1
|
Kasai H, Ucar H, Morimoto Y, Eto F, Okazaki H. Mechanical transmission at spine synapses: Short-term potentiation and working memory. Curr Opin Neurobiol 2023; 80:102706. [PMID: 36931116 DOI: 10.1016/j.conb.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Do dendritic spines, which comprise the postsynaptic component of most excitatory synapses, exist only for their structural dynamics, receptor trafficking, and chemical and electrical compartmentation? The answer is no. Simultaneous investigation of both spine and presynaptic terminals has recently revealed a novel feature of spine synapses. Spine enlargement pushes the presynaptic terminals with muscle-like force and augments the evoked glutamate release for up to 20 min. We now summarize the evidence that such mechanical transmission shares critical features in common with short-term potentiation (STP) and may represent the cellular basis of short-term and working memory. Thus, spine synapses produce the force of learning to leave structural traces for both short and long-term memories.
Collapse
Affiliation(s)
- Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Hasan Ucar
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Morimoto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumihiro Eto
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Becker M, Abaev K, Pinhasov A, Ornoy A. S-Adenosyl-Methionine alleviates sociability aversion and reduces changes in gene expression in a mouse model of social hierarchy. Behav Brain Res 2022; 427:113866. [DOI: 10.1016/j.bbr.2022.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
|
3
|
Qiao Y, Qiao L, Zhao P, Zhang P, Wu F, Zhang J, Gao L, Liu B, Zhang L. Phosphoprotein Detection in Sweat Realized by Intercalation Structure 2D@3D g-C 3N 4@Fe 3O 4 Wearable Sensitive Motif. BIOSENSORS 2022; 12:bios12060361. [PMID: 35735509 PMCID: PMC9220892 DOI: 10.3390/bios12060361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Abnormal protein phosphorylation in sweat metabolites is closely related to cancer, cardiovascular disease, and other diseases. The real-time monitoring of phosphoproteins in sweat is significant for early monitoring of disease biomarkers. Here, a high-efficiency electrochemical sensor for phosphoprotein in sweat was realized by 2D@3D g-C3N4@Fe3O4 with intercalation structure. Common phosphoprotein β-Casein was selected to demonstrate the platform's functionalities. The detection limit of g-C3N4@Fe3O4 could be as low as 9.7 μM, and the detection range was from 0.01 mg/mL to 1 mg/mL. In addition, the sensing platform showed good selectivity, reproducibility, and stability. We also investigated the effects of interface structure on adsorption properties and electronic properties of the g-C3N4 and Fe3O4 heterostructure using DFT. More electrons from Fe3O4 were transferred to g-C3N4, which increased the electrons in the energy band of N atoms and promoted the formation of stable N-H bonds with H atoms in phosphoproteins. We demonstrated phosphoprotein sensor functionality by measuring the phosphoprotein in human sweat during exercising. This work realizes a sensing platform for noninvasive and continuous detection of sweat phosphoproteins in wearable devices.
Collapse
Affiliation(s)
- Yuting Qiao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
| | - Lijuan Qiao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining 810016, China
- Correspondence: (L.Q.); (L.G.); (B.L.); Fax: +86-97-1531-0440 (B.L.)
| | - Peize Zhao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
| | - Fanbin Wu
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
| | - Jiahui Zhang
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
- Correspondence: (L.Q.); (L.G.); (B.L.); Fax: +86-97-1531-0440 (B.L.)
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining 810016, China; (Y.Q.); (P.Z.); (P.Z.); (F.W.); (J.Z.)
- Correspondence: (L.Q.); (L.G.); (B.L.); Fax: +86-97-1531-0440 (B.L.)
| | - Lei Zhang
- Department of Mechanical Engineering, University of Alaska Fairbanks, P.O. Box 755905, Fairbanks, AK 99775-5905, USA;
| |
Collapse
|
4
|
Cheng JS, Hu JH, Chang MY, Lin MS, Ku HP, Chien RN, Chang ML. Hepatitis C-associated late-onset schizophrenia: a nationwide, population-based cohort study. J Psychiatry Neurosci 2021; 46:E583-E591. [PMID: 34728558 PMCID: PMC8565883 DOI: 10.1503/jpn.200154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Whether infection with the hepatitis C virus (HCV) causes schizophrenia - and whether the associated risk reverses after anti-HCV therapy - is unknown; we aimed to investigate these topics. METHODS We conducted a nationwide, population-based cohort study using the Taiwan National Health Insurance Research Database (TNHIRD). A diagnosis of schizophrenia was based on criteria from the International Classification of Diseases, 9th revision (295.xx). RESULTS From 2003 to 2012, from a total population of 19 298 735, we enrolled 3 propensity-score-matched cohorts (1:2:2): HCV-treated (8931 HCV-infected patients who had received interferon-based therapy for ≥ 6 months); HCV-untreated (17 862); and HCV-uninfected (17 862) from the TNHIRD. Of the total sample (44 655), 82.81% (36 980) were 40 years of age or older. Of the 3 cohorts, the HCV-untreated group had the highest 9-year cumulative incidence of schizophrenia (0.870%, 95% confidence interval [CI] 0.556%-1.311%; p < 0.001); the HCV-treated (0.251%, 95% CI 0.091%-0.599%) and HCV-uninfected (0.118%, 95% CI 0.062%-0.213%) cohorts showed similar cumulative incidence of schizophrenia (p = 0.33). Multivariate Cox analyses showed that HCV positivity (hazard ratio [HR] 3.469, 95% CI 2.168-5.551) was independently associated with the development of schizophrenia. The HCV-untreated cohort also had the highest cumulative incidence of overall mortality (20.799%, 95% CI 18.739%-22.936%; p < 0.001); the HCV-treated (12.518%, 95% CI 8.707%-17.052%) and HCV uninfected (6.707%, 95% CI 5.533%-8.026%) cohorts showed similar cumulative incidence of mortality (p = 0.12). LIMITATIONS We were unable to determine the precise mechanism of the increased risk of schizophrenia in patients with HCV infection. CONCLUSION In a population-based cohort (most aged ≥ 40 years), HCV positivity was a potential risk factor for the development of schizophrenia; the HCV-associated risk of schizophrenia might be reversed by interferon-based antiviral therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Ling Chang
- From the Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taiwan (Cheng, Ku); the Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan (Cheng); the Department of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin, Taiwan (Hu); the Division of Pediatric Neurologic Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan (M.-Y. Chang); the Division of Pediatric General Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan (M.-Y. Chang); the Department of Cardiology, Heart Failure Center, Chang Gung Memorial Hospital, Taiwan (Lin); the Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (Lin); the Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (Chien, M.-L. Chang); and the Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan (Chien, M.-L. Chang)
| |
Collapse
|
5
|
Qian L, Qi S, Wang Z, Magnuson JT, Volz DC, Schlenk D, Jiang J, Wang C. Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124083. [PMID: 33011634 DOI: 10.1016/j.jhazmat.2020.124083] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Boscalid is a persistent fungicide that is frequently detected in surface waters and may be neurotoxic to aquatic organisms. Herein, we evaluated the effects of environmentally relevant boscalid concentrations to zebrafish to explore its potentially neurotoxic mechanisms of effect. Behavioral responses (swimming, phototaxis, and predation), histopathology, transcriptomics, biochemical parameter analysis and gene expression of larval and adult zebrafish following boscalid treatment were assessed. We found that boscalid significantly inhibited the locomotor ability and phototactic response of larvae after an 8-d exposure, and altered the locomotor activity, predation trajectories and ability in adults after a 21-d exposure. It was noted that predation rates of zebrafish were significantly decreased by 30% and 100% after exposure to 0.1 and 1.0 mg/L boscalid, respectively. Adverse alterations in the cell differentiation of eyes and brain injury were also observed in both larvae and adults following boscalid exposure. The expression of genes related to neurodevelopment, neurotransmission, eye development, and visual function, in conjunction with RNA-Seq results, indicated that boscalid may impair visual phototransduction and nervous system processes in larval zebrafish. Conclusively, boscalid exposure may affect the neurobehavioral response of zebrafish by impairing proper visual and nervous system function.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhao Wang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, China
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jiazhen Jiang
- College of Sciences, China Agricultural University, Beijing, China.
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
7
|
Mohseni Ahooyi T, Torkzaban B, Shekarabi M, Tahrir FG, Decoppet EA, Cotto B, Langford D, Amini S, Khalili K. Perturbation of synapsins homeostasis through HIV-1 Tat-mediated suppression of BAG3 in primary neuronal cells. Cell Death Dis 2019; 10:473. [PMID: 31209204 PMCID: PMC6572798 DOI: 10.1038/s41419-019-1702-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
HIV-1 Tat is known to be released by HIV infected non-neuronal cells in the brain, and after entering neurons, compromises brain homeostasis by impairing pro-survival pathways, thus contributing to the development of HIV-associated CNS disorders commonly observed in individuals living with HIV. Here, we demonstrate that synapsins, phosphoproteins that are predominantly expressed in neuronal cells and play a vital role in modulating neurotransmitter release at the pre-synaptic terminal, and neuronal differentiation become targets for Tat through autophagy and protein quality control pathways. We demonstrate that the presence of Tat in neurons results in downregulation of BAG3, a co-chaperone for heat shock proteins (Hsp70/Hsc70) that is implicated in protein quality control (PQC) processes by eliminating mis-folded and damaged proteins, and selective macroautophagy. Our results show that treatment of cells with Tat or suppression of BAG3 expression by siRNA in neuronal cells disturbs subcellular distribution of synapsins and synaptotagmin 1 (Syt1) leading to their accumulation in the neuronal soma and along axons in a punctate pattern, rather than being properly distributed at axon-terminals. Further, our results revealed that synapsins partially lost their stability and their removal via lysosomal autophagy was noticeably impaired in cells with low levels of BAG3. The observed impairment of lysosomal autophagy, under this condition, is likely caused by cells losing their ability to process LC3-I to LC3-II, in part due to a decrease in the ATG5 levels upon BAG3 knockdown. These observations ascribe a new function for BAG3 in controlling synaptic communications and illuminate a new downstream target for Tat to elicit its pathogenic effect in impacting neuronal cell function and behavior.
Collapse
Affiliation(s)
- Taha Mohseni Ahooyi
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Bahareh Torkzaban
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Masoud Shekarabi
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Farzaneh G Tahrir
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Emilie A Decoppet
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Bianca Cotto
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Dianne Langford
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Shohreh Amini
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA
| | - Kamel Khalili
- Department of Neuroscience Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Sabunciyan S. Gene Expression Profiles Associated with Brain Aging are Altered in Schizophrenia. Sci Rep 2019; 9:5896. [PMID: 30976116 PMCID: PMC6459977 DOI: 10.1038/s41598-019-42308-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/27/2019] [Indexed: 11/08/2022] Open
Abstract
Existence of aging associated transcriptional differences in the schizophrenia brain was investigated in RNA sequencing data from 610 postmortem Dorso-Lateral Pre-Frontal Cortex (DLPFC) samples in the CommondMind Consortium (CMC) and the psychENCODE cohorts. This analysis discovered that the trajectory of gene expression changes that occur during brain aging differed between schizophrenia cases and unaffected controls. Mainly, the identified gene expression differences between the diagnosis groups shrank in magnitude following 60 years of age. A differential expression analysis restricted to the 40 to 60 year age group identified 556 statistically significant loci that replicated and had highly consistent gene expression fold changes in the two cohorts. An interaction between age and diagnosis in the wider psychENCODE cohort was also detected. Gene set enrichment analysis discovered disruptions in mitochondria, RNA splicing and phosphoprotein gene pathways. The identified differentially expressed genes in the two cohorts were also significantly enriched in genomic regions associated with schizophrenia although no enrichment was observed for differentially expressed genes identified in the 40 to 60 year age group. This work implicates disruptions to the normal brain aging processes in the pathology of schizophrenia and demonstrates the need for age stratification in schizophrenia postmortem brain gene expression studies.
Collapse
Affiliation(s)
- Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
9
|
Thomson S, Dyck B, Daya R, Ho J, Bernardo A, Tian Y, Mishra RK. Reduced expression of synapsin II in a chronic phencyclidine preclinical rat model of schizophrenia. Synapse 2018; 73:e22084. [PMID: 30582667 DOI: 10.1002/syn.22084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
Abstract
Schizophrenia is a mental disorder characterized by positive symptoms, negative symptoms, and cognitive dysfunction. Phencyclidine (PCP)-a N-methyl-D-aspartate (NMDA) receptor antagonist-induces symptoms indistinguishable from those of schizophrenia. A reduction of the phosphoprotein synapsin II has also been implicated in schizophrenia and has a well-known role in the maintenance of the presynaptic reserve pool and vesicle mobilization. This study assessed the behavioral and biochemical outcomes of chronic NMDA receptor antagonism in rodents and its implications for the pathophysiology of schizophrenia. Sprague Dawley rats received saline or chronic PCP (5 mg/kg/day) for 14 days via surgically implanted Alzet® osmotic mini-pumps. Following the treatment period, rats were tested with a series of behavioral paradigms, including locomotor activity, social interaction, and sensorimotor gating. Following behavioral assessment, the medial prefrontal cortex (mPFC) of all rats was isolated for synapsin II protein analysis. Chronic PCP treatment yielded a hyper-locomotive state (p = 0.0256), reduced social interaction (p = 0.0005), and reduced pre-pulse inhibition (p < 0.0001) in comparison to saline-treated controls. Synapsin IIa (p < 0.0001) and IIb (p < 0.0071) levels in the mPFC of chronically treated PCP rats were reduced in comparison to the saline group. Study results confirm that rats subject to chronic PCP treatment display behavioral phenotypes similar to established preclinical animal models of schizophrenia. Reduction of synapsin II expression in this context implicates the role of this protein in the pathophysiology of schizophrenia and sheds light on the longer-term consequences of NMDA receptor antagonism facilitated by chronic PCP treatment.
Collapse
Affiliation(s)
- Sharon Thomson
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Bailey Dyck
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Ritesh Daya
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Joella Ho
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Ashley Bernardo
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Yuxin Tian
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Ram K Mishra
- Faculty of Health Sciences, Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Katare YK, Piazza JE, Bhandari J, Daya RP, Akilan K, Simpson MJ, Hoare T, Mishra RK. Intranasal delivery of antipsychotic drugs. Schizophr Res 2017; 184:2-13. [PMID: 27913162 DOI: 10.1016/j.schres.2016.11.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods.
Collapse
Affiliation(s)
- Yogesh K Katare
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Justin E Piazza
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Ritesh P Daya
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Kosalan Akilan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Madeline J Simpson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Mulligan KA, Cheyette BNR. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. MOLECULAR NEUROPSYCHIATRY 2017; 2:219-246. [PMID: 28277568 DOI: 10.1159/000453266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that Wnt signaling is relevant to pathophysiology of diverse mental illnesses including schizophrenia, bipolar disorder, and autism spectrum disorder. In the 35 years since Wnt ligands were first described, animal studies have richly explored how downstream Wnt signaling pathways affect an array of neurodevelopmental processes and how their disruption can lead to both neurological and behavioral phenotypes. Recently, human induced pluripotent stem cell (hiPSC) models have begun to contribute to this literature while pushing it in increasingly translational directions. Simultaneously, large-scale human genomic studies are providing evidence that sequence variation in Wnt signal pathway genes contributes to pathogenesis in several psychiatric disorders. This article reviews neurodevelopmental and postneurodevelopmental functions of Wnt signaling, highlighting mechanisms, whereby its disruption might contribute to psychiatric illness, and then reviews the most reliable recent genetic evidence supporting that mutations in Wnt pathway genes contribute to psychiatric illness. We are proponents of the notion that studies in animal and hiPSC models informed by the human genetic data combined with the deep knowledge base and tool kits generated over the last several decades of basic neurodevelopmental research will yield near-term tangible advances in neuropsychiatry.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Qi X, Chang C, Xu X, Zhang Y, Bai Y, Liu H. Magnetization of 3-dimentional homochiral metal-organic frameworks for efficient and highly selective capture of phosphopeptides. J Chromatogr A 2016; 1468:49-54. [DOI: 10.1016/j.chroma.2016.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
|
13
|
Cruceanu C, Kutsarova E, Chen ES, Checknita DR, Nagy C, Lopez JP, Alda M, Rouleau GA, Turecki G. DNA hypomethylation of Synapsin II CpG islands associates with increased gene expression in bipolar disorder and major depression. BMC Psychiatry 2016; 16:286. [PMID: 27515700 PMCID: PMC4982122 DOI: 10.1186/s12888-016-0989-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/02/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The Synapsins (SYN1, SYN2, and SYN3) are important players in the adult brain, given their involvement in synaptic transmission and plasticity, as well as in the developing brain through roles in axon outgrowth and synaptogenesis. We and others previously reported gene expression dysregulation, both as increases and decreases, of Synapsins in mood disorders, but little is known about the regulatory mechanisms leading to these differences. Thus, we proposed to study DNA methylation at theses genes' promoter regions, under the assumption that altered epigenetic marks at key regulatory sites would be the cause of gene expression changes and thus part of the mood disorder etiology. METHODS We performed CpG methylation mapping focusing on the three genes' predicted CpG islands using the Sequenom EpiTYPER platform. DNA extracted from post-mortem brain tissue (BA10) from individuals who had lived with bipolar disorder (BD), major depressive disorder (MDD), as well as psychiatrically healthy individuals was used. Differences in methylation across all CpGs within a CpG island and between the three diagnostic groups were assessed by 2-way mixed model analyses of variance. RESULTS We found no significant results for SYN1 or SYN3, but there was a significant group difference in SYN2 methylation, as well as an overall pattern of hypomethylation across the CpG island. Furthermore, we found a significant inverse correlation of DNA methylation with SYN2a mRNA expression. CONCLUSIONS These findings contribute to previous work showing dysregulation of Synapsins, particularly SYN2, in mood disorders and improve our understanding of the regulatory mechanisms that precipitate these changes likely leading to the BD or MDD phenotype.
Collapse
Affiliation(s)
- Cristiana Cruceanu
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada ,Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Elena Kutsarova
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada ,Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Elizabeth S. Chen
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada
| | - David R. Checknita
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada
| | - Corina Nagy
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada
| | - Juan Pablo Lopez
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies & Douglas Research Institute, McGill University, Montreal, QC, Canada. .,Douglas Mental Health Institute, McGill University, 6875 LaSalle Blvd, Montreal, QC, H4H 1R3, Canada.
| |
Collapse
|