells exposed to ZEA, α-ZOL or β-ZOL at different concentrations (0, 6.25, 12.5 and 25μM) showed: (i) elevated ROS levels (1.5- to 7-fold) based on the formation of the highly fluorescent 2',7'-dichlorofluorescein (DCF), (ii) increased DNA damage measured by the comet assay (9-45% higher), (iii) decreased GSH levels and CAT activity (decreased by 54%-25% and by 62%-25% for GSH and CAT, respectively) and (iv) increased GPx and SOD activities (increased by 50%-90% and by 26%-70%, respectively), compared to untreated cells. Our results suggest that mycotoxin-induced oxidative stress and damage may play a major role in the cytotoxic effects of ZEA and its metabolites. GSH and endogenous enzymes function together in protecting cells from ROS and the consequent damage after mycotoxin exposure. ZEA has a lower capacity to induce oxidative stress and damage in HepG2 cells than its metabolites at the tested concentrations.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain
| | - Silvia Espín
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Antonio-Juan García-Fernández
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain.
| |
Collapse
|
17
|
Liu J, Xu J, Li H, Sun C, Yu L, Li Y, Shi C, Zhou X, Bian X, Ping Y, Wen Y, Zhao S, Xu H, Ren L, An T, Wang Q, Yu S. miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget 2016; 6:29129-42. [PMID: 26320176 PMCID: PMC4745716 DOI: 10.18632/oncotarget.4895] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/24/2015] [Indexed: 12/05/2022] Open
Abstract
Down-regulation of miR-146b-5p contributes to tumorigenesis in several human cancers. However, the relevance of miR-146b-5p to prognosis, proliferation and apoptosis in gliomas remains unknown. In the present study, we demonstrated that miR-146b-5p expression was inversely correlated with grades and Ki-67 index in 147 human glioma specimens, but positively correlated with patients’ survival. Furthermore, two distinct subgroups of patients with grade I-IV gliomas with different prognoses were identified according to miR-146b-5p expression in our specimens. Cox regression showed that miR-146b-5p was an independent predictor for patients’ survival. Overexpression of miR-146b-5p dramatically suppressed glioma cell proliferation and induced apoptosis. Mechanistically, we validated TRAF6 as a direct functional target of miR-146b-5p and found that miR-146b-5p overexpression significantly decreased phosphorylated TAK1 and IκBα, the pivotal downstream effectors of TRAF6. Moreover, TRAF6 expression was positively correlated with glioma grades and Ki-67 index but inversely correlated with miR-146b-5p expression and predicted poor prognosis of glioma patients. In glioblastoma cell lines, silencing of TRAF6 could mimic the anti-tumor effect of miR-146b-5p. Our findings identify miR-146b-5p as a tumor suppressor and novel prognostic biomarker of gliomas, and suggest miR-146b-5p and TRAF6 as potential therapeutic candidates for malignant gliomas.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Jinling Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Huining Li
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Lin Yu
- Department of Biochemistry, Basic Medical College of Tianjin Medical University, Tianjin 300070, China
| | - Yanyan Li
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yifang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yanjun Wen
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Shujun Zhao
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Laboratory of Hormone and Development, Ministry of Health, Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Hui Xu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Linlin Ren
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Tongling An
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| |
Collapse
|
18
|
Tatay E, Font G, Ruiz MJ. Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem Toxicol 2016; 96:43-9. [PMID: 27465603 DOI: 10.1016/j.fct.2016.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 cells. Zearalenone metabolites, but not ZEA, increased DNA damage 43% (α-ZOL) and 28% (β-ZOL) compared to control cells. The GSH levels decreased from 18% to 36%. The GPx and SOD activities respectively increased from 26% to 62% and from 23% to 69% in CHO-K1 cells, whereas CAT activity decreased from 14% to 52%. In addition, intracellular ROS production was induced by ZEA and its metabolites. The endogenous antioxidant system components GSH, GPx and SOD were activated against ZEA and its metabolites. These antioxidant system components thus could contribute to decrease cell injury by ZEA and its metabolites.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Guillermina Font
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
19
|
Wang F, Wang C, Jiang Y, Deng X, Lu J, Ou S. Protective role of sodium para-amino salicylic acid against manganese-induced hippocampal neurons damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1071-1078. [PMID: 24769799 DOI: 10.1016/j.etap.2014.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Manganese (Mn) is an essential trace element of human. However, excessive Mn can cause manganism. Mn selectively accumulated in Mn-exposed workers' hippocampus which is crucial for higher brain functions such as learning, memory, and motivation during our postnatal life. Studies suggested sodium para-aminosalicylic acid (PAS) appeared to be therapeutic for manganism. We aimed to explore whether PAS could block Mn-induced neuronal injury in hippocampus in vitro. Hippocampal neurons were exposed to 50 μM manganese chloride (MnCl(2)) for 24 h, following by 50, 500, or 5000 μM PAS treatment for 24 h. Cell viability, apoptosis rate, mean fluorescence intensity of mitochondrial and DNA damage were respectively performed. MnCl(2) significantly decreased neurons' viability and fluorescence intensity of comet head of DNA, while increasing the apoptosis rate, mean fluorescence intensity of mitochondrial, percentage of tail DNA, and Olive tail moment of DNA. PAS reduced the percentage of tail DNA and Olive tail moment of Mn-exposed neurons. These data suggested that Mn caused hippocampal neurons' injury, and 50-5000 μM PAS could inhibit Mn-induced DNA damage.
Collapse
Affiliation(s)
- Fang Wang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Chan Wang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yueming Jiang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiangfa Deng
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Human Anatomy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Jipei Lu
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shiyan Ou
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|