1
|
Turpo-Peqqueña AG, Luna-Prado S, Valencia-Arce RJ, Del-Carpio-Carrazco FL, Gómez B. A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca Lepidium meyenii. Curr Issues Mol Biol 2025; 47:40. [PMID: 39852155 PMCID: PMC11763394 DOI: 10.3390/cimb47010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from Lepidium meyenii (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from Lepidium meyenii (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.
Collapse
Affiliation(s)
- Albert Gabriel Turpo-Peqqueña
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Medicina Humana, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Facultad de Biología, Universidad Nacional de San Agustín, Av. Alcides Carrión s/n, Arequipa 04001, Peru
| | - Sebastian Luna-Prado
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Renato Javier Valencia-Arce
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Fabio Leonardo Del-Carpio-Carrazco
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| |
Collapse
|
2
|
Mekkawy MH, Abdou FY, Ali MM, Abd-ElRaouf A. A novel approach of using Maca root as a radioprotector in a rat testicular damage model focusing on GRP78/CHOP/Caspase-3 pathway. Arch Biochem Biophys 2024; 755:109963. [PMID: 38518815 DOI: 10.1016/j.abb.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE Despite the effectiveness of ionizing radiation in treating cancer, it can damage healthy tissues in the vicinity. Due to the high radio-sensitivity of testicular tissues, radiation therapy may affect spermatogenesis, which may result in infertility. Hence, in this study testicular damage model is constructed to investigate the mitigation effect of Maca root powder and its potential radioprotective activity through both oxidative and endoplasmic reticulum (ER) stresses, besides the apoptotic pathway. METHODS Male albino rats were exposed to 6Gy of whole-body gamma radiation single dose. Maca root powder (1 g/kg b.wt./day, by oral gavage) was administered for a week before irradiation, then d-galactose (300 mg/kg, by oral gavage) and Maca daily for another week. RESULTS Gamma radiation and d-galactose revealed a significant decrease in serum testosterone, sperm count, and motility and higher percentage of the sperm head abnormality, while Maca root treatment maintained all sperm morphology parameters. Maca root treatment demonstrated a notable defense against radiation-induced oxidative stress and ameliorated malonaldehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO), glutathione-S-transferase (GST) levels, reduced glutathione (GSH), oxidized glutathione (GSSG) and the ratio of GSH/GSSG in testis tissues. Exposure to gamma rays and d-galactose displayed a significant elevation in GRP78, CHOP, total caspase-3 as well as active (cleaved) caspase-3 levels, whereas treatment with Maca significantly reduced the ER and apoptotic markers levels. Also, Maca improved the histological changes of the disorganized seminiferous tubules induced by irradiation. CONCLUSION Our findings show for the first time that Maca has a protective effect on male reproductive damage induced by radiotherapy. Maca root reveals anti-apoptotic effect and protection against testicular damage via GRP78/CHOP/caspase-3 pathway.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Maha M Ali
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amira Abd-ElRaouf
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
3
|
Giagulli VA, Lisco G, De Tullio A, Guastamacchia E, Triggiani V, Jirillo E. The pathogenic role of the immune system in erectile dysfunction and Peyronie's disease: focusing on immunopathophysiology and potential therapeutic strategies. Sex Med Rev 2024; 12:210-220. [PMID: 38196188 DOI: 10.1093/sxmrev/qead055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Erectile dysfunction (ED) represents the major cause of male sexual dysfunction, which is often associated with obesity, diabetes mellitus, atherosclerotic cardiovascular disease, and cigarette smoking. Peyronie's disease is a chronic disorder associated with irreversible fibrotic damage of the tunica albuginea leading to ED, painful erection, coital disturbance, and physical and social complaints. Both conditions are characterized by chronic inflammation, oxidative stress, and significant changes in intracavernous hydrodynamics. In this scenario, oxidized lipoproteins, M1-polarized macrophages, proinflammatory cytokines (such as the tumor necrosis factor α), endothelial nitric oxide synthase, penile smooth muscle cells, and toll-like receptors represent the main triggers of the inflammatory process in ED. Phosphodiesterase-5 inhibitors are the most common treatment for ED. This treatment is used intermittently, as it is conceived as a symptomatic and not curative therapy. Moreover, not all patients respond to phosphodiesterase-5 inhibitors (35%-85%), particularly those with dysmetabolic phenotypes. Additional or alternative treatments are therefore desirable, mostly in refractory cases. OBJECTIVES In this review, we describe the immune-mediated pathogenesis of ED and Peyronie's disease (PD). In our literature search we placed particular emphasis on potentially practical therapeutic approaches, including natural products (such as polyphenols), due to their anti-inflammatory and antioxidant activities, stem cell therapy, and platelet-derived preparations. METHODS We searched PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library, Google Scholar, and institutional websites. Original studies, narrative reviews, systematic reviews, and meta-analyses written in English were searched, screened, and selected. RESULTS In animal models of ED and PD, therapeutic approaches, including anti-inflammatory and antioxidant agents, stem cell therapy, and platelet-derived preparations, have provided positive results, including improved penile function, reduced inflammation and oxidative stress, and promotion of tissue repair. However, clinical evidence of improvement in human patients is still insufficient. CONCLUSION Promising results for treating ED and PD have been shown in preclinical and pilot clinical studies, but specific clinical trials are needed to validate the efficacy of these therapeutic approaches in men with ED.
Collapse
Affiliation(s)
- Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Anna De Tullio
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology, and Rare Diseases, School of Medicine, University of Bari "Aldo Moro", Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Ulloa del Carpio N, Alvarado-Corella D, Quiñones-Laveriano DM, Araya-Sibaja A, Vega-Baudrit J, Monagas-Juan M, Navarro-Hoyos M, Villar-López M. Exploring the chemical and pharmacological variability of Lepidium meyenii: a comprehensive review of the effects of maca. Front Pharmacol 2024; 15:1360422. [PMID: 38440178 PMCID: PMC10910417 DOI: 10.3389/fphar.2024.1360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Maca (Lepidium meyenii), a biennial herbaceous plant indigenous to the Andes Mountains, has a rich history of traditional use for its purported health benefits. Maca's chemical composition varies due to ecotypes, growth conditions, and post-harvest processing, contributing to its intricate phytochemical profile, including, macamides, macaenes, and glucosinolates, among other components. This review provides an in-depth revision and analysis of Maca's diverse bioactive metabolites, focusing on the pharmacological properties registered in pre-clinical and clinical studies. Maca is generally safe, with rare adverse effects, supported by preclinical studies revealing low toxicity and good human tolerance. Preclinical investigations highlight the benefits attributed to Maca compounds, including neuroprotection, anti-inflammatory properties, immunoregulation, and antioxidant effects. Maca has also shown potential for enhancing fertility, combating fatigue, and exhibiting potential antitumor properties. Maca's versatility extends to metabolic regulation, gastrointestinal health, cardio protection, antihypertensive activity, photoprotection, muscle growth, hepatoprotection, proangiogenic effects, antithrombotic properties, and antiallergic activity. Clinical studies, primarily focused on sexual health, indicate improved sexual desire, erectile function, and subjective wellbeing in men. Maca also shows promise in alleviating menopausal symptoms in women and enhancing physical performance. Further research is essential to uncover the mechanisms and clinical applications of Maca's unique bioactive metabolites, solidifying its place as a subject of growing scientific interest.
Collapse
Affiliation(s)
- Norka Ulloa del Carpio
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
| | - Diego Alvarado-Corella
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | | | - Andrea Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - Maria Monagas-Juan
- United States Pharmacopeia (USP) Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Martha Villar-López
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
5
|
Minich DM, Ross K, Frame J, Fahoum M, Warner W, Meissner HO. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024; 16:530. [PMID: 38398854 PMCID: PMC10892513 DOI: 10.3390/nu16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.
Collapse
Affiliation(s)
- Deanna M. Minich
- Human Nutrition and Functional Medicine, Adjunct Faculty, University of Western States, Portland, OR 97213, USA
- Food & Spirit, LLC, Port Orchard, WA 98366, USA
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
| | - Kim Ross
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
- Kim Ross Consulting, LLC, Lakewood Ranch, FL 34211, USA
- College of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
| | - James Frame
- Symphony Natural Health Holdings Inc., Craigmuir Chambers, Road Town, Tortola VG1110, (BVI), UK;
- Natural Health International Pty Ltd., Sydney, NSW 2000, Australia
| | - Mona Fahoum
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Meridian Medicine, Seattle, WA 98133, USA
- Bastyr Center for Natural Health, Bastyr University, Kenmore, WA 98028, USA
| | - Wendy Warner
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Wendy Warner, MD, PC, Yardley, PA 19067, USA
| | - Henry O. Meissner
- National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Building J, 158-160 Hawkesbury Road, Westmead, NSW 2145, Australia;
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora-Gold Coast, QLD 4221, Australia
| |
Collapse
|