1
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Bjørklund G, Wallace DR, Hangan T, Butnariu M, Gurgas L, Peana M. Cerebral iron accumulation in multiple sclerosis: Pathophysiology and therapeutic implications. Autoimmun Rev 2025; 24:103741. [PMID: 39756528 DOI: 10.1016/j.autrev.2025.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Recent studies highlight the role of cerebral iron (Fe) accumulation in exacerbating MS pathophysiology. Fe, essential for neural function, contributes to oxidative stress and inflammation when dysregulated, particularly in the brain's gray matter and demyelinated lesions. Advanced imaging techniques, including susceptibility-weighted and quantitative susceptibility mapping, have revealed abnormal Fe deposition patterns in MS patients, suggesting its involvement in disease progression. Iron's interaction with immune cells, such as microglia, releases pro-inflammatory cytokines, further amplifying neuroinflammation and neuronal damage. These findings implicate Fe dysregulation as a significant factor in MS progression, contributing to clinical manifestations like cognitive impairment. Therapeutic strategies targeting Fe metabolism, including Fe chelation therapies, show promise in reducing Fe-related damage, instilling optimism about the future of MS treatment. However, challenges such as crossing the blood-brain barrier and maintaining Fe homeostasis remain. Emerging approaches, such as Fe-targeted nanotherapeutics and biologics, offer new possibilities for personalized treatments. However, the journey is far from over. Continued research into the molecular mechanisms of Fe-induced neuroinflammation and oxidative damage is essential. Through this research, we can develop effective interventions that could slow MS progression and improve patient outcomes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - David R Wallace
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania; CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania
| | - Leonard Gurgas
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy
| |
Collapse
|
3
|
Szczerbinska A, Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Kocki J, Cichoz-Lach H. Hemochromatosis-How Not to Overlook and Properly Manage "Iron People"-A Review. J Clin Med 2024; 13:3660. [PMID: 38999226 PMCID: PMC11242024 DOI: 10.3390/jcm13133660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Hemochromatosis (HC) is the main genetic disorder of iron overload and is regarded as metal-related human toxicosis. HC may result from HFE and rare non-HFE gene mutations, causing hepcidin deficiency or, sporadically, hepcidin resistance. This review focuses on HFE-related HC. The illness presents a strong biochemical penetrance, but its prevalence is low. Unfortunately, the majority of patients with HC remain undiagnosed at their disease-curable stage. The main aim of HC management is to prevent iron overload in its early phase and remove excess iron from the body by phlebotomy in its late stage. Raising global awareness of HC among health staff, teaching them how not to overlook early HC manifestations, and paying attention to careful patient monitoring remain critical management strategies for preventing treatment delays, upgrading its efficacy, and improving patient prognosis.
Collapse
Affiliation(s)
- Agnieszka Szczerbinska
- Faculty of Medicine, Medical University of Warsaw, 61 Zwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Street, 20-080 Lublin, Poland;
| | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
4
|
Kontoghiorghes GJ. Drug Selection and Posology, Optimal Therapies and Risk/Benefit Assessment in Medicine: The Paradigm of Iron-Chelating Drugs. Int J Mol Sci 2023; 24:16749. [PMID: 38069073 PMCID: PMC10706143 DOI: 10.3390/ijms242316749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
5
|
Hafizi M, Kalanaky S, Fakharzadeh S, Karimi P, Fakharian A, Lookzadeh S, Mortaz E, Mirenayat MS, Heshmatnia J, Karam MB, Zamani H, Nadji A, Toutkaboni MP, Oraee-Yazdani S, Akbari ME, Jamaati H, Nazaran MH. Beneficial effects of the combination of BCc1 and Hep-S nanochelating-based medicines on IL-6 in hospitalized moderate COVID-19 adult patients: a randomized, double-blind, placebo-controlled clinical trial. Trials 2023; 24:720. [PMID: 37951972 PMCID: PMC10638761 DOI: 10.1186/s13063-023-07624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In the severe forms of COVID-19 and many other infectious diseases, the patients develop a cytokine storm syndrome (CSS) where pro-inflammatory cytokines such as IL-6 and TNF-α play a key role in the development of this serious process. Selenium and iron are two important trace minerals, and their metabolism is tightly connected to immune system function. Numerous studies highlight the role of selenium and iron metabolism changes in the procedure of COVID-19 inflammation. The immunomodulator effect of nanomedicines that are synthesized based on nanochelating technology has been proved in previous studies. In the present study, the effects of the combination of BCc1(with iron-chelating property) and Hep-S (containing selenium) nanomedicines on mentioned cytokines levels in hospitalized moderate COVID-19 patients were evaluated. METHODS Laboratory-confirmed moderate COVID-19 patients were enrolled to participate in a randomized, double-blind, placebo-controlled study in two separate groups: combination of BCc1 and Hep-S (N = 62) (treatment) or placebo (N = 60) (placebo). The blood samples were taken before medications on day zero, at discharge, and 28 days after consumption to measure hematological and biochemical parameters and cytokine levels. The clinical symptoms of all the patients were recorded according to an assessment questionnaire before the start of the treatment and on days 3 and discharge day. RESULTS The results revealed that consumption of the nanomedicines led to a significant decrease in the mean level of IL-6 cytokine, and at the end of the study, there was a 77% downward trend in IL-6 in the nanomedicine group, while an 18% increase in the placebo group (p < 0.05). In addition, the patients in the nanomedicines group had lower TNF-α levels; accordingly, there was a 21% decrease in TNF-α level in the treatment group, while a 31% increase in this cytokine level in the placebo was observed (p > 0.05). On the other hand, in nanomedicines treated groups, clinical scores of coughing, fatigue, and need for oxygen therapy improved. CONCLUSIONS In conclusion, the combination of BCc1 and Hep-S inhibits IL-6 as a highly important and well-known cytokine in COVID-19 pathophysiology and presents a promising view for immunomodulation that can manage CSS. TRIAL REGISTRATION Iranian Registry of Clinical Trials RCT20170731035423N2 . Registered on June 12, 2020.
Collapse
Affiliation(s)
- Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Atefeh Fakharian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhshayesh Karam
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Zamani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nadji
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah Toutkaboni
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Comprehensive Neurosurgical Center of Excellence, Shohada Tajrish, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Jamaati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Cyclometalated iridium(III) dithioformic acid complexes as mitochondria-targeted imaging and anticancer agents. J Inorg Biochem 2022; 233:111855. [DOI: 10.1016/j.jinorgbio.2022.111855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
8
|
Silva FT, Espósito BP. Intracellular Iron Binding and Antioxidant Activity of Phytochelators. Biol Trace Elem Res 2022; 200:3910-3918. [PMID: 34648123 DOI: 10.1007/s12011-021-02965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Phytochelators have been studied as templates for designing new drugs for chelation therapy. This work evaluated key chemical and biological properties of five candidate phytochelators for iron overload diseases: maltol, mimosine, morin, tropolone, and esculetin. Intra- and extracellular iron affinity and antioxidant activity, as well as the ability to scavenge iron from holo-transferrin, were studied in physiologically relevant settings. Tropolone and mimosine (and, to a lesser extent, maltol) presented good binding capacity for iron, removing it from calcein, a high-affinity fluorescent probe. Tropolone and mimosine arrested iron-mediated oxidation of ascorbate with the same efficiency as the standard iron chelator DFO. Also, both were cell permeant and able to access labile pools of iron in HeLa and HepG2 cells. Mimosine was an effective antioxidant in cells stressed by iron and peroxide, being as efficient as the cell-permeant iron chelator deferiprone. These results reinforce the potential of those molecules, especially mimosine, as adjuvants in treatments for iron overload.
Collapse
Affiliation(s)
- Fredson Torres Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Iron Chelators in Treatment of Iron Overload. J Toxicol 2022; 2022:4911205. [PMID: 35571382 PMCID: PMC9098311 DOI: 10.1155/2022/4911205] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 01/19/2023] Open
Abstract
Patients suffering from iron overload can experience serious complications. In such patients, various organs, such as endocrine glands and liver, can be damaged. Although iron is a crucial element for life, iron overload can be potentially toxic for human cells due to its role in generating free radicals. In the past few decades, there has been a major improvement in the survival of patients who suffer from iron overload due to the application of iron chelation therapy in clinical practice. In clinical use, deferoxamine, deferiprone, and deferasirox are the three United States Food and Drug Administration-approved iron chelators. Each of these iron chelators is well known for the treatment of iron overload in various clinical conditions. Based on several up-to-date studies, this study explained iron overload and its clinical symptoms, introduced each of the above-mentioned iron chelators, and evaluated their advantages and disadvantages with an emphasis on combination therapy, which in recent studies seems a promising approach. In numerous clinical conditions, due to the lack of accurate indicators, choosing a standard approach for iron chelation therapy can be difficult; therefore, further studies on the issue are still required. This study aimed to introduce each of these iron chelators, combination therapy, usage doses, specific clinical applications, and their advantages, toxicity, and side effects.
Collapse
|
10
|
Kontoghiorghes GJ. Questioning Established Theories and Treatment Methods Related to Iron and Other Metal Metabolic Changes, Affecting All Major Diseases and Billions of Patients. Int J Mol Sci 2022; 23:1364. [PMID: 35163288 PMCID: PMC8836132 DOI: 10.3390/ijms23031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
The medical and scientific literature is dominated by highly cited historical theories and findings [...].
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
11
|
Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res B Appl Biomater 2022; 110:18-44. [PMID: 34132457 DOI: 10.1002/jbm.b.34893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Iron (Fe) and Fe-based scaffolds have become a research frontier in absorbable materials which is inherent to their promising mechanical properties including fatigue strength and ductility. Nevertheless, their slow corrosion rate and low biocompatibility have been their major obstacles to be applied in clinical applications. Over the last decade, various modifications on porous Fe-based scaffolds have been performed to ameliorate both properties encompassing surface coating, microstructural alteration via alloying, and advanced topologically order structural design produced by additive manufacturing (AM) techniques. The recent advent of AM produces topologically ordered porous Fe-based structures with an optimized architecture having controllable pore size and strut thickness, intricate internal design, and larger exposed surface area. This undoubtedly opens up new options for controlling Fe corrosion and its structural strengths. However, the in vitro biocompatibility of the AM porous Fe still needs to be addressed considering its higher corrosion rate due to the larger exposed surface area. This review summarizes the latest progress of the modifications on porous Fe-based scaffolds with a specific focus on their responses on the corrosion behavior and biocompatibility.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Sciences, State University of Malang, Malang, Indonesia
| |
Collapse
|
12
|
Peng Y, Chang X, Lang M. Iron Homeostasis Disorder and Alzheimer's Disease. Int J Mol Sci 2021; 22:12442. [PMID: 34830326 PMCID: PMC8622469 DOI: 10.3390/ijms222212442] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health. However, the precise pathogenesis of AD is still unclear, which seriously restricts the design of interventions and treatment drugs based on the pathogenesis of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, resulting in cognitive, memory, motor and other nerve damages. Understanding the metabolic balance mechanism of iron in the brain is crucial for the treatment of AD, which would provide new cures for the disease. This paper reviews the recent progress in the relationship between iron and AD from the aspects of iron absorption in intestinal cells, storage and regulation of iron in cells and organs, especially for the regulation of iron homeostasis in the human brain and prospects the future directions for AD treatments.
Collapse
Affiliation(s)
- Yu Peng
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Xuejiao Chang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; (Y.P.); (X.C.)
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
13
|
Zheng X, Wang X, Ding Z, Li W, Peng Y, Zheng J. Metabolic activation of deferiprone mediated by CYP2A6. Xenobiotica 2021; 51:1282-1291. [PMID: 34006188 DOI: 10.1080/00498254.2021.1931729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deferiprone (DFP) is a metal chelating agent generally used to treat patients with thalassaemia, due to iron overload in clinical settings.Studies have revealed that long-term use of DFP can induce hepatotoxicity, however, mechanisms of its toxic action remain unclear. The present studies are aimed to characterize the reactive metabolite of DFP, to define the metabolic pathway, and to determine the P450 enzymes participating in the bioactivation.A demethylation metabolite (M1) was observed in rat liver microsomal incubations. Additionally, a glutathione (GSH) conjugate (M2) and an N-acetylcysteine (NAC) conjugate (M3) were detected in microsomal incubations fortified with DFP and GSH/NAC.Biliary M2 and urinary M3 were respectively found in animals administered DFP.CYP2A6 enzyme dominated the catalysis to bioactivate DFP.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
14
|
Kontoghiorghes GJ. Differences between the European Union and United States of America in Drug Regulatory Affairs Affect Global Patient Safety Standards and Public Health Awareness: The Case of Deferasirox and Other Iron Chelating Drugs. MEDICINES (BASEL, SWITZERLAND) 2021; 8:36. [PMID: 34357152 PMCID: PMC8304852 DOI: 10.3390/medicines8070036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Regulatory policies on drugs have a major impact on patient safety and survival. Some pharmaceutical companies employ all possible methods to achieve maximum sales in relation to the monopoly of their patented drugs, leading sometimes to irregularities and illegal activities. Misinformation on the orphan drug deferasirox has reached the stage of criminal investigations and fines exceeding USD 100 million. Additional lawsuits of USD 3.5 billion for damages and civil fines were also filed by the FBI of the USA involving deferasirox and mycophenolic acid, which were later settled with an additional fine of USD 390 million. Furthermore, a USD 345 million fine was also settled for bribes and other illegal overseas operations including an EU country. However, no similar fines for illegal practises or regulatory control violations have been issued in the EU. Misconceptions and a lack of clear guidelines for the use of deferasirox in comparison to deferiprone and deferoxamine appear to reduce the effective treatment prospects and to increase the toxicity risks for thalassaemia and other iron loaded patients. Similar issues have been raised for the activities of other pharmaceutical companies promoting the use of new patented versus generic drugs. Treatments for different categories of patients using new patented drugs are mostly market driven with no clear safeguards or guidelines for risk/benefit assessment indications or for individualised effective and safe optimum therapies. There is a need for the establishment of an international organisation, which can monitor and assess the risk/benefit assessment and marketing of drugs in the EU and globally for the benefit of patients. The pivotal role of the regulatory drug authorities and the prescribing physicians for identifying individualised optimum therapies is essential for improving the survival and safety of millions of patients worldwide.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
15
|
Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN. New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci 2021; 22:ijms22115546. [PMID: 34074010 PMCID: PMC8197347 DOI: 10.3390/ijms22115546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The trimaltol iron complex (International Non-proprietary Name: ferric maltol) was originally designed, synthesised, and screened in vitro and in vivo in 1980–1981 by Kontoghiorghes G.J. following his discovery of the novel alpha-ketohydroxyheteroaromatic (KHP) class of iron chelators (1978–1981), which were intended for clinical use, including the treatment of iron deficiency anaemia (IDA). Iron deficiency anaemia is a global health problem affecting about one-third of the world’s population. Many (and different) ferrous and ferric iron complex formulations are widely available and sold worldwide over the counter for the treatment of IDA. Almost all such complexes suffer from instability in the acidic environment of the stomach and competition from other dietary molecules or drugs. Natural and synthetic lipophilic KHP chelators, including maltol, have been shown in in vitro and in vivo studies to form stable iron complexes, to transfer iron across cell membranes, and to increase iron absorption in animals. Trimaltol iron, sold as Feraccru or Accrufer, was recently approved for clinical use in IDA patients in many countries, including the USA and in EU countries, and was shown to be effective and safe, with a better therapeutic index in comparison to other iron formulations. Similar properties of increased iron absorption were also shown by lipophilic iron complexes of 8-hydroxyquinoline, tropolone, 2-hydroxy-4-methoxypyridine-1-oxide, and related analogues. The interactions of the KHP iron complexes with natural chelators, drugs, metal ions, proteins, and other molecules appear to affect the pharmacological and metabolic effects of both iron and the KHP chelators. A new era in the treatment of IDA and other possible clinical applications, such as theranostic and anticancer formulations and metal radiotracers in diagnostic medicine, are envisaged from the introduction of maltol, KHP, and similar lipophilic chelators.
Collapse
|
16
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
17
|
Sullivan KE, Mylniczenko ND, Nelson SE, Coffin B, Lavin SR. Practical Management of Iron Overload Disorder (IOD) in Black Rhinoceros (BR; Diceros bicornis). Animals (Basel) 2020; 10:ani10111991. [PMID: 33138144 PMCID: PMC7692874 DOI: 10.3390/ani10111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Black rhinoceros under human care are predisposed to Iron Overload Disorder that is unlike the hereditary condition seen in humans. We aim to address the black rhino caretaker community at multiple perspectives (keeper, curator, veterinarian, nutritionist, veterinary technician, and researcher) to describe approaches to Iron Overload Disorder in black rhinos and share learnings. This report includes sections on (1) background on how iron functions in comparative species and how Iron Overload Disorder appears to work in black rhinos, (2) practical recommendations for known diagnostics, (3) a brief review of current investigations on inflammatory and other potential biomarkers, (4) nutrition knowledge and advice as prevention, and (5) an overview of treatment options including information on chelation and details on performing large volume voluntary phlebotomy. The aim is to use evidence to support the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population. Abstract Critically endangered black rhinoceros (BR) under human care are predisposed to non-hemochromatosis Iron Overload Disorder (IOD). Over the last 30 years, BR have been documented with diseases that have either been induced by or exacerbated by IOD, prompting significant efforts to investigate and address this disorder. IOD is a multi-factorial chronic disease process requiring an evidence-based and integrative long-term approach. While research continues to elucidate the complexities of iron absorption, metabolism, and dysregulation in this species, preventive treatments are recommended and explained herein. The aim of this report is to highlight the accumulated evidence in nutrition, clinical medicine, and behavioral husbandry supporting the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population.
Collapse
|
18
|
Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020; 9:E1456. [PMID: 32545424 PMCID: PMC7349684 DOI: 10.3390/cells9061456] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world's population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
Collapse
Affiliation(s)
- George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus;
| | | |
Collapse
|
19
|
Kaviani S, Izadyar M, Housaindokht MR. A DFT study on the metal ion selectivity of deferiprone complexes. Comput Biol Chem 2020; 86:107267. [PMID: 32470911 DOI: 10.1016/j.compbiolchem.2020.107267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
In this work, systematic density functional theory (DFT) calculations were performed to study the interactions of various metal ions (Al3+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) and the clinically useful chelating agent called deferiprone (DFP) at the M05-2X/6-31G(d) level of theory. The thermodynamic parameters of metal-deferiprone complexes were determined in water. Based on the obtained data, the theoretical binding energy trend is as follows: Al3+ > Fe3+ > Cu2+ > Ni2+ > Co2+ > Zn2+, confirming that [Al(DFP)3] has the most interaction energy. Moreover, Natural bond orbital analysis was employed to determine and analyze the natural charges on different atoms and charge transfer between the metal ions and ligands (oxygen atoms) as well as the interaction energy (E(2)) values. The calculated value of ƩE(2) (donor-acceptor interaction energy) for [Al(DFP)3] complex is higher than other complexes, which is according to energy analysis. To confirm the type of effective interactions and bonding properties in the water, the quantum theory of atoms in molecules (QTAIM) analysis was applied. QTAIM analysis confirmed that the strongest M - O bond is found in the [Al(DFP)3] complex. The calculated topological properties at the bond critical points, such as the ratio of the kinetic energy density to the potential energy density, -G(r)/V(r), electronic energy density, H(r), confirm that M - O bonds in the Al-deferiprone complex are non-covalent, while in other complexes, they are electrostatic and partially covalent.
Collapse
Affiliation(s)
- Sadegh Kaviani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
20
|
The History of Deferiprone (L1) and the Paradigm of the Complete Treatment of Iron Overload in Thalassaemia. Mediterr J Hematol Infect Dis 2020; 12:e2020011. [PMID: 31934321 PMCID: PMC6951358 DOI: 10.4084/mjhid.2020.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Deferiprone (L1) was originally designed, synthesised and screened in vitro and in vivo in 1981 by Kontoghiorghes G. J. following his discovery of the novel alpha-ketohydroxypyridine class of iron chelators (1978–1981), which were intended for clinical use. The journey through the years for the treatment of thalassaemia with L1 has been a very difficult one with an intriguing turn of events, which continue until today. Despite many complications, such as the extensive use of L1 suboptimal dose protocols, the aim of chelation therapy-namely, the complete removal of excess iron in thalassaemia major patients, has been achieved in most cases following the introduction of specific L1 and L1/deferoxamine combinations. Many such patients continue to maintain normal iron stores. Thalassemia has changed from a fatal to chronic disease; also thanks to L1 therapy and thalassaemia patients are active professional members in all sectors of society, have their own families with children and grandchildren and their lifespan is approaching that of normal individuals. No changes in the low toxicity profile of L1 have been observed in more than 30 years of clinical use and prophylaxis against the low incidence of agranulocytosis is maintained using mandatory monitoring of weekly white blood cells’ count. Thousands of thalassaemia patients are still denied the cardioprotective and other beneficial effects of L1 therapy. The safety of L1 in thalassaemia and other non-iron loaded diseases resulted in its selection as one of the leading therapeutics for the treatment of Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration and other similar cases. There are also increasing prospects for the application of L1 as a main, alternative or adjuvant therapy in many pathological conditions including cancer, infectious diseases and as a general antioxidant for diseases related to free radical pathology.
Collapse
|
21
|
Fakharzadeh S, Argani H, Dadashzadeh S, Kalanaky S, Mohammadi Torbati P, Nazaran MH, Basiri A. BCc1 Nanomedicine Therapeutic Effects in Streptozotocin and High-Fat Diet Induced Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2020; 13:1179-1188. [PMID: 32368111 PMCID: PMC7173843 DOI: 10.2147/dmso.s240757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND One common feature of chronic diseases, such as cancer, diabetes and chronic kidney disease (CKD), is the disruption of iron metabolism and increase in labile iron pool, which can result in excessive production of harmful oxidative stress. The proper management of iron metabolism in this situation can be a valuable tool to ameliorate pathological events. MATERIALS AND METHODS In the previous studies, the anti-neoplastic effects of BCc1, a nanochelating-based nanomedicine with iron-chelating property, were demonstrated in cell culture, animal models and clinical trials. In the present study, the therapeutic effects of BCc1 in animal model of diabetic kidney disease (DKD), induced by streptozotocin injection (35 mg/kg) and high-fat diet consumption, were evaluated. RESULTS The results showed that BCc1 significantly decreased HOMA-IR index, uric acid, blood urea nitrogen, malondialdehyde and 8-isoprostane. In addition, it reduced urinary albumin excretion rate and albumin-to-creatinine ratio in comparison to DKD control rats. This nanomedicine had no negative impact on liver iron content, hemoglobin level, red blood cell count, hematocrit and mean corpuscular volume, while it significantly decreased aspartate aminotransferase and alanine aminotransferase compared to DKD control group. Moreover, the histopathological assessment indicated that lesser glomerular basement membrane and wrinkling, mesangial matrix expansion and pathological changes in proximal cortical tubules were seen in the kidney samples of BCc1-treated rats. CONCLUSION In conclusion, BCc1 as an iron-chelating agent shows promising impacts in DKD animal model, which can ameliorate biochemical and pathological events of this disease.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Nazaran
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
- Correspondence: Mohammad Hassan Nazaran Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran Tel/Fax +98 21 88992123 Email
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Abbas Basiri Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran Tel/Fax +98 21 22567222 Email
| |
Collapse
|
22
|
Wahidiyat PA, Wijaya E, Soedjatmiko S, Timan IS, Berdoukas V, Yosia M. Urinary iron excretion for evaluating iron chelation efficacy in children with thalassemia major. Blood Cells Mol Dis 2019; 77:67-71. [DOI: 10.1016/j.bcmd.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
23
|
Deng M, Liao C, Wang X, Chen S, Qi F, Zhao X, Yu P. A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel, simple, and low-cost spray painting technique has been developed for the fabrication of microfluidic paper-based devices. The devices that we developed utilize aerosol spray paint to build hydrophobic barriers and employ a hole puncher to obtain paper-based patterned layers and paper dots without using any specialized instruments (e.g., without a laser cutter). The entire manufacturing process is extremely simple, inexpensive, and rapid, which means that it can be applied broadly. Furthermore, the application of the device to iron detection was demonstrated. A linear relationship between the colour value and the iron concentration was observed from 0 to 0.02 g/L. The developed microfluidic paper-based device for iron detection exhibited a low detection limit (0.00090 g/L), good selectivity, and acceptable recovery.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Changhan Liao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xueliang Zhao
- Key Laboratory of Geological Environment Monitoring Technology, Center for Hydrogeology and Environmental Geology Survey, Baoding 071051, PR China
| | - Peng Yu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
24
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
25
|
Osborne V, Davies M, Layton D, Shakir SAW. Utilisation and Safety of Deferasirox: Results from an Observational Cohort Study in England. Drug Saf 2018; 41:267-275. [PMID: 29019038 DOI: 10.1007/s40264-017-0606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Deferasirox (EXJADE®, Novartis, UK) is an oral iron-chelating agent primarily used to reduce chronic iron overload in patients receiving blood transfusions for various chronic anaemias and some non-transfusion dependant anaemias. OBJECTIVE The aim of this study was to examine the utilisation and safety of deferasirox used in general practice in England. METHOD A single exposure observational cohort study design was used. Patients were identified from dispensed prescriptions for deferasirox between September 2006 and September 2014. Outcome data were collected via postal questionnaires sent to prescribers ≥ 6 months after first dispensed prescription for an individual patient. Summary descriptive statistics were calculated. RESULTS The evaluable cohort consisted of 122 patients, of which 41.8% were aged 2-17 years. Frequent reasons for prescribing were sickle cell anaemia (27/103 where specified, 26.2%) and beta thalassaemia (26, 25.2%). The majority of patients (43/51, 84.3%) were prescribed the licensed doses of 10 or 20 mg/kg/day at start. Prior measurements of serum creatinine were only reported for a small proportion this study (18/122, 14.8%). In total, 91 incident events were reported, including two of raised serum creatinine. CONCLUSION These results show that deferasirox is largely being prescribed for its licensed indications in general practice in England and events reported were consistent with the known safety profile.
Collapse
Affiliation(s)
- Vicki Osborne
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, SO31 1AA, UK
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Miranda Davies
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, SO31 1AA, UK
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Deborah Layton
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, SO31 1AA, UK
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Saad A W Shakir
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, SO31 1AA, UK.
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
26
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? Blood Rev 2018; 32:300-311. [DOI: 10.1016/j.blre.2018.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/05/2018] [Accepted: 02/09/2018] [Indexed: 01/19/2023]
|
28
|
Özbolat G, Yegani AA, Tuli A. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand. Clin Exp Pharmacol Physiol 2018; 45:1221-1226. [DOI: 10.1111/1440-1681.12964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Gülüzar Özbolat
- Department of Biochemistry; Faculty of Medicine; Cukurova University; Adana Turkey
| | - Arash Alizadeh Yegani
- Department of Pharmacology; Faculty of Veterinary; Mustafa Kemal University; Hatay Turkey
| | - Abdullah Tuli
- Department of Biochemistry; Faculty of Medicine; Cukurova University; Adana Turkey
| |
Collapse
|
29
|
A highly selective “off-on” fluorescent sensor for subcellular visualization of labile iron(III) in living cells. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Gray JP, Suhali-Amacher N, Ray SD. Metals and Metal Antagonists. SIDE EFFECTS OF DRUGS ANNUAL 2017. [DOI: 10.1016/bs.seda.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Taher AT, Porter JB, Kattamis A, Viprakasit V, Cappellini MD. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with nontransfusion-dependent thalassemia syndromes. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:4073-4078. [PMID: 28008230 PMCID: PMC5170616 DOI: 10.2147/dddt.s117080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ali T Taher
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - John B Porter
- Department of Haematology, University College London, London, UK
| | - Antonis Kattamis
- First Department of Pediatrics, University of Athens, Athens, Greece
| | - Vip Viprakasit
- Department of Pediatrics and Thalassemia Center, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - M Domenica Cappellini
- Department of Internal Medicine, Università di Milano, Ca Granda Foundation IRCCS, Milan, Italy
| |
Collapse
|
32
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
33
|
Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, Goudarzi M, Pourkarim H, Azad M. A Review on Iron Chelators in Treatment of Iron Overload Syndromes. Int J Hematol Oncol Stem Cell Res 2016; 10:239-247. [PMID: 27928480 PMCID: PMC5139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Iron chelation therapy is used to reduce iron overload development due to its deposition in various organs such as liver and heart after regular transfusion. In this review, different iron chelators implicated in treatment of iron overload in various clinical conditions have been evaluated using more up-to-date studies focusing on these therapeutic agents. Deferoxamine, Deferiprone and Deferasirox are the most important specific US FDA-approved iron chelators. Each of these chelators has their own advantages and disadvantages, various target diseases, levels of deposited iron and clinical symptoms of the afflicted patients which may affect their selection as the best modality. Taken together, in many clinical disorders, choosing a standard chelator does not have an accurate index which requires further clarifications. The aim of this review is to introduce and compare the different iron chelators regarding their advantages and disadvantages, usage dose and specific applications.
Collapse
Affiliation(s)
- Naser Mobarra
- Metabolic Disorders Research Center, Department of Biochemistry, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnoosh Shanaki
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hajar Nasiri
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sahmani
- Department of Clinical Biochemistry, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoda Pourkarim
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|