1
|
Park Y, Jang MJ, Ryu DY, Lim B, Pathak RK, Pang MG, Kim JM. Integrative transcriptomic profiling uncovers immune and functional responses to bisphenol a across multiple tissues in male mice. Anim Cells Syst (Seoul) 2024; 28:519-535. [PMID: 39464840 PMCID: PMC11504166 DOI: 10.1080/19768354.2024.2419473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Bisphenol A (BPA), an endocrine-disrupting substance commonly found in plastics and receipts, is associated with adverse effects, including endocrine disorders, reduced fertility, and metabolic issues. To gain insights into its effects on biological systems, we observed the adverse effects of BPA in male Institute of Cancer Research (ICR) mice exposed to BPA at the lowest observed adverse effect level for 6 weeks, in comparison with the control groups. We constructed a comprehensive transcriptome profile using 20 different tissues to analyze the changes in the whole-body systems. This involved employing differential gene expression, tissue-specific gene, and gene co-expression network analyses. The study revealed that BPA exposure led to significant differences in the transcriptome in the thymus, suggesting activation of T-cell differentiation and maturation in response to BPA treatment. Furthermore, various tissues exhibited immune response activation, potentially due to the migration of immune cells from the thymus. BPA exposure also caused immune-related functional changes in the colon, liver, and kidney, as well as abnormal signaling responses in the sperm. The transcriptome analysis serves as a valuable resource for understanding the functional impact of BPA, providing profound insights into the effects of BPA exposure and emphasizing the need for further research on potential associated health risks.
Collapse
Affiliation(s)
- Yejee Park
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Rajesh Kumar Pathak
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
2
|
Ahn C, Jeung EB. Endocrine-Disrupting Chemicals and Disease Endpoints. Int J Mol Sci 2023; 24:ijms24065342. [PMID: 36982431 PMCID: PMC10049097 DOI: 10.3390/ijms24065342] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have significant impacts on biological systems, and have been shown to interfere with physiological systems, especially by disrupting the hormone balance. During the last few decades, EDCs have been shown to affect reproductive, neurological, and metabolic development and function and even stimulate tumor growth. EDC exposure during development can disrupt normal development patterns and alter susceptibility to disease. Many chemicals have endocrine-disrupting properties, including bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols, and phthalates. These compounds have gradually been elucidated as risk factors for many diseases, such as reproductive, neural, and metabolic diseases and cancers. Endocrine disruption has been spread to wildlife and species that are connected to the food chains. Dietary uptake represents an important source of EDC exposure. Although EDCs represent a significant public health concern, the relationship and specific mechanism between EDCs and diseases remain unclear. This review focuses on the disease-EDC relationship and the disease endpoints associated with endocrine disruption for a better understanding of the relationship between EDCs-disease and elucidates the development of new prevention/treatment opportunities and screening methods.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-043-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
3
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
4
|
Sang C, Song Y, Jin TW, Zhang S, Fu L, Zhao Y, Zou X, Wang Z, Gao H, Liu S. Bisphenol A induces ovarian cancer cell proliferation and metastasis through estrogen receptor-α pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36060-36068. [PMID: 33683587 DOI: 10.1007/s11356-021-13267-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a widely used raw material that can be detected both in the environment and in the human body. Due to its estrogen-like effects, wide concerns have been raised about the potential role of BPA in the initiation and development of hormone-dependent cancers. Ovarian cancer is the most common reproductive system cancer and has a high mortality rate in women. Despite recent investigations into BPA's carcinogenic effects, studies on its role in ovarian cancer development remain limited. In this study, we aimed to assess the effect of BPA at various environmentally relevant concentrations on proliferation and metastasis of ovarian cancer cells. We discovered that BPA can stimulate proliferation of OVCAR-3 ovarian cancer cells after exposure for up to 5 days. Strikingly, BPA enhanced ovarian cancer cell migration, invasion, and adhesion (to vascular endothelial cells) through upregulation of matrix metalloproteinase-2 (MMP-2), MMP-9, and intercellular cell adhesion molecule-1 (IMAC-1). The stimulatory effects of BPA on cancer cell proliferation and metastasis were reversed by treatment with an ERα inhibitor, but not by treatment with an ERβ inhibitor. Together, these results suggest that BPA induces proliferation and metastasis of ovarian cancer cells through ERα signaling pathways. This study provides new insights into the carcinogenic effects of BPA with regard to ovarian cancer.
Collapse
Affiliation(s)
- Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Tong-Wang Jin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Shuo Zhang
- Department of Obstetrics & Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100730, China
| | - Linyan Fu
- Department of Obstetrics & Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi Zhao
- Department of Obstetrics & Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100730, China
| | - Xinxin Zou
- Department of Obstetrics & Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| | - Hui Gao
- Department of Obstetrics & Gynecology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100730, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Eldefrawy F, Xu HS, Pusch E, Karkoura A, Alsafy M, Elgendy S, Williams SM, Navara K, Guo TL. Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S: Perspectives on ovarian morphology and gene expression. Reprod Toxicol 2021; 103:181-190. [PMID: 34147626 DOI: 10.1016/j.reprotox.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Both bisphenol A (BPA) and its analog bisphenol S (BPS) are industrial chemicals that have been used to make certain plastic products applied in chicken farms, including food and water containers. They are endocrine disrupting chemicals (EDCs) with xenoestrogenic activities and affect reproductive success in many ways. It was hypothesized that BPA and BPS could adversely affect the folliculogenesis in chickens due to their disruption of the estrogen responses, using either genomic or non-genomic mechanisms. This study investigated the deleterious effects of BPA and BPS on the ovaries when adult layer chickens were orally treated with these EDCs at 50 μg/kg body weight, the reference dose for chronic oral exposure of BPA established by the U.S. EPA. The chickens in both BPA and BPS-treated groups showed a decreased number of the preovulatory follicles. BPA-treated chickens showed a significant decrease in the diameter of F1. Additionally, both BPA and BPS treatments increased the infiltrations of lymphocytes and plasma cells in ovaries. Moreover, it was found that the ovaries of BPS-treated chickens weighed the most among the groups. RNA sequencing and subsequent pathway enrichment analysis of differentially expressed genes revealed that both BPA- and BPS-treatment groups showed significant changes in gene expression and pathways related to reproduction, immune function and carcinogenesis. Taken together, both BPA and BPS are potentially carcinogenic and have deleterious effects on the fertility of laying chickens by inducing inflammation, suggesting that BPS may not be a safe replacement for BPA.
Collapse
Affiliation(s)
- Fatma Eldefrawy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt; Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Hannah Shibo Xu
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth Pusch
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ashraf Karkoura
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Mohamed Alsafy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Samir Elgendy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Kristen Navara
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
6
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
7
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Yaglov VV, Nazimova SV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Differential Disrupting Effects of Prolonged Low-Dose Exposure to Dichlorodiphenyltrichloroethane on Androgen and Estrogen Production in Males. Int J Mol Sci 2021; 22:3155. [PMID: 33808818 PMCID: PMC8003643 DOI: 10.3390/ijms22063155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p'-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (D.A.T.); (S.S.O.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
8
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
9
|
Jin J, Wu P, Zhang X, Li D, Wong WL, Lu YJ, Sun N, Zhang K. Understanding the interaction of estrogenic ligands with estrogen receptors: a survey of the functional and binding kinetic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:142-168. [PMID: 32500833 DOI: 10.1080/26896583.2020.1761204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The investigation of estrogen actions and their interaction characteristics with estrogen receptors (ERs) to induce unique functional features inside cells have allowed us to understand better the regulation of many vital physiological and cellular processes in humans. The biological effects of estrogenic ligands or compounds are mediated via estrogen receptors that act as the ligand-activated transcription factors. Therefore, the study on ligand-ER interaction properties and mechanism of ligand-ER complexes binding to specific estrogen response elements located in the promoters of target genes are very critical to realize the complicated biological process regulated by the endogenous estrogens. Several reviews have provided comprehensive and updated information on the influence of estrogen receptors in health and disease. However, the mechanism of estrogen-ERs binding and affinity aspects at molecular level is relatively under-investigated. This review thus aims to shed light on the significance of the binding kinetics of ligand-ER interactions because the information provide great assistance to define how a ligand or a drug can communicate with physiology to produce a desired therapeutic response. In addition, the most frequently used methodologies for the binding kinetic study are highlighted over the last decade.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Ning Sun
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China and International Healthcare Innovation Institute (Jiangmen), Jiangmen, P.R. China
| |
Collapse
|
10
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
Hui L, Li H, Lu G, Chen Z, Sun W, Shi Y, Fu Z, Huang B, Zhu X, Lu W, Xia D, Wu Y. Low Dose of Bisphenol A Modulates Ovarian Cancer Gene Expression Profile and Promotes Epithelial to Mesenchymal Transition Via Canonical Wnt Pathway. Toxicol Sci 2019; 164:527-538. [PMID: 29718440 DOI: 10.1093/toxsci/kfy107] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The xenoestrogen bisphenol A (BPA) is a synthetic endocrine disrupting chemical, having the potential to increase the risk of hormone-dependent ovarian cancer. Thus, a deeper understanding of the molecular and cellular mechanisms is urgently required in the novel cell models of ovarian cancer which express estrogen receptors. To understand the possible mechanisms underlying the effects of BPA, human ovarian adenocarcinoma SKOV3 cells were exposed to BPA (10 or 100 nM) or 0.1% DMSO for 24 h, and then global gene expression profile was determined by high-throughput RNA sequencing. Also, enrichment analysis was carried out to find out relevant functions and pathways within which differentially expressed genes were significantly enriched. Transcriptomic analysis revealed 94 differential expression genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these genes related to tumorigenesis and metastasis. Further studies were carried out to validate the results of functional annotation, which indicated that BPA (10 and 100 nM) increased migration and invasion as well as induced epithelial to mesenchymal transitions in SKOV3 and A2780 cells. Accordingly, environmentally relevant-dose BPA activated the canonical Wnt signaling pathway. Our study first comprehensively analyzed the possible mechanisms underlying the effects of BPA on ovarian cancer. Environmentally relevant doses of BPA modulated the gene expression profile, promoted epithelial to mesenchymal transition progress via canonical Wnt signaling pathway of ovarian cancer.
Collapse
Affiliation(s)
- Lin Hui
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongyi Li
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Zhifeng Chen
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenjie Sun
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Shi
- Key Laboratory of Diagnosis and Treatment for Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhiqin Fu
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinqiang Zhu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yihua Wu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
12
|
Yang X, Huang H, Wang M, Zheng X, Xie M, Xu J. Nonylphenol promotes the proliferation of colorectal cancer COLO205 cells by upregulating the expression of protein kinase C ζ. Oncol Lett 2019; 17:2498-2506. [PMID: 30675313 DOI: 10.3892/ol.2018.9846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Previous studies have indicated the potential role of estrogen in the development and prognosis of colorectal cancer (CRC). Nonylpheno (NP) is an endocrine-disrupting chemical, which may influence the development of estrogen-dependent types of cancer. However, the molecular mechanism of NP in the development of CRCs remains unclear. In the present study, various concentrations of NP were used to treat COLO205 CRC cells, and the expression of protein kinase C ζ (PKCζ) was knocked down using PKCζ small interfering RNA. The effects of NP in various concentrations on the cell cycle and apoptosis of COLO205 cells were examined, and the change in the expression level of PKCζ was analyzed. The results indicated that NP may significantly induce proliferation of COLO205 CRC cells, and significantly reduce cell apoptosis. However, suppression of PKCζ expression may inhibit proliferation, while NP could reduce this inhibition. The results of a western blot analysis indicated that the expression level of cyclin D1 and E were significantly increased following NP treatment, and the expression of p27 was significantly decreased. The phosphorylation of PKCζ and extracellular-signal-regulated kinase (ERK)1/2 was significantly increased following NP treatment in a dose-dependent manner. Overall, NP induced human CRC COLO205 cell proliferation and inhibited the apoptotic rate of COLO205 cells by increasing the activity of PKCζ and ERK1/2.
Collapse
Affiliation(s)
- Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Handong Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Maijian Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xingbin Zheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Ming Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jie Xu
- School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
13
|
Lee GA, Hwang KA, Choi KC. Inhibitory effects of 3,3′-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol 2017; 109:284-295. [DOI: 10.1016/j.fct.2017.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
|
14
|
Go RE, Hwang KA, Kim CW, Byun YS, Nam KH, Choi KC. Effect of dioxin and 17β-estradiol on the expression of cytochrome P450 1A1 gene via an estrogen receptor dependent pathway in cellular and xenografted models. ENVIRONMENTAL TOXICOLOGY 2017; 32:2225-2233. [PMID: 28618207 DOI: 10.1002/tox.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/14/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (CYP) 1A1 plays a major role in the metabolic activation of procarcinogens to carcinogens via aryl hydrocarbon receptor (AhR) pathway. Especially, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known as an agonist of AhR. In estrogen responsive cancers, 17β-estradiol (E2) may influence on AhR dependent expression of CYP1 family via the interaction between estrogen receptor (ER) and AhR. In the present study, the effect of E2/ER on the expression of AhR and CYP1A1 genes was investigated for MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing ER. In reverse transcription-PCR and Western blot analysis, mRNA expression level of AhR was not altered, but its protein expression level was increased by TCDD or E2. The transcriptional and translational levels of CYP1A1 appeared to be increased by TCDD or E2. The increased expression of AhR and CYP1A1 induced by E2 was restored to the control level by the co-treatment of ICI 182,780, indicating that E2 induced the protein expression levels of AhR and CYP1A1 like TCDD via an ER dependent pathway. In an in vivo xenograft mouse model transplanted with MCF-7 CV cells, the protein expression levels of AhR and CYP1A1 of tumor masses were also increased by E2 or TCDD. Taken together, these results indicate that E2 may promote AhR dependent expression of CYP1A1 via ER dependent pathway in MCF-7 CV cells expressing ER in the absence of TCDD, an agonist of AhR. The relevance of E2 and ER in CYP1A1 activation of estrogen responsive cancers may be targeted for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Sub Byun
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Li Y, Ding Z, Wu C. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro. Med Sci Monit 2016; 22:4803-4808. [PMID: 27928147 PMCID: PMC5153323 DOI: 10.12659/msm.898127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background This study examined the effect of kaempferol on uterine fibroids in vitro and the underlying mechanism, and investigated the potential of kaempferol as a clinical drug for the treatment of uterine fibroids. Material/Methods Uterine fibroid tissue and surrounding smooth muscle tissue were collected for primary culture. Different concentrations of kaempferol (12 μM, 24 μM, and 48 μM) were used to treat the cells for 24, 48, and 72 hours. Ethanol was used in the control group. A CCK-8 colorimetric assay was used to detect cell proliferation. Real-time PCR and immunoblot were used to detect estrogen receptor (ER), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) levels in mRNA and protein. Results The differences in proliferation at different time points and concentrations of kaempferol were statistically significant. The inhibitory effect of kaempferol on mRNA levels of ER and IGF, and protein levels of ER, VEGF, and IGF-1 were positively correlated with kaempferol concentration. Changes in kaempferol concentration showed no effect on VEGF mRNA expression. Treatment with kaempferol significantly lowered myocardin levels in uterine fibroid tissue compared to normal uterine smooth muscle (P<0.05). Conclusions Kaempferol might be used for clinical treatment of uterine fibroids due to its inhibitory effect on the proliferation of uterine fibroids cells.
Collapse
Affiliation(s)
- Yanxia Li
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Zhaoxia Ding
- Department of Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chuanzhong Wu
- Department of Gynaecology, The Second People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
16
|
Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells. Food Chem Toxicol 2016; 93:58-65. [DOI: 10.1016/j.fct.2016.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
|
17
|
Kang NH, Shin HC, Oh S, Lee KH, Lee YB, Choi KC. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer-specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells. Mol Med Rep 2016; 14:1809-16. [DOI: 10.3892/mmr.2016.5408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/02/2016] [Indexed: 01/09/2023] Open
|
18
|
Influence of hexabromocyclododecane and 4-nonylphenol on the regulation of cell growth, apoptosis and migration in prostatic cancer cells. Toxicol In Vitro 2016; 32:240-7. [DOI: 10.1016/j.tiv.2016.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/15/2016] [Indexed: 01/13/2023]
|
19
|
Kim CW, Go RE, Choi KC. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway. Toxicol Res 2016; 31:331-7. [PMID: 26877835 PMCID: PMC4751442 DOI: 10.5487/tr.2015.31.4.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10(-6) M) and CP (10(-5) M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10(-8) M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
20
|
Kim SH, Hwang KA, Choi KC. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem 2015; 28:70-82. [PMID: 26878784 DOI: 10.1016/j.jnutbio.2015.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
As a phytoestrogen, kaempferol (Kaem) is one of bioflavonoids, which are found in a variety of vegetables including broccoli, tea and tomato. In this study, the antiproliferative effects of Kaem in triclosn (TCS)-induced cell growth were examined in MCF-7 breast cancer cells. TCS promoted the cell viability of MCF-7 cells via estrogen receptor α (ERα) as did 17β-estradiol (E2), a positive control. On the other hand, Kaem significantly suppressed E2 or TCS-induced cell growth. To elucidate the molecular mechanisms of TCS and Kaem, alterations in the expressions of cell cycle, apoptosis and metastasis-related genes were identified using western blot assay. The treatment of the cells with TCS up-regulated the protein expressions of cyclin D1, cyclin E and cathepsin D, while down-regulated p21 and bax expressions. Kaem reversed TCS-induced gene expressions in an opposite manner. The phosphorylation of IRS-1, AKT, MEK1/2 and ERK was increased by TCS, indicating that TCS induced MCF-7 cell proliferation via nongenomic ER signaling pathway associated with IGF-1R. Kaem presented an antagonistic activity on this signaling by down-regulating the protein expression of pIRS-1, pAkt and pMEK1/2 promoted by E2 or TCS. In an in vivo xenografted mouse model, tumor growth was induced by treatment with E2 or TCS, which was identified in the measurement of tumor volume, hematoxylin and eosin staining, bromodeoxyuridine and immunohistochemistry assay. On the contrary, E2 or TCS-induced breast tumor growth was inhibited by co-treatment with Kaem, which is consistent with in vitro results. Taken together, these results revealed that Kaem has an anticancer effect against procancer activity of E2 or TCS, a xenoestrogen, in breast cancer and may be suggested as a prominent agent to neutralize breast cancer risk caused by TCS.
Collapse
Affiliation(s)
- Seung-Hee Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 361-763 Republic of Korea.
| |
Collapse
|
21
|
Kim YS, Choi KC, Hwang KA. Genistein suppressed epithelial-mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:993-999. [PMID: 26407941 DOI: 10.1016/j.phymed.2015.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT), which is activated by 17β-estradiol (E2) in estrogen-responsive cancers, is an important process in tumor migration or progression. As typical endocrine disrupting chemicals (EDCs), bisphenol A (BPA) and nonylphenol (NP) have a potential to promote EMT and migration of estrogen-responsive cancers. On the contrary, genistein (GEN) as a phytoestrogen is known to have chemopreventive effects in diverse cancers. METHODS In the present study, the effects of BPA and GEN on EMT and the migration of BG-1 ovarian cancer cells and the underlying mechanism were investigated. ICI 182,780, an estrogen receptor (ER) antagonist, was co-treated with E2 or BPA or NP to BG-1 cells to identify the relevance of ER signaling in EMT and migration. RESULTS As results, E2 and BPA upregulated the protein expression of vimentin, cathepsin D, and MMP-2, but downregulated the protein expression of E-cadherin via ER signaling pathway, suggesting that E2 and BPA promote EMT and cell migration related gene expressions. However, the increased protein expressions of vimentin, cathepsin D, and MMP-2 by E2, BPA, or NP were reduced by the co-treatment of GEN. In a scratch assay, the migration capability of BG-1 cells was enhanced by E2, BPA, and NP via ER signaling but reversed by the co-treatment of GEN. In the protein expression of SnoN and Smad3, E2, BPA, and NP upregulated SnoN, a negative regulator of TGF-β signaling, and downregulated pSmad3, a transcription factor in the downstream pathway of TGF-β signaling pathway, suggesting that E2, BPA, and NP simultaneously lead to the downregualtion of TGF-β signaling in the process of induction of EMT and migration of BG-1 cells via ER signaling. On the other hand, the co-treatment of GEN reversed the downregulation of TGF-β signaling by estrogenic chemicals. CONCLUSION Taken together, GEN suppressed EMT and migration capacities of BG-1 ovarian cancer cells enhanced by E2, BPA, and NP via ER signaling and the downregulation of TGF-β signal.
Collapse
Affiliation(s)
- Ye-Seul Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea.
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|
22
|
Kim YS, Hwang KA, Hyun SH, Nam KH, Lee CK, Choi KC. Bisphenol A and Nonylphenol Have the Potential to Stimulate the Migration of Ovarian Cancer Cells by Inducing Epithelial–Mesenchymal Transition via an Estrogen Receptor Dependent Pathway. Chem Res Toxicol 2015; 28:662-71. [DOI: 10.1021/tx500443p] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Ki-Hoan Nam
- Laboratory Animal Resource
Center, Korea Research Institute of Bioscience and Biotechnology, 30
Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major,
and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
23
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Morizane M, Kawasaki Y, Miura T, Yagi K, Esumi S, Kitamura Y, Sendo T. Photoinitiator-Initiated Estrogenic Activity in Human Breast Cancer Cell Line MCF-7. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1450-1460. [PMID: 26692070 DOI: 10.1080/15287394.2015.1094431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A recent in vitro study reported that the photoinitiator 2-isopropylthioxanthone (2-ITX) is an endocrine-disrupting compound (EDC). However, it is not clear whether other photoinitiators such as 1-hydroxycyclohexyl phenyl ketone (1-HCHPK) and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP) produce endocrine-disrupting effects. The purpose of this study was thus to assess the association between estrogenic activity and exposure to photoinitiators. For estimation of the proliferative effect of the photoinitiators, the E-screen assay was used. Six photoinitiators, 2,2-dimethoxy-2-phenylacetophenone (2,2-DMPAP), 2-ethylhexyl 4-(dimethylamino)benzoate (2-EHDAB), 1-HCHPK, 2-ITX, methyl-2-benzoylbenzoate (MBB), and MTMP, significantly increased number of MCF-7 cells, an estrogen-sensitive human breast cancer cell line. In addition, pretreatment with estrogen receptor (ER) antagonists such as clomiphene, tamoxifen, or fulvestrant, significantly reversed the proliferative effect of each photoinitiator. Data demonstrated that the six photoinitiators produced endocrine-disrupting effects and that these photoinitiators interacted with ER as agonists. Evidence indicates that the six photoinitiators demonstrated estrogenic activity via ER as agonists.
Collapse
Affiliation(s)
- Miwa Morizane
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Yoichi Kawasaki
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Taro Miura
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Kenta Yagi
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Satoru Esumi
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Yoshihisa Kitamura
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| | - Toshiaki Sendo
- a Department of Pharmacy , Okayama University Hospital , Okayama , Japan
| |
Collapse
|
25
|
Ribeiro JR, Freiman RN. Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 2014; 143:160-73. [PMID: 24565562 PMCID: PMC4127339 DOI: 10.1016/j.jsbmb.2014.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Resistance to anti-estrogen therapies is a prominent challenge in the treatment of ovarian cancer. Tumors develop endocrine resistance by acquiring adaptations that help them rely on alternative oncogenic signaling cascades, which crosstalk with estrogen signaling pathways. An understanding of estrogen signaling crosstalk with these growth promoting cascades is essential in order to maximize efficacy of anti-estrogen treatments in ovarian cancer. Herein, we provide an overview of estrogen signaling in ovarian cancer and discuss the major challenges associated with anti-estrogen therapies. We also review what is currently known about how genomic and non-genomic estrogen signaling pathways crosstalk with several major oncogenic signaling cascades. The insights provided here illustrate existing strategies for targeting endocrine resistant ovarian tumors and may help identify new strategies to improve the treatment of this disease.
Collapse
Affiliation(s)
- Jennifer R Ribeiro
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA.
| | - Richard N Freiman
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA; Brown University, Department of Molecular and Cellular Biology and Biochemistry, 70 Ship St., Providence, RI 02903, USA.
| |
Collapse
|
26
|
Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A. PLoS One 2014; 9:e100576. [PMID: 25051057 PMCID: PMC4106758 DOI: 10.1371/journal.pone.0100576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA. Methodology A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs) in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM. Principal Findings Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2) and paired box 6 (Pax6), had preferentially down-regulated expression (Bonferroni correction p-value <10−4 and log2-transformed fold change ≤−1.2) in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh), vascular endothelial growth factor A (VEGFA) and Notch signaling. Conclusions These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.
Collapse
|
27
|
Craig ZR, Singh J, Gupta RK, Flaws JA. Co-treatment of mouse antral follicles with 17β-estradiol interferes with mono-2-ethylhexyl phthalate (MEHP)-induced atresia and altered apoptosis gene expression. Reprod Toxicol 2014; 45:45-51. [PMID: 24412242 PMCID: PMC4028413 DOI: 10.1016/j.reprotox.2014.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Accepted: 01/01/2014] [Indexed: 11/19/2022]
Abstract
Mono-2-ethyhexyl phthalate (MEHP) is a metabolite of a plasticizer found in many consumer products. MEHP inhibits mouse ovarian follicle growth by reducing 17β-estradiol (E2) production. Yet, whether MEHP causes follicle death (atresia) is unclear. We hypothesized that MEHP causes atresia by altering apoptosis gene expression, and that E2 co-treatment blocks these effects. Follicles were exposed to MEHP (0.36-36μM)±E2 for 48-96h to determine the effect of MEHP±E2 on atresia and gene expression. MEHP increased atresia, but this effect was blocked by co-treatment with E2. MEHP increased the expression of the pro-apoptotic gene Aifm1, but decreased that of the pro-apoptotic gene Bok and the anti-apoptotic gene Bcl2l10. E2 interfered with MEHP-induced changes in Aifm1 and Bcl2l10. Our findings suggest that decreased E2 levels are required for MEHP-induced follicle atresia and that Aifm1, Bok, and Bcl2l10 are involved in this process.
Collapse
Affiliation(s)
- Zelieann R Craig
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, United States.
| | - Jeffrey Singh
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, United States.
| | - Rupesh K Gupta
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, United States.
| |
Collapse
|
28
|
Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1264-74. [PMID: 24835555 DOI: 10.1016/j.etap.2014.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 05/15/2023]
Abstract
Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.
Collapse
Affiliation(s)
- Joo-Young Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
29
|
Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC. Progression of Breast Cancer Cells Was Enhanced by Endocrine-Disrupting Chemicals, Triclosan and Octylphenol, via an Estrogen Receptor-Dependent Signaling Pathway in Cellular and Mouse Xenograft Models. Chem Res Toxicol 2014; 27:834-42. [DOI: 10.1021/tx5000156] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hye-Rim Lee
- Laboratory of Veterinary
Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary
Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory
Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory
Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary
Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
30
|
Park MA, Choi KC. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol 2013; 27:119-28. [PMID: 24308608 DOI: 10.1021/tx400365z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor β (TGF-β) signaling pathway is a major pathway in cellular processes such as cell growth, apoptosis, and cellular homeostasis. The signaling pathway activated by 17β-estadiol (E2) appeared to inhibit the TGF-β signaling pathway by cross-talk with the TGF-β components in estrogen receptor (ER) positive cells. In this study, we examined the inhibitory effects of endocrine disrupting chemicals (EDCs), including 4-nonylphenol (NP), 4-otylphenol (OP), bisphenol A (BPA), and benzophenon-1 (BP-1), in the TGF-β signaling pathway in BG-1 ovarian cancer cells expressing estrogen receptors (ERs). The transcriptional and translational levels of TGF-β related genes were examined by reverse transcription-PCR (RT-PCR), Western blot analysis, and xenograft mouse models of ovarian cancer cells. As a result, treatment with NP, OP, and BPA induced the expressions of SnoN, a TGF-β pathway inhibitor, and c-Fos, a TGF-β target transcription factor. Treatment with NP, BPA, and BP-1 resulted in decreased phosphorylation of Smad3, a downstream target of TGF-β. These results indicate that NP and BPA may stimulate the proliferation of BG-1 cells via inhibition of the TGF-β signaling pathway. In a xenograft mouse model, transplanted BG-1 ovarian cancer cells showed significantly decreased phosphorylation of Smad3 and increased expression of SnoN in the ovarian tumor masses following treatment with E2, NP, or BPA. In parallel with an in vitro model, the expressions of these TGF-β signaling pathway were similarly regulated by NP or BPA in a xenograft mouse model. These results support the fact that the existence of an unproven relationship between EDCs/ER-α and TGF-β signaling pathway and a further study are required in order to verify more profound and distinct mechanism(s) for the disturbance of the TGF-β signaling pathway by diverse EDCs.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University , Cheongju, Chungbuk 361-763, Republic of Korea
| | | |
Collapse
|
31
|
Park MA, Hwang KA, Lee HR, Yi BR, Choi KC. Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc. Toxicol Res 2013; 27:253-9. [PMID: 24278580 PMCID: PMC3834391 DOI: 10.5487/tr.2011.27.4.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-β is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-β, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, ERα and ERβ, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/ERα and TGF-β pathway. Especially, based on the E2-mediated inhibition of TGF-β signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-β signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF- β receptor2 (TGF-β R2) in TGF-β signaling pathway. However, the expression level of TGF-β1 and TGF- β receptor1 (TGF-β R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-β signaling pathway. As a result of downregulation of TGF-β R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-β signaling via the downregulation of TGF-β R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-β signaling.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 361-763 Korea
| | | | | | | | | |
Collapse
|
32
|
LEE HYERIM, KIM TAEHEE, CHOI KELVINJ, CHOI KYUNGCHUL. Effects of octylphenol on the expression of cell cycle-related genes and the growth of mesenchymal stem cells derived from human umbilical cord blood. Int J Mol Med 2013; 33:221-6. [DOI: 10.3892/ijmm.2013.1556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 11/06/2022] Open
|
33
|
Hwang KA, Park MA, Kang NH, Yi BR, Hyun SH, Jeung EB, Choi KC. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor α and insulin-like growth factor-1 receptor signaling pathways. Toxicol Appl Pharmacol 2013; 272:637-46. [PMID: 23933164 DOI: 10.1016/j.taap.2013.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/07/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.
Collapse
Affiliation(s)
- Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Kang NH, Hwang KA, Lee HR, Choi DW, Choi KC. Resveratrol regulates the cell viability promoted by 17β-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor α and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food Chem Toxicol 2013; 59:373-9. [PMID: 23810794 DOI: 10.1016/j.fct.2013.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 01/21/2023]
Abstract
Endocrine disrupting chemicals (EDCs) and estrogens appear to promote development of estrogen-dependent cancers, including breast and ovarian carcinomas. In this study, we evaluated the cell viability effect of BPA on BG-1 human ovarian cancer cells, along with the growth inhibitory effect of resveratrol (trans-3,4,5-trihydroxystilbene; RES), a naturally occurring phytoestrogen. In addition, we investigated the underlying mechanism(s) of BPA and RES in regulating the interaction between estrogen receptor alpha (ERα) and insulin-like growth factor-1 receptor (IGF-1R) signals, a non- genomic pathway induced by 17β-estradiol (E2). BPA induced a significant increase in BG-1 cell growth and up-regulated mRNA levels of ERα and IGF-1R. In parallel with its mRNA level, the protein expression of ERα was induced, and phosphorylated insulin receptor substrate-1 (p-IRS-1), phosphorylated Akt1/2/3, and cyclin D1 were increased by BPA or E2. However, RES effectively reversed the BG-1 cell proliferation induced by E2 or BPA by inversely down-regulating the expressions of ERα, IGF-1R, p-IRS-1, and p-Akt1/2/3, and cyclin D1 at both transcriptional and translational levels. Taken together, these results suggest that RES is a novel candidate for prevention of tumor progression caused by EDCs, including BPA via effective inhibition of the cross-talk of ERα and IGF-1R signaling pathways.
Collapse
Affiliation(s)
- Nam-Hee Kang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway. Toxicology 2013; 304:13-20. [DOI: 10.1016/j.tox.2012.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
|
36
|
Hwang KA, Kang NH, Yi BR, Lee HR, Park MA, Choi KC. Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17β-estradiol or bisphenol A via the inhibition of cell cycle progression. Int J Oncol 2013; 42:733-40. [PMID: 23229410 DOI: 10.3892/ijo.2012.1719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
An endocrine disrupting chemical (EDC) is a global health concern. In this study, we examined the effects of genistein (GEN) on bisphenol A (BPA) or 17β-estradiol (E2)-induced cell growth and gene alterations of BG-1 ovarian cancer cells expressing estrogen receptors (ERs). In an in vitro cell viability assay, E2 or BPA significantly increased the growth of BG-1 cells. This increased proliferative activity was reversed by treatment with ICI 182,780, a well-known ER antagonist, while cell proliferation was further promoted in the presence of propyl pyrazole triol (PPT), an ERα agonist. These results imply that cell proliferation increased by E2 or BPA was mediated by ERs, particularly ERα. BPA clearly acted as a xenoestrogen in BG-1 ovarian cancer cells by mimicking E2 action. In contrast, GEN effectively suppressed BG-1 cell proliferation promoted by E2 or BPA by inhibiting cell cycle progression. E2 and BPA increased the expression of cyclin D1, a factor responsible for the G1/S cell cycle transition. They also decreased the expression of p21, a potent cyclin-dependent kinase (CDK) inhibitor that arrests the cell cycle in G1 phase, and promoted the proliferation of BG-1 cells. As shown by its repressive effect on cell growth, GEN decreased the expression of cyclin D1 augmented by E2 or BPA. On the other hand, GEN increased the p21 expression downregulated by E2 or BPA. Collectively, our findings suggest that GEN, a dietary phytoestrogen, has an inhibitory effect on the growth of estrogen-dependent cancers promoted by E2 or BPA.
Collapse
Affiliation(s)
- Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
37
|
Park MA, Hwang KA, Lee HR, Yi BR, Jeung EB, Choi KC. Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models. Toxicology 2013; 305:41-8. [PMID: 23328252 DOI: 10.1016/j.tox.2012.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022]
Abstract
2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10(-8)-10(-5)M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these results suggest that BP-1 is an endocrine disrupting chemical (EDC) that exerts xenoestrogenic effects by stimulating the proliferation of BG-1 ovarian cancer via ER signaling pathway associated with cell cycle as did E2.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763 Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Gregoraszczuk EL, Ptak A. Endocrine-Disrupting Chemicals: Some Actions of POPs on Female Reproduction. Int J Endocrinol 2013; 2013:828532. [PMID: 23762054 PMCID: PMC3674739 DOI: 10.1155/2013/828532] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/26/2013] [Indexed: 01/30/2023] Open
Abstract
Persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polybrominated ethers (PBDEs), chloronaftalens (PCNs), and bisphenol A (BPA), are stable, lipophilic pollutants that affect fertility and cause serious reproductive problems, including ovotoxic action, lack of ovulation, premature ovarian failure (POF), or polycystic ovarian syndrome (PCOS). Most of the representatives of POPs influence the activation of transcription factors, not only activation of aromatic hydrocarbon receptor (AhR), but also the steroid hormone receptors. This minireview will focus on a variety of PAH activities in oocyte, ovary, placenta, and mammary gland. The complexity and diversity of factors belonging to POPs and disorders of the reproductive function of women indicate that the impact of environmental pollution as an important determinant factor in fertility should not be minimize.
Collapse
Affiliation(s)
- Ewa L. Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
- *Ewa L. Gregoraszczuk:
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
39
|
Lee HR, Jeung EB, Cho MH, Kim TH, Leung PCK, Choi KC. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J Cell Mol Med 2012; 17:1-11. [PMID: 23279634 PMCID: PMC3823132 DOI: 10.1111/j.1582-4934.2012.01649.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds present in the environment which can interfere with hormone synthesis and normal physiological functions of male and female reproductive organs. Most EDCs tend to bind to steroid hormone receptors including the oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR). As EDCs disrupt the actions of endogenous hormones, they may induce abnormal reproduction, stimulation of cancer growth, dysfunction of neuronal and immune system. Although EDCs represent a significant public health concern, there are no standard methods to determine effect of EDCs on human beings. The mechanisms underlying adverse actions of EDC exposure are not clearly understood. In this review, we highlighted the toxicology of EDCs and its effect on human health, including reproductive development in males and females as shown in in vitro and in vivo models. In addition, this review brings attention to the toxicity of EDCs via interaction of genomic and non-genomic signalling pathways through hormone receptors.
Collapse
Affiliation(s)
- Hye-Rim Lee
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Grismayer B, Sölch S, Seubert B, Kirchner T, Schäfer S, Baretton G, Schmitt M, Luther T, Krüger A, Kotzsch M, Magdolen V. Rab31 expression levels modulate tumor-relevant characteristics of breast cancer cells. Mol Cancer 2012; 11:62. [PMID: 22920728 PMCID: PMC3499445 DOI: 10.1186/1476-4598-11-62] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/16/2012] [Indexed: 11/12/2022] Open
Abstract
Background Rab proteins constitute a large family of monomeric GTP-binding proteins that regulate intracellular vesicle transport. Several Rab proteins, including rab31, have been shown to affect cancer progression and are related with prognosis in various types of cancer including breast cancer. Recently, the gene encoding rab31 was found to be overexpressed in estrogen receptor-positive breast cancer tissue. In a previous study we found a significant association of high rab31 mRNA expression with poor prognosis in node-negative breast cancer patients. In the present study, we aimed to investigate the impact of rab31 (over)-expression on important aspects of tumor progression in vitro and in vivo. Methods Breast cancer cells displaying low (MDA-MB-231) or no (CAMA-1) endogenous rab31 expression were stably transfected with a rab31 expression plasmid. Batch-transfected cells as well as selected cell clones, expressing different levels of rab31 protein, were analyzed with regard to proliferation, cell adhesion, the invasive capacity of tumor cells, and in vivo in a xenograft tumor model. Polyclonal antibodies directed to recombinantly expressed rab31 were generated and protein expression analyzed by immunohistochemistry, Western blot analysis, and a newly developed sensitive ELISA. Results Elevated rab31 protein levels were associated with enhanced proliferation of breast cancer cells. Interestingly, weak to moderate overexpression of rab31 in cell lines with no detectable endogenous rab31 expression was already sufficient to elicit distinct effects on cell proliferation. By contrast, increased expression of rab31 in breast cancer cells led to reduced adhesion towards several extracellular matrix proteins and decreased invasive capacity through MatrigelTM. Again, the rab31-mediated effects on cell adhesion and invasion were dose-dependent. Finally, in a xenograft mouse model, we observed a significantly impaired metastatic dissemination of rab31 overexpressing MDA-MB-231 breast cancer cells to the lung. Conclusions Overexpression of rab31 in breast cancer cells leads to a switch from an invasive to a proliferative phenotype as indicated by an increased cell proliferation, reduced adhesion and invasion in vitro, and a reduced capacity to form lung metastases in vivo.
Collapse
Affiliation(s)
- Bettina Grismayer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, Ismaninger Str, 22, Munich 81675, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simpkins F, Hevia-Paez P, Sun J, Ullmer W, Gilbert CA, da Silva T, Pedram A, Levin ER, Reis IM, Rabinovich B, Azzam D, Xu XX, Ince TA, Yang JY, Verhaak RGW, Lu Y, Mills GB, Slingerland JM. Src Inhibition with saracatinib reverses fulvestrant resistance in ER-positive ovarian cancer models in vitro and in vivo. Clin Cancer Res 2012; 18:5911-23. [PMID: 22896656 DOI: 10.1158/1078-0432.ccr-12-1257] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE More effective, less toxic treatments for recurrent ovarian cancer are needed. Although more than 60% of ovarian cancers express the estrogen receptor (ER), ER-targeted drugs have been disappointing due to drug resistance. In other estrogen-sensitive cancers, estrogen activates Src to phosphorylate p27 promoting its degradation and increasing cell-cycle progression. Because Src is activated in most ovarian cancers, we investigated whether combined Src and ER blockade by saracatinib and fulvestrant would circumvent antiestrogen resistance. EXPERIMENTAL DESIGN ER and Src were assayed in 338 primary ovarian cancers. Dual ER and Src blockade effects on cell cycle, ER target gene expression, and survival were assayed in ERα+ ovarian cancer lines, a primary human ovarian cancer culture in vitro, and on xenograft growth. RESULTS Most primary ovarian cancers express ER. Src activity was greater in ovarian cancer lines than normal epithelial lines. Estrogen activated Src, ER-Src binding, and ER translocation from cytoplasm to nucleus. Estrogen-mediated mitogenesis was via ERα, not ERβ. While each alone had little effect, combined saracatinib and fulvestrant increased p27 and inhibited cyclin E-Cdk2 and cell-cycle progression. Saracatinib also impaired induction of ER-target genes c-Myc and FOSL1; this was greatest with dual therapy. Combined therapy induced autophagy and more effectively inhibited ovarian cancer xenograft growth than monotherapy. CONCLUSIONS Saracatinib augments effects of fulvestrant by opposing estrogen-mediated Src activation and target gene expression, increasing cell-cycle arrest, and impairing survival, all of which would oppose antiestrogen resistance in these ER+ ovarian cancer models. These data support further preclinical and clinical evaluation of combined fulvestrant and saracatinib in ovarian cancer.
Collapse
Affiliation(s)
- Fiona Simpkins
- Braman Family Breast Cancer Institute and Division of Biostatistics, Department of Epidemiology and Public Health, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res 2012; 28:71-6. [PMID: 22787479 PMCID: PMC3389841 DOI: 10.5625/lar.2012.28.2.71] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/23/2023] Open
Abstract
Estrogens, a class of steroid hormones, regulate the growth, development, and physiology of the human reproductive system. Estrogens also involve in the neuroendocrine, skeletal, adipogenesis, and cardiovascular systems. Estrogen signaling pathways are selectively stimulated or inhibited depending on a balance between the activities of estrogen receptor (ER) α or ERβ in target organs. ERs belong to the steroid hormone superfamily of nuclear receptors, which act as transcription factors after binding to estrogen. The gene expression regulation by ERs is to modulate biological activities, such as reproductive organ development, bone modeling, cardiovascular system functioning, metabolism, and behavior in both females and males. Understanding of the general physiological roles of ERs has been gained when estrogen levels were ablated by ovariectomy and then replenished by treatment with exogenous estrogen. This technique is not sufficient to fully determine the exact function of estrogen signaling in general processes in living tissues. However, a transgenic mouse model has been useful to study gene-specific functions. ERα and ERβ have different biological functions, and knockout and transgenic animal models have distinct phenotypes. Analysis of ERα and ERβ function using knockout mouse models has identified the roles of estrogen signaling in general physiologic processes. Although transgenic mouse models do not always produce consistent results, they are the useful for studying the functions of these genes under specific pathological conditions.
Collapse
|
43
|
Modulation of lipid metabolism by mixtures of protamine and chitooligosaccharide through pancreatic lipase inhibitory activity in a rat model. Lab Anim Res 2012; 28:31-8. [PMID: 22474472 PMCID: PMC3315200 DOI: 10.5625/lar.2012.28.1.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 12/03/2022] Open
Abstract
Overweight and obesity are usually related with high fat and calorie intake, and seriously causative of lifestyle-related diseases such as cardiovascular disorders, arteriosclerosis, and colon cancer. In this study, we propose a novel dietary therapy against overweight and obesity using mixtures of protamine and chitooligosaccharide (COS), which are known to interrupt the lipid metabolism in the body. Protamine is a dietary protein originated from salmon reproductive organ, and COS is an oligosaccharide made from chitin or chitosan by chemical or enzymatic hydrolysis. In the enzyme activity analysis in vitro, protamine and COS strongly suppressed the activity of pancreatic lipase, which is the primary enzyme for the digestion and absorption of lipids in the intestine. In in vivo animal test, the mixtures of protamine and COS significantly reduced the serum levels of triglyceride (TG), total cholesterol (T-CHO), and low density lipoprotein-cholesterol (LDLC) and inhibited the accumulation of lipids in liver tissue of Sprague Dawley (SD) rats fed high fat diets. On the other hand, they increased fecal TG and T-CHO contents. From these alterations in lipid metabolism, we verified that protamine and COS mixtures could effectively interrupt the digestion and absorption of dietary lipids in the body by inhibiting pancreatic lipase activity. In addition, protamine and COS mixtures increased the serum level of high density lipoprotein-cholesterol (HDLC), responsible for removing cholesterol from cells and protecting atherosclerosis, and therefore decreased the potential risks of cardiovascular diseases by lowering values of the atherogenic index (AI) and cardiac risk factor (CRF). Taken together, we suggest protamine and COS mixtures as a prominent dietary therapy for the prevention of overweight, obesity, and further cardiovascular diseases related with hyperlipidemia.
Collapse
|
44
|
Park MA, Hwang KA, Choi KC. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 2011; 27:265-73. [PMID: 22232634 PMCID: PMC3251756 DOI: 10.5625/lar.2011.27.4.265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023] Open
Abstract
Acting as hormone mimics or antagonists in the interaction with hormone receptors, endocrine disrupting chemicals (EDCs) have the potentials of disturbing the endocrine system in sex steroid hormone-controlled organs and tissues. These effects may lead to the disruption of major regulatory mechanisms, the onset of developmental disorders, and carcinogenesis. Especially, among diverse EDCs, xenoestrogens such as bisphenol A, dioxins, and di(2-ethylhexyl)phthalate, have been shown to activate estrogen receptors (ERs) and to modulate cellular functions induced by ERs. Furthermore, they appear to be closely related with carcinogenicity in estrogen-dependant cancers, including breast, ovary, and prostate cancers. In in vivo animal models, prenatal exposure to xenoestrogens changed the development of the mouse reproductive organs and increased the susceptibility to further carcinogenic exposure and tumor occurence in adults. Unlike EDCs, which are chemically synthesized, several phytoestrogens such as genistein and resveratrol showed chemopreventive effects on specific cancers by contending with ER binding and regulating normal ER action in target tissues of mice. These results support the notion that a diet containing high levels of phytoestrogens can have protective effects on estrogen-related diseases. In spite of the diverse evidences of EDCs and phytoestrogens on causation and prevention of estrogen-dependant cancers provided in this article, there are still disputable questions about the dose-response effect of EDCs or chemopreventive potentials of phytoestrogens. As a wide range of EDCs including phytoestrogens have been remarkably increasing in the environment with the rapid growth in our industrial society and more closely affecting human and wildlife, the potential risks of EDCs in endocrine disruption and carcinogenesis are important issues and needed to be verified in detail.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|