1
|
Hartopo AB, Mayasari DS, Puspitawati I, Putri AK, Setianto BY. Endothelial-Derived Microparticles Associate with Hospital Major Adverse Cardiovascular Events but not with Long-Term Adverse Events in Acute Myocardial Infarction. Int J Angiol 2024; 33:288-296. [PMID: 39502353 PMCID: PMC11534470 DOI: 10.1055/s-0044-1785488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Endothelial-derived microparticles (EDMP) are markers of vascular function and convey roles in coagulation, inflammation, vasoactivity, angiogenesis, and cellular apoptosis, which implicate acute myocardial infarction (AMI). This study aimed to investigate whether, among AMI, on-admission EDMP counts affect hospital major adverse cardiovascular events (MACE) and whether the change of EDMP in 30-day posthospital discharge affects long-term follow-up MACE. The research design was a prospective cohort study. The subjects were 119 patients diagnosed and hospitalized with AMI, who were enrolled consecutively. The EDMP was measured on hospital admission and repeated 30-day posthospital discharge. The outcomes were in the hospital MACE comprised of cardiac mortality, heart failure, cardiogenic shock, reinfarction, and resuscitated ventricular arrhythmia. Furthermore, long-term follow-up were performed on 30-day, 90-day, and 1-year posthospital AMI discharge. The on-admission EDMP counts were significantly higher in subjects with hospital MACE compared with those without (median [interquartile range]: 27,421.0 [6,956.5-53,184.0] vs. 11,617.5 [4,599.0-23,336.7] counts/µL, p = 0.028). The EDMP counts cutoff value of >26,810.0 counts/µL (52.4% sensitivity, 81.6% specificity) had significantly increased hospital MACE occurrence (adjusted odd ratio: 4.45, 95% confidence interval: 1.47-13.53, p = 0.008). The EDMP counts were significantly increased after 30-day posthospital discharge. Both on-admission and 30-day EDMP counts and the changes in EDMP counts did not impact MACE on the long-term follow-up. In conclusion, higher on-admission EDMP counts were independently associated with hospital MACE among AMI. However, on-admission and 30-day postdischarge EDMP and their changes did not impact long-term follow-up MACE.
Collapse
Affiliation(s)
- Anggoro B. Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Dyah S. Mayasari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – UGM Academic Hospital, Yogyakarta, Indonesia
| | - Ira Puspitawati
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Astrid K. Putri
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Budi Y. Setianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Maciejewska-Renkowska J, Wachowiak J, Telec M, Kamieniarz-Mędrygał M, Michalak S, Kaźmierski R, Kociemba W, Kozubski WP, Łukasik M. Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients. Int J Mol Sci 2024; 25:11219. [PMID: 39457001 PMCID: PMC11508277 DOI: 10.3390/ijms252011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The levels of platelet-derived extracellular vesicles (pEVs) have been reported as elevated in acute ischemic stroke (IS). However, the results of studies remain equivocal. This prospective, case-control study included 168 patients with IS, 63 matched disease controls (DC), and 21 healthy controls (HC). Total pEVs concentration, the concentration of phosphatidylserine-positive pEVs (PS+pEVs), the percentage of PS+pEVs (%PS+pEVs) and the concentration of pEVs with expression of CD62P+, CD40L+, CD31+, and active form of GPIIb/IIIa receptor (PAC-1+) were assessed on days 1, 3, 10, and 90 with the Apogee A50-Micro flow cytometer. The concentrations of pEVs, PS+pEVs, and %PS+pEVs were significantly higher after IS vs. HC (p < 0.001). PS+pEVs were higher after stroke vs. controls (p < 0.01). The concentrations of pEVs with expression of studied molecules were higher on D1 and D3 after stroke vs. controls. The concentration of pEVs after platelet stimulation with ADP was significantly diminished on D3. IS most notably affects the phenotype of pEVs with a limited effect on the number of pEVs. Ischemic stroke moderately disturbs platelet microvesiculation, most notably in the acute phase, affecting the phenotype of pEVs, with a limited impact on the number of pEVs.
Collapse
Affiliation(s)
- Joanna Maciejewska-Renkowska
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznan, Poland
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Justyna Wachowiak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Magdalena Telec
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznan, Poland
| | | | - Sławomir Michalak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | | | - Wojciech P Kozubski
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Maria Łukasik
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355 Poznan, Poland
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
3
|
Nomura S, Taniura T, Ichikawa J, Iwama A, Ito T. Risk of Atherosclerosis Due to HMGB1-dependent Platelet-derived Microparticles in Patients with Type 2 Diabetes Mellitus. Clin Appl Thromb Hemost 2024; 30:10760296241302082. [PMID: 39587795 PMCID: PMC11590140 DOI: 10.1177/10760296241302082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
We measured high mobility group box 1 protein (HMGB1) and platelet-derived microparticles (PDMP) in blood samples from patients with untreated type 2 diabetes mellitus (T2DM). We examined the effects of a combination of sodium/glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Multiple regression analysis of HMGB1 was conducted on data from 252 patients in our previously reported T2DM-related clinical study. The results revealed significant correlations between HMGB1 and PDMP, soluble CD40 ligand, plasminogen activator inhibitor-1, and soluble E-selectin in multivariate analysis. Based on the HMGB1 levels before treatment with combination, 46 T2DM patients in the study were classified into two groups, high and low. The high HMGB1 group showed a significantly lower adiponectin level and higher PDMP production than the low HMGB1 group. T2DM risk significantly and positively correlated with HMGB1 and PDMPs. HMGB1-induced PDMP production was simulated in vitro using healthy platelets. Furthermore, The combination of a SGLT2 inhibitor and a DPP-4 inhibitor significantly reduced HMGB1 and PDMP levels. These results suggest that in addition to abnormal glucose metabolism, HMGB1-dependent PDMP production and the resulting development of atherosclerosis are also a concern in patients with T2DM.
Collapse
Affiliation(s)
- Shosaku Nomura
- Center of Thrombosis and Hemostasis, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Takehito Taniura
- Department of Internal Medicine, Rokujizo Medical Hospital, Kyoto, Japan
| | - Jun Ichikawa
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Ayako Iwama
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
4
|
Cunha J, Chan MV, Nkambule BB, Thibord F, Lachapelle A, Pashek RE, Vasan RS, Rong J, Benjamin EJ, Hamburg NM, Chen MH, Mitchell GF, Johnson AD. Trends among platelet function, arterial calcium, and vascular function measures. Platelets 2023; 34:2238835. [PMID: 37609998 PMCID: PMC10947606 DOI: 10.1080/09537104.2023.2238835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023]
Abstract
Arterial tonometry and vascular calcification measures are useful in cardiovascular disease (CVD) risk assessment. Prior studies found associations between tonometry measures, arterial calcium, and CVD risk. Activated platelets release angiopoietin-1 and other factors, which may connect vascular structure and platelet function. We analyzed arterial tonometry, platelet function, aortic, thoracic and coronary calcium, and thoracic and abdominal aorta diameters measured in the Framingham Heart Study Gen3/NOS/OMNI-2 cohorts (n = 3,429, 53.7% women, mean age 54.4 years ±9.3). Platelet reactivity in whole blood or platelet-rich plasma was assessed using 5 assays and 7 agonists. We analyzed linear mixed effects models with platelet reactivity phenotypes as outcomes, adjusting for CVD risk factors and family structure. Higher arterial calcium trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity. Characteristic impedance (Zc) and central pulse pressure positively trended with various platelet traits, while pulse wave velocity and Zc negatively trended with collagen, ADP, and epinephrine traits. All results did not pass a stringent multiple test correction threshold (p < 2.22e-04). The diameter trends were consistent with lower shear environments invoking less platelet reactivity. The vessel calcium trends were consistent with subclinical atherosclerosis and platelet activation being inter-related.
Collapse
Affiliation(s)
- Jason Cunha
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Melissa V. Chan
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Bongani B. Nkambule
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Florian Thibord
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Amber Lachapelle
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Robin E. Pashek
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | - Ramachandran S. Vasan
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Evans Center for Interdisciplinary Biomedical Research, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Schools of Public Health and Medicine, Departments of Population Health and Medicine, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jian Rong
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emelia J. Benjamin
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- Cardiology and Preventive Medicine Sections, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Evans Center for Interdisciplinary Biomedical Research, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Naomi M. Hamburg
- Whitaker Cardiovascular Institute, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Ming-Huei Chen
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| | | | - Andrew D. Johnson
- National Heart, Lung and Blood Institute’s the Framingham Heart Study, Boston University and National Heart, Framingham, MA, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
| |
Collapse
|
5
|
Nomura S, Shouzu A, Taniura T, Okuda Y, Omoto S, Suzuki M, Ito T, Toyoda N. Effects of Tofogliflozin and Anagliptin Alone or in Combination on Glucose Metabolism and Atherosclerosis-Related Markers in Patients with Type 2 Diabetes Mellitus. Clin Pharmacol 2023; 15:41-55. [PMID: 37255963 PMCID: PMC10226515 DOI: 10.2147/cpaa.s409786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
Purpose In people with type 2 diabetes mellitus (T2DM), both glucose metabolism abnormalities and atherosclerosis risk are significant concerns. This study aims to investigate the effects of the sodium-glucose cotransporter 2 inhibitor tofogliflozin (TOFO) and the dipeptidyl peptidase-4 inhibitor anagliptin (ANA) on markers of glucose metabolism and atherosclerosis when administered individually or in combination. Methods Fifty T2DM patients were divided into two groups (receiving either TOFO or ANA monotherapy) and observed for 12 weeks (observation points: 0 and 12 weeks). The TOFO and ANA groups were then further treated with ANA and TOFO, respectively, and the patients were observed for an additional 36 weeks (observation points: 24 and 48 weeks). Therapeutic effects and various biomarkers were compared between the two groups at the observation points. Results Combination therapy led to significant improvements in HbA1c levels and atherosclerosis markers. Additionally, the TOFO pretreatment group exhibited significant reductions in sLOX-1 and IL-6 levels. Conclusion The increase in sLOX-1 and IL-6 levels, which indicates the response of scavenger receptors to oxidized low-density lipoproteins in people with T2DM, is mitigated following TOFO and ANA combination therapy. TOFO alone or in combination with ANA may be beneficial for preventing atherosclerosis development in people with T2DM, in addition to its effect on improving HbA1c levels.
Collapse
Affiliation(s)
- Shosaku Nomura
- Center of Thrombosis and Hemostasis, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Akira Shouzu
- Division of Diabetes, Saiseikai Izuo Hospital, Osaka, Japan
| | | | - Yoshinori Okuda
- Division of Internal Medicine, Meisai Kinen Hospital, Osaka, Japan
| | - Seitaro Omoto
- Division of Internal Medicine, Yukeikai Hospital, Neyagawa, Japan
| | - Masahiko Suzuki
- Division of Internal Medicine, Katano Hospital, Katano, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Nagaoki Toyoda
- Second Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
6
|
Gao Y, Li X, Qin Y, Men J, Ren J, Li X, Xu C, Li Q, Li Y, Cui W, Zhang S, Li L, Li Y, Zhang J, Liu L. MPs-ACT, an Assay to Evaluate the Procoagulant Activity of Microparticles. Clin Appl Thromb Hemost 2023; 29:10760296231159374. [PMID: 36843474 PMCID: PMC9972054 DOI: 10.1177/10760296231159374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The procoagulant effect of microparticles (MPs) contributes to hypercoagulability-induced thrombosis. We provide preliminary findings of the MPs-Activated Clotting Time (MPs-ACT) assay to determine the procoagulant activity of MPs. MPs-rich plasma was obtained and recalcified. Changes in plasma viscoelasticity were evaluated and the time to the peak viscoelastic changes was defined as the MPs-ACT. MPs concentration was measured by flow cytometry. Coagulation products produced during plasma clotting were identified by fibrin and fibrinopeptide A. MPs were prepared in vitro and added to standard plasma to simulate pathological samples. In addition, reproducibility and sensitivity were evaluated. We confirmed the linear relationship between MPs-ACT and MP concentrations. Dynamic changes in fibrin production were depicted. We simulated the correlation between MPs-ACT and standard plasma containing MPs prepared in vitro. The reproducibility of high-value and low-value samples was 6.0% and 10.8%, respectively. MPs-ACT sensitively detected hypercoagulable samples from patients with pre-eclampsia, hip fractures, and lung tumors. MPs-ACT largely reflects the procoagulant effect of MPs. MPs-ACT sensitively and rapidly detects hypercoagulability with MPs-rich plasma. It may be promising for the diagnosis of hypercoagulable states induced by MPs.
Collapse
Affiliation(s)
- Yalong Gao
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaotian Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianlong Men
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General
Hospital, Tianjin, China
| | - Xiaochun Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Chunlei Xu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Qifeng Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Ying Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Weiyun Cui
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Shu Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Lei Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Yaohua Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Jianning Zhang
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
| | - Li Liu
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in
Central Nervous System, Ministry of Education and Tianjin Neurological Institute, Tianjin Medical University General
Hospital, Tianjin, China
- Jianning Zhang, Tianjin Neurological
Institute, Tianjin Medical University General Hospital, #154 Anshan Road,
Tianjin, 30052, China. Li Liu,
Tianjin Neurological Institute, Tianjin Medical University General Hospital,
#154 Anshan Road, Tianjin, 30052, China.
| |
Collapse
|
7
|
Nomura S, Ichikawa J, Shimizu T, Ishiura Y, Okada M, Ishii K, Ito T. Association of High Mobility Group Box-Protein 1 and Platelet Microparticles in Patients After Hematopoietic Stem Cell Transplantation. Clin Appl Thromb Hemost 2023; 29:10760296231193398. [PMID: 37563884 PMCID: PMC10422918 DOI: 10.1177/10760296231193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Thrombotic complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly impact transplant outcomes. We focused on high mobility group box-protein (HMGB)1, one causative agent of thrombotic lesions in allo-HSCT, and investigated its association with platelets. We statistically analyzed available data from 172 patients with hematopoietic malignancies receiving allo-HSCT. A significant enhancement of monocyte-chemotactant protein-1, HMGB1, and platelet-derived microparticle (PDMP) levels was observed at day 0 after transplantation as compared to pre-transplantation. Multivariate analysis of the association among HMGB1 and 16 factors on day 0 revealed a significant correlation of HMGB1 levels with thrombin-antithrombin complex, interleukin-6, and PDMPs. High mobility group box-protein 1-induced procoagulant platelet induction and PDMP generation were performed in vitro using healthy platelets. High mobility group box-protein 1-induced PDMP generation was suppressed by toll-like receptor inhibitors and recombinant thrombomodulin. These results suggest that HMGB1 contributes to platelet activation in patients after allo-HSCT and is associated with PDMP-related thrombotic complications.
Collapse
Affiliation(s)
- Shosaku Nomura
- Center of Thrombosis and Hemostasis, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Jun Ichikawa
- First Department of Internal Medicine, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Toshiki Shimizu
- First Department of Internal Medicine, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Yoshihisa Ishiura
- First Department of Internal Medicine, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Masaya Okada
- First Department of Internal Medicine, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Kazuyoshi Ishii
- First Department of Internal Medicine, Kansai Medical University Medical Center, Moriguchi, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
8
|
Buntsma N, van der Pol E, Nieuwland R, Gąsecka A. Extracellular Vesicles in Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:81-103. [PMID: 37603274 DOI: 10.1007/978-981-99-1443-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death and disability worldwide. Despite recent progress in the diagnosis and treatment of CAD, evidence gaps remain, including pathogenesis, the most efficient diagnostic strategy, prognosis of individual patients, monitoring of therapy, and novel therapeutic strategies. These gaps could all be filled by developing novel, minimally invasive, blood-based biomarkers. Potentially, extracellular vesicles (EVs) could fill such gaps. EVs are lipid membrane particles released from cells into blood and other body fluids. Because the concentration, composition, and functions of EVs change during disease, and because all cell types involved in the development and progression of CAD release EVs, currently available guidelines potentially enable reliable and reproducible measurements of EVs in clinical trials, offering a wide range of opportunities. In this chapter, we provide an overview of the associations reported between EVs and CAD, including (1) the role of EVs in CAD pathogenesis, (2) EVs as biomarkers to diagnose CAD, predict prognosis, and monitor therapy in individual patients, and (3) EVs as new therapeutic targets and/or drug delivery vehicles. In addition, we summarize the challenges encountered in EV isolation and detection, and the lack of standardization, which has hampered real clinical applications of EVs. Since most conclusions are based on animal models and single-center studies, the knowledge and insights into the roles and opportunities of EVs as biomarkers in CAD are still changing, and therefore, the content of this chapter should be seen as a snapshot in time rather than a final and complete compendium of knowledge on EVs in CAD.
Collapse
Affiliation(s)
- Naomi Buntsma
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksandra Gąsecka
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Stampouloglou PK, Siasos G, Bletsa E, Oikonomou E, Vogiatzi G, Kalogeras K, Katsianos E, Vavuranakis MA, Souvaliotis N, Vavuranakis M. The Role of Cell Derived Microparticles in Cardiovascular Diseases: Current Concepts. Curr Pharm Des 2022; 28:1745-1757. [DOI: 10.2174/1381612828666220429081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/07/2022]
Abstract
Abstract:
Cardiovascular disease remains the main cause of human morbidity and mortality in the developed countries. Microparticles (MPs) are small vesicles originating from the cell membrane as a result of various stimuli and particularly of biological processes that constitute the pathophysiology of atherosclerosis, such as endothelial damage. They form vesicles that can transfer various molecules and signals to remote target cells without direct cell to cell interaction. Circulating microparticles have been associated with cardiovascular diseases. Therefore, many studies have been designed to further investigate the role of microparticles as biomarkers for diagnosis, prognosis, and disease monitoring. To this concept the pro-thrombotic and atherogenic potential of platelets and endothelial derived MPs has gain research interest especially concerning accelerate atherosclerosis and acute coronary syndrome triggering and prognosis. MPs especially of endothelial origin have been investigated in different clinical scenarios of heart failure and in association of left ventricular loading conditions. Finally, most cardiovascular risk factors present unique patterns of circulating MPs population, highlighting their pathophysiologic link to cardiovascular disease progression. In this review article we present a synopsis of the biogenesis and characteristics of microparticles, as well as the most recent data concerning their implication in the cardiovascular settings.
Collapse
Affiliation(s)
- Panagiota K. Stampouloglou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Evanthia Bletsa
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Georgia Vogiatzi
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Nektarios Souvaliotis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| |
Collapse
|
10
|
Mirfakhraie R, Noorazar L, Mohammadian M, Hajifathali A, Gholizadeh M, Salimi M, Sankanian G, Roshandel E, Mehdizadeh M. Treatment Failure in Acute Myeloid Leukemia: Focus on the Role of Extracellular Vesicles. Leuk Res 2021; 112:106751. [PMID: 34808592 DOI: 10.1016/j.leukres.2021.106751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Acute myeloblastic leukemia (AML) is one of the most common types of blood malignancies that results in an AML-associated high mortality rate each year. Several causes have been reported as prognostic factors for AML in children and adults, the most important of which are cytogenetic abnormalities and environmental risk factors. Following the discovery of numerous drugs for AML treatment, leukemic cells sought a way to escape from the cytotoxic effects of chemotherapy drugs, leading to treatment failure. Nowadays, comprehensive studies have looked at the role of extracellular vesicles (EVs) secreted by AML blasts and how the microenvironment of the tumor changes in favor of cancer progression and survival to discover the mechanisms of treatment failure to choose the well-advised treatment. Reports show that malignant cells secrete EVs that transmit messages to adjacent cells and the tumor's microenvironment. By secreting EVs, containing immune-inhibiting cytokines, AML cells inactivate the immune system against malignant cells, thus ensuring their survival. Also, increased secretion of EVs in various malignancies indicates an unfavorable prognostic factor and the possibility of drug resistance. In this study, we briefly reviewed the challenges of treating AML with a glance at the EVs' role in this process. It is hoped that with a deeper understanding of EVs, new therapies will be developed to eliminate the relapse of leukemic cells.
Collapse
Affiliation(s)
- Reza Mirfakhraie
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Noorazar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Gholizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
D'Ascenzo F, Femminò S, Ravera F, Angelini F, Caccioppo A, Franchin L, Grosso A, Comità S, Cavallari C, Penna C, De Ferrari GM, Camussi G, Pagliaro P, Brizzi MF. Extracellular vesicles from patients with Acute Coronary Syndrome impact on ischemia-reperfusion injury. Pharmacol Res 2021; 170:105715. [PMID: 34111564 DOI: 10.1016/j.phrs.2021.105715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
The relevance of extracellular vesicles (EV) as mediators of cardiac damage or recovery upon Ischemia Reperfusion Injury (IRI) and Remote Ischemic PreConditioning (RIPC) is controversial. This study aimed to investigate whether serum-derived EV, recovered from patients with Acute Coronary Syndrome (ACS) and subjected to the RIPC or sham procedures, may be a suitable therapeutic approach to prevent IRI during Percutaneous-Coronary-Intervention (PCI). A double-blind, randomized, sham-controlled study (NCT02195726) has been extended, and EV were recovered from 30 patients who were randomly assigned (1:1) to undergo the RIPC- (EV-RIPC) or sham-procedures (EV-naive) before PCI. Patient-derived EV were analyzed by TEM, FACS and western blot. We found that troponin (TnT) was enriched in EV, compared to healthy subjects, regardless of diagnosis. EV-naive induced protection against IRI, both in-vitro and in the rat heart, unlike EV-RIPC. We noticed that EV-naive led to STAT-3 phosphorylation, while EV-RIPC to Erk-1/2 activation in the rat heart. Pre-treatment of the rat heart with specific STAT-3 and Erk-1/2 inhibitors led us to demonstrate that STAT-3 is crucial for EV-naive-mediated protection. In the same model, Erk-1/2 inhibition rescued STAT-3 activation and protection upon EV-RIPC treatment. 84 Human Cardiovascular Disease mRNAs were screened and DUSP6 mRNA was found enriched in patient-derived EV-naive. Indeed, DUSP6 silencing in EV-naive prevented STAT-3 phosphorylation and cardio-protection in the rat heart. This analysis of ACS-patients' EV proved: (i) EV-naive cardio-protective activity and mechanism of action; (ii) the lack of EV-RIPC-mediated cardio-protection; (iii) the properness of the in-vitro assay to predict EV effectiveness in-vivo.
Collapse
Affiliation(s)
- Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesco Ravera
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Caccioppo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alberto Grosso
- Division of Cardiology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | |
Collapse
|
12
|
Brewster LM, Bain AR, Garcia VP, Fandl HK, Stone R, DeSouza NM, Greiner JJ, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujica RJ, Villafuerte FC, Ainslie PN, DeSouza CA. Global REACH 2018: dysfunctional extracellular microvesicles in Andean highlander males with excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2021; 320:H1851-H1861. [PMID: 33710927 DOI: 10.1152/ajpheart.00016.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.4 ± 1.7; Hb: 17.4 ± 0.5 g/dL, Spo2: 86.9 ± 1.0%) and 14 highlanders with EE (43 ± 4 yr; 26.2 ± 0.9; 24.4 ± 0.4 g/dL; 79.7 ± 1.6%). Microvesicles were isolated, enumerated, and collected from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with microvesicles from highlanders without and with EE. Microvesicles from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8 ± 2.7 vs. 77.1 ± 1.9 pg/mL) and IL-8 (62.0 ± 2.7 vs. 53.3 ± 2.2 pg/mL) compared with microvesicles from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3 ± 6.0 vs. 74.9 ± 7.8.9 AU) was not significantly affected in cells treated with microvesicles from highlanders without versus with EE, microvesicles from highlanders with EE resulted in an ∼25% higher (P < 0.05) expression of p-NF-κB p65 (173.6 ± 14.3 vs. 132.8 ± 12.2 AU). Cell reactive oxygen species production was significantly higher (76.4.7 ± 5.4 vs. 56.7 ± 1.7% of control) and endothelial nitric oxide synthase (p-eNOS) activation (231.3 ± 15.5 vs. 286.6 ± 23.0 AU) and NO production (8.3 ± 0.6 vs. 10.7 ± 0.7 μM/L) were significantly lower in cells treated with microvesicles from highlanders with versus without EE. Cell apoptotic susceptibility was not significantly affected by EE-related microvesicles. Circulating microvesicles from Andean highlanders with EE increased endothelial cell inflammation and oxidative stress and reduced NO production.NEW & NOTEWORTHY In this study, we determined the effects of microvesicles isolated from Andean highlanders with excessive erythrocytosis (EE) on endothelial cell inflammation, oxidative stress, apoptosis, and NO production. Microvesicles from highlanders with EE induced a dysfunctional response from endothelial cells characterized by increased cytokine release and expression of active nuclear factor-κB and reduced nitric oxide production. Andean highlanders with EE exhibit dysfunctional circulating extracellular microvesicles that induce a proinflammatory, proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Rachel Stone
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado.,Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | | | | | - Philip N Ainslie
- Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
13
|
CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. J Clin Med 2020; 9:jcm9113653. [PMID: 33202988 PMCID: PMC7697100 DOI: 10.3390/jcm9113653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.
Collapse
|
14
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
15
|
Nomura S, Taniura T, Ito T. Extracellular Vesicle-Related Thrombosis in Viral Infection. Int J Gen Med 2020; 13:559-568. [PMID: 32904587 PMCID: PMC7457561 DOI: 10.2147/ijgm.s265865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Although the outcomes of viral infectious diseases are remarkably varied, most infections cause acute diseases after a short period. Novel coronavirus disease 2019, which recently spread worldwide, is no exception. Extracellular vesicles (EVs) are small circulating membrane-enclosed entities shed from the cell surface in response to cell activation or apoptosis. EVs transport various kinds of bioactive molecules between cells, including functional RNAs, such as viral RNAs and proteins. Therefore, when EVs are at high levels, changes in cell activation, inflammation, angioplasty and transportation suggest that EVs are associated with various diseases. Clinical research on EVs includes studies on the coagulatory system. In particular, abnormal enhancement of the coagulatory system through EVs can cause thrombosis. In this review, we address the functions of EVs, thrombosis, and their involvement in viral infection.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | | | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
16
|
Millar D, Hayes C, Jones J, Klapper E, Kniep JN, Luu HS, Noland DK, Petitti L, Poisson JL, Spaepen E, Ye Z, Maurer-Spurej E. Comparison of the platelet activation status of single-donor platelets obtained with two different cell separator technologies. Transfusion 2020; 60:2067-2078. [PMID: 32729161 DOI: 10.1111/trf.15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The microparticle content (MP%) of apheresis platelets-a marker of platelet activation-is influenced by donor factors and by external stressors during collection and storage. This study assessed the impact of apheresis technology and other factors on the activation status (MP%) of single-donor apheresis platelets. STUDY DESIGN AND METHODS Data from six US hospitals that screened platelets by measuring MP% through dynamic light scattering (ThromboLUX) were retrospectively analyzed. Relative risks (RRs) were derived from univariate and multivariable regression models, with activation rate (MP% ≥15% for plasma-stored platelets; ≥10% for platelet additive solution [PAS]-stored platelets) and MP% as outcomes. Apheresis platform (Trima Accel vs Amicus), storage medium (plasma vs PAS), pathogen reduction, storage time, and testing location were used as predictors. RESULTS Data were obtained from 7511 platelet units collected using Trima (from 16 suppliers, all stored in plasma, 20.0% were pathogen-reduced) and 2456 collected using Amicus (from four different collection facilities of one supplier, 65.0% plasma-stored, 35.0% PAS-stored, none pathogen-reduced). Overall, 30.0% of Trima platelets were activated compared to 45.6% of Amicus platelets (P < .0001). Multivariable analysis identified apheresis platform as significantly associated with platelet activation, with a lower activation rate for Trima than Amicus (RR: 0.641, 95% confidence interval [CI]: 0.578; 0.711, P < .0001) and a 6.901% (95% CI: 5.926; 7.876, P < .0001) absolute reduction in MP%, when adjusting for the other variables. CONCLUSION Trima-collected platelets were significantly less likely to be activated than Amicus-collected platelets, irrespective of the storage medium, the use of pathogen reduction, storage time, and testing site.
Collapse
Affiliation(s)
- Daniel Millar
- Department of Integrated Engineering, University of British Columbia and MistyWest Research and Engineering Lab, Vancouver, British Columbia, Canada
| | - Chelsea Hayes
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica Jones
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ellen Klapper
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel N Kniep
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hung S Luu
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | - Daniel K Noland
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | | | | | | | - Zhan Ye
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elisabeth Maurer-Spurej
- Department of Pathology and Laboratory Medicine and Centre for Blood Research and Canadian Blood Services, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Hijmans JG, Stockelman KA, Garcia V, Levy MV, Brewster LM, Bammert TD, Greiner JJ, Stauffer BL, Connick E, DeSouza CA. Circulating Microparticles Are Elevated in Treated HIV -1 Infection and Are Deleterious to Endothelial Cell Function. J Am Heart Assoc 2020; 8:e011134. [PMID: 30779672 PMCID: PMC6405669 DOI: 10.1161/jaha.118.011134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Circulating microparticles have emerged as biomarkers and effectors of vascular disease. Elevated rates of cardiovascular disease are seen in HIV -1-seropositive individuals. The aims of this study were to determine: (1) if circulating microparticles are elevated in antiretroviral therapy-treated HIV -1-seropositive adults; and (2) the effects of microparticles isolated from antiretroviral therapy -treated HIV -1-seropositive adults on endothelial cell function, in vitro. Methods and Results Circulating levels of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were determined by flow cytometry in plasma from 15 healthy and 15 antiretroviral therapy-treated, virologically suppressed HIV -1-seropositive men. Human umbilical vein endothelial cells were treated with microparticles from individual subjects for 24 hours; thereafter, endothelial cell inflammation, oxidative stress, senescence, and apoptosis were assessed. Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were significantly higher (≈35%-225%) in the HIV -1-seropositive compared with healthy men. Microparticles from HIV -1-seropositive men induced significantly greater endothelial cell release of interleukin-6 and interleukin-8 (≈20% and ≈35%, respectively) and nuclear factor-κB expression while suppressing anti-inflammatory microRNAs (miR-146a and miR-181b). Intracellular reactive oxygen species production and expression of reactive oxygen species -related heat shock protein 70 were both higher in cells treated with microparticles from the HIV -1-seropositive men. In addition, the percentage of senescent cells was significantly higher and sirtuin 1 expression lower in cells treated with HIV -1-related microparticles. Finally, caspase-3 was significantly elevated by microparticles from HIV -1-seropositive men. Conclusions Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were higher in antiretroviral therapy-treated HIV -1-seropositive men and adversely affect endothelial cells promoting cellular inflammation, oxidative stress, senescence, and apoptosis. Circulating microparticles may contribute to the vascular risk associated with HIV -1 infection.
Collapse
Affiliation(s)
- Jamie G Hijmans
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Kelly A Stockelman
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Vinicius Garcia
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Ma'ayan V Levy
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - L Madden Brewster
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Tyler D Bammert
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Jared J Greiner
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Brian L Stauffer
- 2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO.,3 Denver Health Medical Center Denver CO
| | | | - Christopher A DeSouza
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO.,2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO
| |
Collapse
|
18
|
Yamanaka Y, Sawai Y, Nomura S. Platelet-Derived Microparticles are an Important Biomarker in Patients with Cancer-Associated Thrombosis. Int J Gen Med 2019; 12:491-497. [PMID: 32099444 PMCID: PMC6997194 DOI: 10.2147/ijgm.s236166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Platelet-derived microparticles (PDMPs) that ultimately cause vascular complications might be used as a tool to assess thrombotic areas. We identified PDMPs, high-mobility group box-1 (HMGB1) and soluble endothelial protein C receptor (sEPCR) as useful prognosis indicators for cancer-related thrombosis (CAT) to evaluate the utility of PDMPs in cancer patients. Methods We investigated 232 cancer patients: 24 (10.3%) had thrombotic complications within 6 months after their first examination. Levels of PDMP and biomarkers were measured by enzyme-linked immunosorbent assay. Results The levels of PDMPs, HMGB1 and sEPCR were higher in cancer patients compared with controls. In particular, these levels were significantly elevated in lung cancer patients compared with controls, and all were higher in CAT-positive patients compared with CAT-negative patients. In particular, PDMP levels in CAT-positive patients were significantly elevated compared with CAT-negative patients. PDMP levels were significantly lower in patients who lived for more than 901 days after their first examination compared with previous data. PDMP levels were positively correlated with HMGB1, and caused the dose-dependent elevation of PDMPs in vitro using platelet-rich plasma from healthy persons. Conclusion The combined increase in PDMP and HMGB1 levels might be related to CAT in cancer patients. Therefore, coagulatory dysfunction may result from increased levels of these biomarkers and contribute to the poor prognosis of cancer patients.
Collapse
Affiliation(s)
- Yuta Yamanaka
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yusuke Sawai
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
19
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
20
|
Usta Atmaca H, Akbas F, Aral H. Relationship between circulating microparticles and hypertension and other cardiac disease biomarkers in the elderly. BMC Cardiovasc Disord 2019; 19:164. [PMID: 31288734 PMCID: PMC6617697 DOI: 10.1186/s12872-019-1148-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/04/2019] [Indexed: 01/22/2023] Open
Abstract
Background Microparticles are procoagulant membrane vesicles that play role in endothelium dysfunction pathogenesis and are increased in hypertension, acute/chronic vascular pathological events. Here; we aimed to compare MPs levels of hypertensive geriatric patients with healthy age-match-patients, discuss its availability as a cardiovascular biomarker and investigate its relationship with other inflammatory markers. Methods Forty seven hypertensive geriatric patients (M/F;15/32) and 47 healthy controls (M/F;19/28) were included in the study. MPs levels were examined functionally through thrombin generation test (TGT) parameters (MPS Lag time, MPS ETP, MPs Peak, MPS start Tail) and compared with CRP, N/L ratio, ALT, GGT, thrombocyte parameters. Decrease in MPS Lag time, increase in MPS ETS and MPs Peak elevation were accepted as tendency to coagulation which meant an increase in number and function of MPs. Results No significant difference was found between 2 groups for MPS tests (MPS Lag time, MPS ETP, MPs Peak, MPS start Tail). Platelet count was significantly higher in hypertensive patient group. There was a negative correlation between age and MPs Peak, MPS Lag time. There was a positive correlation between CRP and MPS ETP, MPs Peak values. Conclusions Our present findings might help to understand the hemostasis via TGT parameters, in the elderly. Contribution of MPs to thrombosis tendency seen with aging and increased number of circulating MPs caused by hypertensive endothelial dysfunction must be taken into consideration. MPs might be accepted as vascular inflammation and damage markers and used as follow up tools of medical treatment of vascular inflammation-related diseases.
Collapse
Affiliation(s)
- Hanife Usta Atmaca
- Istanbul Training and Research Hospital Internal Medicine Department, Health Sciences University, Samatya, Istanbul, Turkey.
| | - Feray Akbas
- Istanbul Training and Research Hospital Internal Medicine Department, Health Sciences University, Samatya, Istanbul, Turkey
| | - Hale Aral
- Istanbul Training and Research Hospital Biochemistry Department, Health Sciences University, Istanbul, Turkey
| |
Collapse
|
21
|
Mahmoodian R, Salimian M, Hamidpour M, Khadem-Maboudi AA, Gharehbaghian A. The effect of mild agonist stimulation on the platelet reactivity in patients with type 2 diabetes mellitus. BMC Endocr Disord 2019; 19:62. [PMID: 31200678 PMCID: PMC6567525 DOI: 10.1186/s12902-019-0391-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have accelerated atherosclerosis as a pro thrombotic state that is associated with the platelet activation priming. Platelets, which undergo the continuous mild stimulation, may lose their sensitivity to react to a strong stimulation. The present study aimed to investigate activation responses of platelets to mild and subsequent strong stimulations in patients with T2DM and healthy individuals. METHODS Blood samples, which were taken from 40 patients with T2DM and 35 healthy individuals, were collected into the citrate containing tubes. The samples were subjected to the soft centrifugation to prepare the platelet rich plasma (PRP). Platelets in PRP samples were treated at a low (1 μM) concentration and then at a high (10 μM) concentration of ADP. Before and after stimulation with different doses of ADP, levels of CD62P expression and formation of platelet micro particles (PMPs) were measured using a flow cytometry method. RESULTS The platelets from patients with T2DM had higher levels of CD62P expression before any stimulation (P = 0.003) than control samples. Platelets, which underwent the mild stimulation, indicated lower responses to CD62P expression, but higher PMPs formation after stimulation with high dose of ADP. Patients with T2DM had higher platelet micro particles in all states with the ADP stimulation. (P = 0.004, SD: ±74.52). CONCLUSIONS The flow cytometry data indicated that platelets were pre-active and associated with metabolic conditions in patients with type 2 diabetes mellitus. The induction of desensitization state helped platelets to reduce the platelet activation and sensitivity to ADP in a diabetic environment. Furthermore, the production of platelets micro-particles was high in the patients; and desensitized platelets were more susceptible to shedding of micro-particles.
Collapse
Affiliation(s)
- Razie Mahmoodian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313 Iran
| | - Morteza Salimian
- Paramedical Faculty, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Hamidpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Khadem-Maboudi
- Department of Bio statistical, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mörtberg J, Lundwall K, Mobarrez F, Wallén H, Jacobson SH, Spaak J. Increased concentrations of platelet- and endothelial-derived microparticles in patients with myocardial infarction and reduced renal function- a descriptive study. BMC Nephrol 2019; 20:71. [PMID: 30823870 PMCID: PMC6397450 DOI: 10.1186/s12882-019-1261-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background Patients with chronic kidney disease (CKD) have a high risk of recurring thrombotic events following acute myocardial infarction (AMI). Microparticles (MPs) are circulating small vesicles shed from various cells. Platelet microparticles (PMPs) reflect platelet activation and endothelial microparticles (EMPs) reflect endothelial activation or dysfunction. Both increase following AMI, and may mediate important biological effects. We hypothesized that AMI patients with CKD have further elevated PMPs and EMPs compared with non-CKD patients, despite concurrent antithrombotic treatment. Methods We performed a descriptive study of patients with AMI. Fasting blood samples were acquired from 47 patients on dual antiplatelet treatment. Patients were stratified by renal function: normal (H; n = 19) mean eGFR 88; moderate CKD (CKD3; n = 15) mean eGFR 47, and severe CKD (CKD4–5; n = 13) mean eGFR 20 mL/min/1.73 m2. MPs were measured by flow-cytometry and phenotyped according to size (< 1.0 μm) and expression of CD41 (GPIIb; PMPs) and CD62E (E-selectin; EMPs). In addition, expression of platelet activation markers P-selectin (CD62P) and CD40ligand (CD154) were also investigated. Results PMPs expressing CD40 ligand were higher in CKD4–5: 210 /μl (174–237); median and interquartile range; vs. group H; 101 /μl (71–134; p < 0.0001) and CKD 3: 142 /μl (125–187; p = 0.006). PMPs expressing P-selectin were higher in CKD4–5 compared with H, but not in CKD3. EMPs were higher in CKD4–5; 245 /μl (189–308) compared with H; 83 /μl (53–140; p < 0.0001) and CKD3; 197 /μl (120–245; p < 0.002). Conclusions In AMI patients, PMPs and EMPs from activated platelets and endothelial cell are further elevated in CKD patients. This indicate impaired endothelial function and higher platelet activation in CKD patients, despite concurrent antiplatelet treatment.
Collapse
Affiliation(s)
- Josefin Mörtberg
- Division of Nephrology, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Kristina Lundwall
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fariborz Mobarrez
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Wallén
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stefan H Jacobson
- Division of Nephrology, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Spaak
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Massunaga ND, França CN, Bianco HT, Ferreira CE, Kato JT, Póvoa RM, Figueiredo Neto AM, Izar MCO, Fonseca FAH. Circulating microparticles and central blood pressure according to antihypertensive strategy. Clinics (Sao Paulo) 2019; 74:e1234. [PMID: 31721907 PMCID: PMC6827330 DOI: 10.6061/clinics/2019/e1234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This prospective, randomized, open-label study aimed to compare the effects of antihypertensive treatment based on amlodipine or hydrochlorothiazide on the circulating microparticles and central blood pressure values of hypertensive patients. METHODS The effects of treatments on circulating microparticles were assessed during monotherapy and after the consecutive addition of valsartan and rosuvastatin followed by the withdrawal of rosuvastatin. Each treatment period lasted for 30 days. Central blood pressure and pulse wave velocity were measured at the end of each period. Endothelial, monocyte, and platelet circulating microparticles were determined by flow cytometry. Central blood pressure values and pulse wave velocity were recorded at the end of each treatment period. RESULTS No differences in brachial blood pressure were observed between the treatment groups throughout the study. Although similar central blood pressure values were observed during monotherapy, lower systolic and diastolic central blood pressure values and early and late blood pressure peaks were observed in the amlodipine arm after the addition of valsartan alone or combined with rosuvastatin. Hydrochlorothiazide-based therapy was associated with a lower number of endothelial microparticles throughout the study, whereas a higher number of platelet microparticles was observed after rosuvastatin withdrawal in the amlodipine arm. CONCLUSIONS Despite similar brachial blood pressure values between groups throughout the study, exposure to amlodipine was associated with lower central blood pressure values after combination with valsartan, indicating a beneficial interaction. Differences between circulating microparticles were modest and were mainly influenced by rosuvastatin withdrawal in the amlodipine arm.
Collapse
Affiliation(s)
- Nayara D. Massunaga
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Carolina N. França
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Universidade Santo Amaro (UNISA), Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Henrique T. Bianco
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Carlos E.S. Ferreira
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | - Juliana T. Kato
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Rui M.S. Póvoa
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Antonio M. Figueiredo Neto
- Instituto Nacional de Ciencia e Tecnologia de Fluidos Complexos, Universidade Sao Paulo, Sao Paulo, SP, BR
| | - Maria Cristina O. Izar
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | | |
Collapse
|
24
|
Nomura S, Ito T, Satake A, Ishii K. Assessment of soluble cytotoxic T lymphocyte-associated antigen-4, transforming growth factor β 1, and platelet-derived microparticles during dasatinib therapy for patients with chronic myelogenous leukemia. J Blood Med 2018; 10:1-8. [PMID: 30588140 PMCID: PMC6305157 DOI: 10.2147/jbm.s187005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The outcome for chronic myelogenous leukemia (CML) patients presented in the chronic phase has changed dramatically since the introduction of tyrosine kinase inhibitor (TKI) therapy. Notably, an increased incidence of large granular lymphocytes (LGLs), which is related to immunological conditions, appears to be predictive of a favorable outcome for dasatinib therapy. We therefore examined the immunological characteristics of CML patients during dasatinib therapy by determining the plasma concentrations of five different biomarkers. METHODS The plasma levels of biomarkers, specifically interleukin-6, platelet-derived microparticles (PDMPs), soluble vascular cell adhesion molecule 1 (sVCAM-1), transforming growth factor (TGF) β1, and soluble cytotoxic T lymphocyte-associated antigen-4 (sCTLA-4), were measured by ELISA at baseline and after 2 and 6 months of TKI treatment. The incidence of LGLs was estimated by microscopic examination. RESULTS The levels of PDMPs, sVCAM-1, and TGFβ1 were significantly elevated in patients with CML. Dasatinib treatment was associated with a significant reduction in the levels of these markers and with an increased incidence of LGLs compared with imatinib or nilotinib treatment. In addition, an increased incidence of LGLs was significantly correlated with a decreased sCTLA-4 level during dasatinib therapy. CONCLUSION The assessment of the levels of specific biomarkers may be beneficial to understand the immunological conditions of patients with CML during dasatinib treatment.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan,
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan,
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan,
| | - Kazuyoshi Ishii
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan,
| |
Collapse
|
25
|
Nomura S, Taniura T, Shouzu A, Omoto S, Suzuki M, Okuda Y, Ito T. Effects of sarpogrelate, eicosapentaenoic acid and pitavastatin on arterioslcerosis obliterans-related biomarkers in patients with type 2 diabetes (SAREPITASO study). Vasc Health Risk Manag 2018; 14:225-232. [PMID: 30271161 PMCID: PMC6151091 DOI: 10.2147/vhrm.s171143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The aim was to evaluate the significance of arteriosclerosis obliterans-related biomarkers in patients with type 2 diabetes mellitus (T2DM), and to compare the effects of sarpogrelate, eicosapentaenoic acid (EPA) and pitavastatin on these markers. PATIENTS AND METHODS Seventy-two arteriosclerosis obliterans patients with T2DM were classified into two groups, pitavastatin with either sarpogrelate (PS) or EPA (PE). We observed no differences in all biomarkers between the PS and PE groups before treatments. RESULTS The levels of body mass index, hemoglobin A1c, soluble E-selectin, soluble vascular cell adhesion molecule 1, plasminogen activator inhibitor-1 and platelet-derived microparticle in the PE group decreased significantly after treatment. The ankle branchial pressure index and adiponectin levels significantly increased in the PE group after treatment compared with the PS group. CONCLUSION These results suggest that combination therapy using pitavastatin and EPA possesses an antiatherosclerotic effect and may be beneficial for prevention of vascular complications in patients with T2DM.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata,
| | | | - Akira Shouzu
- Division of Internal Medicine, Saiseikai Izuo Hospital, Osaka
| | - Seitaro Omoto
- Division of Internal Medicine, Korigaoka Yukeikai Hospital, Hirakata
| | | | - Yoshinori Okuda
- Division of Internal Medicine, Meisei Memorial Hospital, Osaka, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata,
| |
Collapse
|
26
|
Shimizu M, Konishi A, Nomura S. Examination of biomarker expressions in sepsis-related DIC patients. Int J Gen Med 2018; 11:353-361. [PMID: 30254480 PMCID: PMC6140747 DOI: 10.2147/ijgm.s173684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Disseminated avascular coagulation (DIC) is the main cause of death among patients with sepsis. In particular, low platelet count is predictive of poor outcome. However, the significance of platelet activation in patients with sepsis-related DIC is poorly understood. To determine the characteristics of platelet-related abnormality in patients with sepsis-related DIC, we assessed the expression levels of several biomarkers. METHODS Plasma levels of biomarkers, including cytokines, chemokines, soluble selectins, platelet-derived microparticles (PDMPs), soluble vascular adhesion molecule 1, and high mobility group box protein 1 were measured by enzyme-linked immunosorbent assay at baseline and after 4, 7, 14, and 21 days of DIC treatment. RESULTS Differences in platelet activation and in the elevation of activated platelet-related PDMPs and of soluble P-selectin were seen between patients suffering from sepsis and hematologic malignancy with DIC. In addition, the elevation of interleukin (IL)-6 and thrombopoietin (TPO) was significant in sepsis patients with DIC. Furthermore, IL-6 and TPO promoted platelet activation in vitro. CONCLUSION Assessment of PDMPs, sP-selectin, IL-6, and TPO may be beneficial in the primary prevention of multi-organ failure in sepsis patients with DIC.
Collapse
Affiliation(s)
- Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Akiko Konishi
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| |
Collapse
|
27
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
28
|
Dihydromyricetin protects human umbilical vein endothelial cells from injury through ERK and Akt mediated Nrf2/HO-1 signaling pathway. Apoptosis 2018; 22:1013-1024. [PMID: 28612103 DOI: 10.1007/s10495-017-1381-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerosis-related cardiovascular disease is the predominant cause of death worldwide. Ox-LDL-induced vascular endothelial cell injury is a major factor in the pathogenesis of atherosclerosis. Dihydromyricetin (DMY) is a flavonoid extracted from vine tea that exerts multiple pharmacological activities, including cardio-protective, anti-tumor, and anti-oxidative effects. However, it is unreported that DMY shows protective effects on ox-LDL-induced endothelial cell injury. In this study, we used an ox-LDL injured human umbilical vein endothelial cell (HUVEC) in vitro model to explore the protective effects and mechanism of DMY. HUVECs were pretreatment with DMY and then exposed to ox-LDL, the cell viability was measured. Then, the anti-oxidative enzymes were tested by commercial kits and intracellular reactive oxygen species (ROS) was measured by flow cytometry, cell apoptosis was determined by Annexin-V/PI assay and apoptosis-related proteins were detected by western blot. Our results showed that DMY pretreatment provided cytoprotective effects by suppressing ox-LDL-induced endothelial cell apoptosis, mitochondrial membrane depolarization, caspase-3 activation, and modulation of oxidative enzymes, thereby inhibiting ROS generation. The anti-oxidative and anti-apoptotic effects of DMY were abrogated by the transfection of Nrf2 siRNAs and HO-1 inhibitor ZnPP. Furthermore, DMY might activate the Nrf2/HO-1 pathway through activation of the Akt and ERK1/2 pathways, as shown by the inhibition of Nrf2/HO-1 signaling by the inhibitors PD98059 or LY294002 and the transfection of ERK, Akt siRNAs. In this study, DMY protects HUVECs from ox-LDL-induced oxidative injury by activating Akt and ERK1/2, which subsequently activates Nrf2/HO-1 signaling, thereby up-regulating antioxidant enzymes and anti-apoptotic proteins.
Collapse
|
29
|
Santilli F, Marchisio M, Lanuti P, Boccatonda A, Miscia S, Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost 2018; 116:220-34. [DOI: 10.1160/th16-03-0176] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
SummaryThe term microparticle (MP) identifies a heterogeneous population of vesicles playing a relevant role in the pathogenesis of vascular diseases, cancer and metabolic diseases such as diabetes mellitus. MPs are released by virtually all cell types by shedding during cell growth, proliferation, activation, apoptosis or senescence processes. MPs, in particular platelet- and endothelial-derived MPs (PMPs and EMPs), are increased in a wide range of thrombotic disorders, with an interesting relationship between their levels and disease pathophysiology, activity or progression. EMP plasma levels have been associated with several cardiovascular diseases and risk factors. PMPs are also shown to be involved in the progressive formation of atherosclerotic plaque and development of arterial thrombosis, especially in diabetic patients. Indeed, diabetes is characterised by an increased procoagulant state and by a hyperreactive platelet phenotype, with enhanced adhesion, aggregation, and activation. Elevated MP levels, such as TF+ MPs, have been shown to be one of the procoagulant determinants in patients with type 2 diabetes mellitus. Atherosclerotic plaque constitutes an opulent source of sequestered MPs, called “plaque” MPs. Otherwise, circulating MPs represent a TF reservoir, named “blood-borne” TF, challenging the dogma that TF is a constitutive protein expressed in minute amounts. “Blood-borne” TF is mainly harboured by PMPs, and it can be trapped within the developing thrombus. MP detection and enumeration by polychromatic flow cytometry (PFC) have opened interesting perspectives in clinical settings, particularly for the evaluation of MP numbers and phenotypes as independent marker of cardiovascular risk, disease and outcome in diabetic patients.
Collapse
|
30
|
|
31
|
Rodrigues KF, Pietrani NT, Fernandes AP, Bosco AA, de Sousa MCR, de Fátima Oliveira Silva I, Silveira JN, Campos FMF, Gomes KB. Circulating microparticles levels are increased in patients with diabetic kidney disease: A case-control research. Clin Chim Acta 2018; 479:48-55. [PMID: 29305843 DOI: 10.1016/j.cca.2017.12.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/30/2017] [Accepted: 12/30/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with chronic lowgrade inflammation. Microparticles (MPs) are extracellular microvesicles released during apoptosis and cellular activation. The MP's pro-coagulant and pro-inflammatory activities are involved in endothelial dysfunction observed in T2DM patients. This study aimed to evaluate the circulating MPs profile in T2DM patients with diabetic kidney disease (DKD) and correlate it with clinical and laboratorial parameters. METHODS MPs derived from platelets (PMPs), leukocytes (LMPs), endothelial cells (EMPs), and expressing tissue factor (TFMPs) were measured by flow cytometry, in plasma of 39 DKD patients and 30 non-diabetic controls. RESULTS We observed higher PMPs, LMPs, EMPs, and TFMPs (all p<0.0001) levels in case group as compared to controls. For patients with DKD, circulating MPs levels were influenced by gender, but not by obesity status nor by T2DM onset. Fasting glucose and 25-hydroxyvitamin D levels showed correlation with circulating MPs levels in both groups. CONCLUSIONS These results suggest that type 2 diabetes mellitus patients with DKD presented higher circulating MPs levels - PMPs, LMPs, EMPs, and TFMPs - which correlated with metabolic alterations.
Collapse
Affiliation(s)
- Kathryna Fontana Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Teixeira Pietrani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Aparecida Bosco
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | - Karina Braga Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Pernomian L, Moreira JD, Gomes MS. In the View of Endothelial Microparticles: Novel Perspectives for Diagnostic and Pharmacological Management of Cardiovascular Risk during Diabetes Distress. J Diabetes Res 2018; 2018:9685205. [PMID: 29862304 PMCID: PMC5971276 DOI: 10.1155/2018/9685205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Acute or chronic exposure to diabetes-related stressors triggers a specific psychological and behavior stress syndrome called diabetes distress, which underlies depressive symptoms in most diabetic patients. Distressed and/or depressive diabetic adults exhibit higher rates of cardiovascular mortality and morbidity, which have been correlated to macrovascular complications evoked by diabetic behavior stress. Recent experimental findings clearly point out that oxidative stress accounts for the vascular dysfunction initiated by the exposure to life stressors in diabetic conditions. Moreover, oxidative stress has been described as the main autocrine and paracrine mechanism of cardiovascular damage induced by endothelial microparticles (anuclear ectosomal microvesicles released from injured endothelial cells) in diabetic subjects. Such robust relationship between oxidative stress and cardiovascular diseases strongly suggests a critical role for endothelial microparticles as the primer messengers of the redox-dependent vascular dysfunction underlying diabetes distress. Here, we provide novel perspectives opened in the view of endothelial microparticles as promising diagnostic and pharmacotherapeutic biomarkers of cardiovascular risk in distressed diabetic patients.
Collapse
Affiliation(s)
- Larissa Pernomian
- Department of Biosciences Applied to Pharmacy, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jôsimar Dornelas Moreira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mayara Santos Gomes
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Abstract
In patients with acute atherothrombotic disease, diabetes or glucose intolerance is frequently found. Indeed, the number of people with diabetes in the world continues to increase and is expected to reach more than 500 million people by 2035. Diabetes is a pathology commonly associated with both microvascular and macrovascular complications. Although the mortality of coronary artery disease has decreased significantly over the past 20 years, mortality in patients with type 2 diabetes has changed little and atherothrombotic events remain the leading cause of death in diabetic patients. Although our understanding of vascular pathology has greatly evolved in recent years, the cellular and molecular mechanisms linking thrombogenicity and diabetes remain incompletely understood. Type 1 and type 2 diabetes are prothrombotic pathologies. This prothrombotic state is due to both hyperglycemia and chronic hyperinsulinism. Among the different agonists involved in the increased thrombogenicity of diabetic patients, abnormalities can be found in all phases of coagulation. Increased procoagulant factors and tissue factor associated with impaired fibrinolysis, platelet hyperreactivity, endothelial dysfunction, leukocyte activation, low-grade inflammation, and microparticle involvement, they all play a role in the establishment of this prothrombotic condition. This review sought to provide an update on the prothrombotic nature of diabetes and its consequences in therapeutics.
Collapse
Affiliation(s)
- F Picard
- Interventional cardiology department, Cochin hospital, Assistance publique-Hôpitaux de Paris, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France; Université Paris Descartes, université Sorbonne Paris Cité, 75006 Paris, France
| | - J Adjedj
- Interventional cardiology department, Cochin hospital, Assistance publique-Hôpitaux de Paris, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France; Université Paris Descartes, université Sorbonne Paris Cité, 75006 Paris, France
| | - O Varenne
- Interventional cardiology department, Cochin hospital, Assistance publique-Hôpitaux de Paris, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France; Université Paris Descartes, université Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
34
|
Niki M, Yokoi T, Kurata T, Nomura S. New prognostic biomarkers and therapeutic effect of bevacizumab for patients with non-small-cell lung cancer. LUNG CANCER (AUCKLAND, N.Z.) 2017; 8:91-99. [PMID: 28814907 PMCID: PMC5546813 DOI: 10.2147/lctt.s138887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several biomarkers have emerged as potential prognostic and predictive markers for non-small-cell lung cancer (NSCLC). Successful inhibition of angiogenesis with the antivascular endothelial growth factor antibody, bevacizumab, has improved the efficacy seen with standard cytotoxic therapy of NSCLC. However, despite such enhanced treatment strategies, the prognosis for patients with advanced NSCLC remains poor. PATIENTS AND METHODS We assessed potential biomarkers in 161 NSCLC patients and 42 control patients. Enzyme-linked immunosorbent assay methods were used to evaluate three biomarkers: platelet-derived microparticle (PDMP), high-mobility group box-1 (HMGB1), and plasminogen activator inhibitor-1 (PAI-1). We studied the effects of bevacizumab on the expression of these markers. We also analyzed the relationship of the newly designed risk factor (NDRF) to overall survival and disease-free survival. The NDRF classification of patients was determined from the levels of PDMP, HMGB1, and PAI-1. To determine the individual prognostic power of PDMP, HMGB1, and PAI-1, we evaluated associations between their levels and patient outcomes by Kaplan-Meier survival analysis in a derivation cohort. RESULTS PDMP, HMGB1, and PAI-1 levels were higher in NSCLC patients compared with control patients. Notably, the difference in PDMP levels exhibited the strongest statistical significance (p<0.001). Multivariate analysis showed that HMGB1 and PAI-1 levels were significantly correlated with PDMP levels. Patients who received standard chemotherapy with bevacizumab exhibited significantly reduced levels of all three markers compared with patients who received standard chemotherapy. NDRF3 status (high levels of all three markers) was significantly correlated with a poor prognosis (p<0.05 for overall survival and disease-free survival). CONCLUSION Our results demonstrate that abnormal levels of PDMP, HMGB1, and PAI-1 are related to each other in NSCLC. Moreover, our findings suggest that the vascular complications associated with these markers may contribute to a poor prognosis for NSCLC patients.
Collapse
Affiliation(s)
- Maiko Niki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takashi Yokoi
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takayasu Kurata
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
35
|
Abstract
Coronary heart disease is associated with high morbidity and mortality. Endothelial dysfunction in affected patients is linked to long-term atherosclerotic disease progression and cardiovascular event rates. The present paper reports on changes in the levels of endothelial progenitor cells (VEGFR2/CD133/CD34), essential for endothelial repair, and of endothelial microvesicles (CD31/annexin V) as indicators of endothelial lesion, in patients undergoing coronary bypass surgery with respect both to baseline levels and to counts in healthy subjects. In an observational descriptive study, 31 patients scheduled for coronary revascularization surgery were compared with those of 25 healthy controls. In a subsequent longitudinal study, patients undergoing surgery were monitored at 5 timepoints up until 48 h after surgery. Endothelial progenitor cell (VEGFR2/CD133/CD34) and endothelial microvesicle (CD31/annexin V) levels were quantified by flow cytometry. Baseline endothelial progenitor cell counts in coronary patients were significantly lower than those of healthy controls (p < 0.001); however, after surgery, levels rose steadily over all 5 timepoints to 48 h with statistically significant differences (p < 0.001) between intra-operative and 48 h after surgery (T5). Endothelial microvesicle levels were significantly higher in coronary patients prior to surgery than in healthy controls (p < 0.001), and despite declining at 48 h remained significantly higher than those of controls (p < 0.001). Coronary surgery has had a positive impact on the endothelium in the patients, prompting a decrease in signs of endothelial dysfunction and a considerable improvement in the endothelial repair mechanisms involved in angiogenesis, playing an important role in the inflammatory response and the remodelling process of ischemic myocardium in postoperative period.
Collapse
|
36
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
37
|
Lau YC, Xiong Q, Blann AD, Lip GYH. Relationship between renal function and circulating microparticles, soluble P-selectin and E-selectin levels in atrial fibrillation. J Thromb Thrombolysis 2017; 43:18-23. [PMID: 27671694 PMCID: PMC5233739 DOI: 10.1007/s11239-016-1427-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atrial fibrillation (AF) and chronic kidney disease are closely related, and any associated risk of stroke and thromboembolism due to AF is increased by concurrent renal dysfunction. The mechanism(s) for this include abnormalities in platelets and endothelial cells. We hypothesized relationships between levels of circulating platelet microparticles (PMPs, defined by CD42b), soluble P selectin (both reflecting platelet activation), soluble E-selectin (reflecting endothelial activation) and endothelial/platelet microparticles (EPMPs, defined by CD31) with progressive renal dysfunction. Blood samples were obtained from 160 anticoagulated AF patients. Microparticles were measured by flow cytometry, soluble E and P selectin levels by ELISA. Renal function was determined by estimated glomerular filtration rate (eGFR). EPMP levels demonstrated a linear increased trend across quartiles of eGFR (p = 0.034) and CKD stage (p < 0.001), and correlated with eGFR and serum creatinine (p < 0.01). PMPs, P-selectin and E-selectin levels were not significantly different across groupings of renal dysfunction, and no significant correlations with eGFR were evident (p = 0.186, p = 0.561, p = 0.746 respectively). Stepwise multivariable regression analysis demonstrated that worsening renal function was an independent predictor of EPMP levels (p < 0.001). In well-anticoagulated AF patients, there is potential relationship between endothelial function (as judged by elevated EPMP levels, with no change in PMPs) and renal function. Other markers of prothombotic state or cellular activation (PMP, P-selectin and E-selectin levels) were not significantly different across the various degree of renal dysfunction. Renal function must be addressed when measuring EPMP levels.
Collapse
Affiliation(s)
- Yee Cheng Lau
- University of Birmingham Institute of Cardiovascular Science, City Hospital, Dudley Road, Birmingham, UK
| | - Qinmei Xiong
- University of Birmingham Institute of Cardiovascular Science, City Hospital, Dudley Road, Birmingham, UK.,Cardiovascular Department, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Blann
- University of Birmingham Institute of Cardiovascular Science, City Hospital, Dudley Road, Birmingham, UK
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Science, City Hospital, Dudley Road, Birmingham, UK.
| |
Collapse
|
38
|
Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci Rep 2017; 37:BSR20170047. [PMID: 28213360 PMCID: PMC5469331 DOI: 10.1042/bsr20170047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/03/2023] Open
Abstract
Microparticles (MPs) and miRNAs have been shown to play important roles in coronary artery disease (CAD) by monitoring endothelial dysfunction. The present study aims to investigate the diagnostic value of endothelial MPs (EMPs) and miRNAs (miR-92a or miR-23a) as biomarkers in distinguishing patients with acute myocardial infarction (AMI) from those with CAD. Plasma samples from 37 patients with AMI, 42 patients with stable CAD (SCAD), and 35 healthy adults were collected for investigation in the present study. The numbers of CD31+/CD42b- MPs, CD31+/CD42b+ MPs, and CD31-/CD42b- MPs were measured by flow cytometry and the levels of miR-92a and miR-23a were analyzed using reverse transcription-quantitative PCR. Moreover, cardiac troponin I (cTnI) expression was detected by ELISA to serve as a routine diagnostic parameter. The number of CD31+/CD42b- was higher in AMI group than those in SCAD and healthy groups. Besides, the expression of miR-92a was higher in AMI group compared with two other groups. Furthermore, evidence showed that there was a positive correlation between the levels of CD31+/CD42b- MPs and miR-92a Finally, the receiver operating characteristic (ROC) curve revealed that the area value under the curve of CD31+/CD42b- MPs, miR-92a and cTnI was 0.893, 0.888, and 0.912 respectively. CD31+/CD42b- MPs and miR-92a might have great potential to provide diagnostic value for AMI and could probably regulate the endothelial dysfunction in AMI patients.
Collapse
|
39
|
Extracellular vesicles and blood diseases. Int J Hematol 2017; 105:392-405. [PMID: 28130731 DOI: 10.1007/s12185-017-2180-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.
Collapse
|
40
|
Jeske WP, Walenga JM, Menapace B, Schwartz J, Bakhos M. Blood cell microparticles as biomarkers of hemostatic abnormalities in patients with implanted cardiac assist devices. Biomark Med 2016; 10:1095-1104. [DOI: 10.2217/bmm-2016-0150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For heart failure patients unable to undergo cardiac transplantation, mechanical circulatory support with left ventricular assist devices can be utilized. These devices improve quality of life and prolong life expectancy, but they are associated with bleeding and thrombotic complications impacting patient survival. Little is known of the relevant mechanisms of these hemostatic issues, hindering identification of a clinically useful biomarker. However, there is suggestive evidence that blood cell-derived microparticles may fulfill this unmet clinical need. Recent publications have shown an association of up regulated microparticle production with implanted left ventricular assist devices and the potential to use this as a biomarker to predict thrombosis (and perhaps other adverse events) with an onset time earlier than currently used clinical indicators.
Collapse
Affiliation(s)
- Walter P Jeske
- Department of Thoracic & Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Jeanine M Walenga
- Department of Thoracic & Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Bryan Menapace
- Department of Thoracic & Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Jeffrey Schwartz
- Department of Thoracic & Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Mamdouh Bakhos
- Department of Thoracic & Cardiovascular Surgery, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
41
|
Okuda Y, Omoto S, Taniura T, Shouzu A, Nomura S. Effects of teneligliptin on PDMPs and PAI-1 in patients with diabetes on hemodialysis. Int J Gen Med 2016; 9:65-71. [PMID: 27110135 PMCID: PMC4835142 DOI: 10.2147/ijgm.s102070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Cardiovascular disease (CVD) is the main cause of death among hemodialysis (HD) patients. The effects of the dipeptidyl peptidase-4 inhibitor teneligliptin on CVD-related biomarkers in patients with type 2 diabetes mellitus (T2DM) receiving HD treatment are poorly understood. To determine whether teneligliptin has anti-CVD properties, we assessed its effects on soluble P-selectin (sP-selectin), platelet-derived microparticles (PDMPs), plasminogen activator inhibitor 1 (PAI-1), soluble E-selectin (sE-selectin), soluble vascular adhesion molecule 1 (sVCAM-1), and adiponectin plasma levels in HD and non-HD patients with T2DM. Methods Patients with T2DM eligible for teneligliptin monotherapy or combination therapy (eg, teneligliptin plus a sulfonylurea) were administered teneligliptin (20 mg/d) once daily for 6 months. Plasma levels of sP-selectin, PDMPs, PAI-1, sE-selectin, sVCAM-1, and adiponectin were measured by enzyme-linked immunosorbent assay at baseline and after 3 months and 6 months of treatment. Results Teneligliptin therapy significantly reduced plasma levels of sP-selectin, PDMPs, and PAI-1 compared with baseline levels, while significantly increasing adiponectin levels. sE-selectin and sVCAM-1 levels were significantly decreased only at 6 months. The reduction in sP-selectin, PDMPs, and PAI-1 was more significant in HD patients than in non-HD patients. However, the improvement in adiponectin levels was unchanged with HD treatment. Conclusion By modulating PDMPs or PAI-1, teneligliptin shows an antiatherothrombotic effect that may be beneficial in the primary prevention of CVD in patients with T2DM on HD.
Collapse
Affiliation(s)
- Yoshinori Okuda
- Division of Internal Medicine, Meisei Memorial Hospital, Osaka, Japan
| | - Seitaro Omoto
- Division of Internal Medicine, Kohrigaoka Yukeikai Hospital, Osaka, Japan
| | | | - Akira Shouzu
- Division of Internal Medicine, Saiseikai Izuo Hospital, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|