1
|
Zhu Z, Wang Y, Wang Y, Fu M, Luo X, Wang G, Zhang J, Yang X, Shan W, Li C, Liu T. The association of mixed multi-metal exposure with sleep duration and self-reported sleep disorder: A subgroup analysis from the National Health and Nutrition Examination Survey (NHANES). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124798. [PMID: 39197640 DOI: 10.1016/j.envpol.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Sleep disorders significantly affect sleep duration and constitute a major public health issue. However, the relationship between metal exposure and sleep is not fully elucidated. This study utilized publicly available data from the National Health and Nutrition Examination Survey (NHANES) to measure blood concentrations of seven metals-copper (Cu), zinc (Zn), selenium (Se), manganese (Mn), mercury (Hg), cadmium (Cd), and lead (Pb)-in a cohort of 4263 American adults. The relationship between metal exposure and self-reported sleep duration and sleep disorder risk was analyzed using single exposure models like logistic and linear regression and mixedexposure models such as weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). The results indicated an absence of statistically significant findings in the single exposure model. In contrast, the mixed exposure model revealed a positive correlation between selenium levels and the risk of sleep disorders across the entire population. A "U-shaped" association was identified between copper levels and the risk of sleep disorders in males, females, and individuals aged 60 and above. Moreover, a positive trend was observed between manganese levels and the risk of sleep disorders in individuals aged 60 and above. Additionally, elevated concentrations of metal mixtures were significantly associated with reduced sleep duration among females. Sensitivity analyses corroborated these findings. In conclusion, within the context of metal mixtures, selenium may be a risk factor for sleep disorders in the general population. Manganese may be a unique risk factor in older adults. Copper levels have a "U" shaped link to sleep disorder risk in specific population subgroups. Finally, the accumulation of blood metal mixtures in females, mainly due to lead and mercury, may reduce sleep duration. Further research is necessary to validate these findings.
Collapse
Affiliation(s)
- Zifan Zhu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Yongjun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Yuanlong Wang
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Maoling Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xinxin Luo
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, 528451, China.
| | - Guojun Wang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Jian Zhang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Xiujuan Yang
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wei Shan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Cunxue Li
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China.
| | - Tiebang Liu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518118, China; School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Dai Y, Halabicky OM, Ji X, Liu J. Childhood lead exposure and sleep problems in adolescents: a longitudinal cohort study. Int Arch Occup Environ Health 2024; 97:959-970. [PMID: 39277560 PMCID: PMC11561101 DOI: 10.1007/s00420-024-02099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Childhood lead exposure is linked to poorer neurobehavioral function in adolescence, but the relationship between lead and adolescent sleep health remains inconsistent. This study aimed to investigate concurrent and longitudinal associations between lead exposure and multiple sleep health domains in adolescents. METHODS A total of 972 adolescents from China Jintan Child Cohort were included in analyses. The Blood lead levels (BLLs) were assessed in two Waves, at ages 3-5 years (mean 6.50 ± 2.76 μg/dL) and 11-13 years (mean 3.12 ± 1.17 μg/dL). Sleep problems at age 11-13 were parent-reported via the Child Sleep Health Questionnaire (CSHQ) and self-reported by adolescents using the Pittsburgh Sleep Quality Index (PSQI). RESULTS Both early and later BLLs were associated positively with parental reported sleep problems, including sleep onset delay, night waking, short duration, parasomnias, and disordered breathing. Sex-stratified analyzes showed that most adjusted associations between two-Wave BLLs and sleep outcomes (CSHQ and PSQI) remained statistically significant in males, with a minor increase in the magnitude of these associations. The association between Wave II BLLs and shorter self-reported sleep duration was only statistically significant in female adolescents. Compared to children with consistently low BLLs at both ages, those with persistently high BLLs at both ages had significantly shorter parental-reported sleep duration and worse sleep onset delay. CONCLUSION Findings suggest that both early and later childhood lead exposures link to more adolescent sleep problems, with recent BLLs showing stronger associations with poor adolescent sleep health reported by their parents.
Collapse
Affiliation(s)
- Ying Dai
- School of Nursing, University of Pennsylvania, 418 Curie Blvd., Room 426, Claire M. Fagin Hall, Philadelphia, PA, 19104-6096, USA
| | | | - Xiaopeng Ji
- School of Nursing, College of Health Sciences, University of Delaware, Newark, USA
| | - Jianghong Liu
- School of Nursing, University of Pennsylvania, 418 Curie Blvd., Room 426, Claire M. Fagin Hall, Philadelphia, PA, 19104-6096, USA.
| |
Collapse
|
3
|
Attarian H, Dunietz GL, Gavidia-Romero R, Jansen E, Johnson DA, Kelman A, Knutson K. Addressing sleep deserts: A proposed call for action. Sleep Health 2024; 10:S15-S18. [PMID: 37926658 PMCID: PMC11181961 DOI: 10.1016/j.sleh.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023]
Abstract
Sleep deserts are a major cause of health inequity. They occur primarily in disadvantaged neighborhoods because of structural racism, social and environmental factors, and dearth of medical services. We describe several strategies that can serve as a feasible action plan to target structural racism, environmental pollution, and impact of climate change. We also suggest ways healthcare providers in these underserved areas can incorporate sleep medicine into their practice. Lastly, we highlight strategies to increase community awareness of sleep health in a culturally sensitive manner. There are several ways, from a policy level to healthcare that we can begin to eliminate sleep deserts, which is urgently needed.
Collapse
Affiliation(s)
- Hrayr Attarian
- Northwestern University, Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA.
| | - Galit Levi Dunietz
- University of Michigan Medical School, Department of Neurology, Ann Arbor, Michigan, USA
| | - Ronald Gavidia-Romero
- University of Michigan Medical School, Department of Neurology, Ann Arbor, Michigan, USA
| | - Erica Jansen
- University of Michigan Medical School, Department of Neurology, Ann Arbor, Michigan, USA
| | - Dayna A Johnson
- Emory University, Rollins School of Public Health, Department of Epidemiology, Atlanta, Georgia, USA
| | - Alexa Kelman
- University of Michigan Medical School, Department of Neurology, Ann Arbor, Michigan, USA
| | - Kristen Knutson
- Northwestern University, Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, USA
| |
Collapse
|
4
|
Shah P, Kaneria A, Fleming G, Williams CRO, Sullivan RM, Lemon CH, Smiley J, Saito M, Wilson DA. Homeostatic NREM sleep and salience network function in adult mice exposed to ethanol during development. Front Neurosci 2023; 17:1267542. [PMID: 38033546 PMCID: PMC10682725 DOI: 10.3389/fnins.2023.1267542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Developmental exposure to ethanol is a leading cause of cognitive, emotional and behavioral problems, with fetal alcohol spectrum disorder (FASD) affecting more than 1:100 children. Recently, comorbid sleep deficits have been highlighted in these disorders, with sleep repair a potential therapeutic target. Animal models of FASD have shown non-REM (NREM) sleep fragmentation and slow-wave oscillation impairments that predict cognitive performance. Here we use a mouse model of perinatal ethanol exposure to explore whether reduced sleep pressure may contribute to impaired NREM sleep, and compare the function of a brain network reported to be impacted by insomnia-the Salience network-in developmental ethanol-exposed mice with sleep-deprived, saline controls. Mice were exposed to ethanol or saline on postnatal day 7 (P7) and allowed to mature to adulthood for testing. At P90, telemetered cortical recordings were made for assessment of NREM sleep in home cage before and after 4 h of sleep deprivation to assess basal NREM sleep and homeostatic NREM sleep response. To assess Salience network functional connectivity, mice were exposed to the 4 h sleep deprivation period or left alone, then immediately sacrificed for immunohistochemical analysis of c-Fos expression. The results show that developmental ethanol severely impairs both normal rebound NREM sleep and sleep deprivation induced increases in slow-wave activity, consistent with reduced sleep pressure. Furthermore, the Salience network connectome in rested, ethanol-exposed mice was most similar to that of sleep-deprived, saline control mice, suggesting a sleep deprivation-like state of Salience network function after developmental ethanol even without sleep deprivation.
Collapse
Affiliation(s)
- Prachi Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Aayush Kaneria
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| | - Christian H. Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - John Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Gueye-Ndiaye S, Williamson AA, Redline S. Disparities in Sleep-Disordered Breathing: Upstream Risk Factors, Mechanisms, and Implications. Clin Chest Med 2023; 44:585-603. [PMID: 37517837 PMCID: PMC10513750 DOI: 10.1016/j.ccm.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Sleep-disordered breathing (SDB) refers to a spectrum of disorders ranging from habitual snoring without frank episodes of obstructed breathing or desaturation during sleep to obstructive sleep apnea, where apneas and hypopneas repetitively occur with resultant intermittent hypoxia, arousal, and sleep disruption. Disparities in SDB reflect its overall high prevalence in children and adults from racially and ethnically minoritized or low socioeconomic status backgrounds coupled with high rates of underdiagnosis and suboptimal treatment.
Collapse
Affiliation(s)
- Seyni Gueye-Ndiaye
- Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Ariel A Williamson
- Children's Hospital of Philadelphia, 2716 South Street Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Redline
- Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Wallace DA, Gallagher JP, Peterson SR, Ndiaye-Gueye S, Fox K, Redline S, Johnson DA. Is exposure to chemical pollutants associated with sleep outcomes? A systematic review. Sleep Med Rev 2023; 70:101805. [PMID: 37392613 PMCID: PMC10528206 DOI: 10.1016/j.smrv.2023.101805] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Environmental exposures may influence sleep; however, the contributions of environmental chemical pollutants to sleep health have not been systematically investigated. We conducted a systematic review to identify, evaluate, summarize, and synthesize the existing evidence between chemical pollutants (air pollution, exposures related to the Gulf War and other conflicts, endocrine disruptors, metals, pesticides, solvents) and dimensions of sleep health (architecture, duration, quality, timing) and disorders (sleeping pill use, insomnia, sleep-disordered breathing)). Of the 204 included studies, results were mixed; however, the synthesized evidence suggested associations between particulate matter, exposures related to the Gulf War, dioxin and dioxin-like compounds, and pesticide exposure with worse sleep quality; exposures related to the Gulf War, aluminum, and mercury with insomnia and impaired sleep maintenance; and associations between tobacco smoke exposure with insomnia and sleep-disordered breathing, particularly in pediatric populations. Possible mechanisms relate to cholinergic signaling, neurotransmission, and inflammation. Chemical pollutants are likely key determinants of sleep health and disorders. Future studies should aim to evaluate environmental exposures on sleep across the lifespan, with a particular focus on developmental windows and biological mechanisms, as well as in historically marginalized or excluded populations.
Collapse
Affiliation(s)
- Danielle A Wallace
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Jayden Pace Gallagher
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shenita R Peterson
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | - Seyni Ndiaye-Gueye
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kathleen Fox
- Woodruff Health Sciences Center Library, Emory University, Atlanta, GA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Dayna A Johnson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Dissanayake PD, Yeom KM, Sarkar B, Alessi DS, Hou D, Rinklebe J, Noh JH, Ok YS. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. ENVIRONMENTAL RESEARCH 2023; 219:115066. [PMID: 36528044 DOI: 10.1016/j.envres.2022.115066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite solar cells (PSCs) have gained extensive attention in the field of solar photovoltaic technology over the past few years. Despite being a remarkable alternative to fossil fuels, solar cells may have detrimental effects on the environment and human health owing to the use of toxic materials during manufacturing. Although modern metal-halide-based PSCs are stable and have encapsulation to prevent the release of potentially toxic materials into the environment, their destruction due to strong winds, hail, snow, landslides, fires, or waste disposal can result in the exposure of these materials to the environment. This may lead to the contamination of soil and groundwater, and uptake of potentially toxic elements by plants, subsequently affecting humans and other living organisms via food chain contamination. Despite worldwide concern, the environmental and ecotoxicological impacts of metal-halide-based PSCs have not been comprehensively surveyed. This review summarizes and critically evaluates the current status of metal-halide-based PSC production and its impact on environmental sustainability, food security, and human health. Furthermore, safe handling and disposal methods for the waste generated from metal-halide-based PSCs are proposed, with a focus on recycling and reuse. Although some studies have suggested that the amount of lead released from metal halide PSCs is far below the maximum permissible levels in most soils, a clear conclusion cannot be reached until real contamination scenarios are assessed under field conditions. Precautions must be taken to minimize environmental contamination throughout the lifecycle of PSCs until nontoxic and similarly performing alternative solar photovoltaic products are developed.
Collapse
Affiliation(s)
- Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea; Soils and Plant Nutrition Division, Coconut Research Institute, Lunuwila 61150, Sri Lanka
| | - Kyung Mun Yeom
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA-5095, Australia
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Haidian District, Beijing, China
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
8
|
Betanzos‐Robledo L, Téllez‐Rojo MM, Lamadrid‐Figueroa H, Roldan‐Valadez E, Peterson KE, Jansen EC, Basu N, Cantoral A. Differential fat accumulation in early adulthood according to adolescent-BMI and heavy metal exposure. New Dir Child Adolesc Dev 2022; 2022:37-51. [PMID: 35583253 PMCID: PMC9790480 DOI: 10.1002/cad.20463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Heavy metals such as Lead (Pb) and Mercury (Hg) can affect adipose tissue mass and function. Considering the high prevalence of exposure to heavy metals and obesity in Mexico, we aim to examine if exposure to Pb and Hg in adolescence can modify how fat is accumulated in early adulthood. METHODS This study included 100 participants from the ELEMENT cohort in Mexico. Adolescent Pb and Hg blood levels were determined at 14-16 years. Age- and sex-specific adolescent BMI Z-scores were calculated. At early adulthood (21-22 years), fat accumulation measurements were performed (abdominal, subcutaneous, visceral, hepatic, and pancreatic fat). Linear regression models with an interaction between adolescent BMI Z-score and Pb or Hg levels were run for each adulthood fat accumulation outcome with normal BMI as reference. RESULTS In adolescents with obesity compared to normal BMI, as Pb exposure increased, subcutaneous (p-interaction = 0.088) and visceral (p-interaction < 0.0001) fat accumulation increases. Meanwhile, Hg was associated with subcutaneous (p-interaction = 0.027) and abdominal (p-interaction = 0.022) fat deposition among adolescents with obesity. CONCLUSIONS Heavy metal exposure in adolescence may alter how fat is accumulated in later periods of life.
Collapse
Affiliation(s)
- Larissa Betanzos‐Robledo
- CONACYTNational Institute of Public HealthCenter for Nutrition and Health ResearchCuernavacaMexico
| | - Martha M. Téllez‐Rojo
- CONACYTNational Institute of Public HealthCenter for Nutrition and Health ResearchCuernavacaMexico
| | - Hector Lamadrid‐Figueroa
- Department of Perinatal HealthReproductive Health DirectorateNational Institute of Public HealthCenter for Population Health ResearchCuernavacaMéxico
| | - Ernesto Roldan‐Valadez
- Directorate of Clinical ResearchHospital General de Mexico “Dr. Eduardo Liceaga”Mexico CityMexico
- Department of RadiologyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Karen E. Peterson
- Department of Nutritional SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Erica C. Jansen
- Department of Nutritional SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Nil Basu
- Department of Natural Resource SciencesMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
9
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
10
|
Hsu CY, Chuang YC, Chang FC, Chuang HY, Chiou TTY, Lee CT. Disrupted Sleep Homeostasis and Altered Expressions of Clock Genes in Rats with Chronic Lead Exposure. TOXICS 2021; 9:toxics9090217. [PMID: 34564368 PMCID: PMC8473409 DOI: 10.3390/toxics9090217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
Sleep disturbance is one of the neurobehavioral complications of lead neurotoxicity. The present study evaluated the impacts of chronic lead exposure on alteration of the sleep–wake cycle in association with changes of clock gene expression in the hypothalamus. Sprague–Dawley rats with chronic lead exposure consumed drinking water that contained 250 ppm of lead acetate for five weeks. Electroencephalography and electromyography were recorded for scoring the architecture of the sleep–wake cycle in animals. At six Zeitgeber time (ZT) points (ZT2, ZT6, ZT10, ZT14, ZT18, and ZT22), three clock genes, including rPer1, rPer2, and rBmal1b, were analyzed. The rats with chronic lead exposure showed decreased slow wave sleep and increased wakefulness in the whole light period (ZT1 to ZT12) and the early dark period (ZT13 to ZT15) that was followed with a rebound of rapid-eye-movement sleep at the end of the dark period (ZT22 to ZT24). The disturbance of the sleep–wake cycle was associated with changes in clock gene expression that was characterized by the upregulation of rPer1 and rPer2 and the feedback repression of rBmal1b. We concluded that chronic lead exposure has a negative impact on the sleep–wake cycle in rats that predominantly disrupts sleep homeostasis. The disruption of sleep homeostasis was associated with a toxic effect of lead on the clock gene expression in the hypothalamus.
Collapse
Affiliation(s)
- Chung-Yao Hsu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Fang-Chia Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Hung-Yi Chuang
- Department of Public Health and Environmental Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Terry Ting-Yu Chiou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Chien-Te Lee
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
- Chang-Gang Kidney Research Center, Kaohsiung 83301, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Betanzos-Robledo L, Cantoral A, Peterson KE, Hu H, Hernández-Ávila M, Perng W, Jansen E, Ettinger AS, Mercado-García A, Solano-González M, Sánchez B, Téllez-Rojo MM. Association between cumulative childhood blood lead exposure and hepatic steatosis in young Mexican adults. ENVIRONMENTAL RESEARCH 2021; 196:110980. [PMID: 33691159 PMCID: PMC8119339 DOI: 10.1016/j.envres.2021.110980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to environmental toxicants may play a role in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD). Cumulative exposure to lead (Pb) has chronic and permanent effects on liver function. Pediatric populations are vulnerable to the toxic effects of Pb, even at low exposure levels. The purpose of the study was to estimate the association between cumulative Pb exposure during childhood and hepatic steatosis biomarkers in young Mexican adults. METHODS A subsample of 93 participants from the ELEMENT cohort were included in this study. Childhood blood samples were collected annually from ages 1-4 years and were used to calculate the Cumulative Childhood Blood Lead Levels (CCBLL). Hepatic steatosis during adulthood was defined as an excessive accumulation of hepatic triglycerides (>5%) determined using Magnetic Resonance Imaging (MRI). Liver enzymes were also measured at this time, and elevated liver enzyme levels were defined as ALT (≥30 IU/L), AST (≥30 IU/L), and GGT (≥40 IU/L). Adjusted linear regression models were fit to examine the association between CCBLL (quartiles) and the hepatic steatosis in young adulthood. RESULTS In adulthood, the mean age was 21.4 years, 55% were male. The overall prevalence of hepatic steatosis by MRI was 19%. Elevate levels of the enzymes ALT, AST, and GGT were present in 25%, 15%, and 17% of the sample, respectively. We found a positive association between the highest quartile of CCBLL with the steatosis biomarkers of hepatic triglycerides (Q4 vs. Q1: β = 6.07, 95% CI: 1.91-10.21), elevated ALT (Q4 vs. Q1: β = 14.5, 95% CI: 1.39-27.61) and elevated AST (Q4 vs. Q1: β = 7.23, 95% CI: 0.64-13.82). No significant associations were found with GGT. CONCLUSIONS Chronic Pb exposure during early childhood is associated with a higher levels of hepatic steatosis biomarkers and hepatocellular injury in young adulthood. More actions should be taken to eliminate sources of Pb during the first years of life.
Collapse
Affiliation(s)
- Larissa Betanzos-Robledo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Alejandra Cantoral
- Department of Health, Universidad Iberoamericana, Mexico City, MX, Mexico.
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Howard Hu
- Department of Preventive Medicine Keck School of Medicine of University of Southern California, USA
| | | | - Wei Perng
- Department of Epidemiology, Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Erica Jansen
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Adriana Mercado-García
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Maritsa Solano-González
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| | - Brisa Sánchez
- Dornsife School of Public Health, Drexel University, USA
| | - Martha M Téllez-Rojo
- National Council of Science and Technology, National Institute of Public Health, Mexico City, MX, Mexico
| |
Collapse
|
12
|
Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. TOXICS 2021; 9:toxics9020023. [PMID: 33525464 PMCID: PMC7912619 DOI: 10.3390/toxics9020023] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Lead (Pb) is considered a strong environmental toxin with human health repercussions. Due to its widespread use and the number of people potentially exposed to different sources of this heavy metal, Pb intoxication is recognized as a public health problem in many countries. Exposure to Pb can occur through ingestion, inhalation, dermal, and transplacental routes. The magnitude of its effects depends on several toxicity conditions: lead speciation, doses, time, and age of exposure, among others. It has been demonstrated that Pb exposure induces stronger effects during early life. The central nervous system is especially vulnerable to Pb toxicity; Pb exposure is linked to cognitive impairment, executive function alterations, abnormal social behavior, and fine motor control perturbations. This review aims to provide a general view of the cognitive consequences associated with Pb exposure during early life as well as during adulthood. Additionally, it describes the neurotoxic mechanisms associated with cognitive impairment induced by Pb, which include neurochemical, molecular, and morphological changes that jointly could have a synergic effect on the cognitive performance.
Collapse
|
13
|
Dórea JG. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. ENVIRONMENTAL RESEARCH 2021; 192:110199. [PMID: 32941839 DOI: 10.1016/j.envres.2020.110199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Environmental (and occupational) exposure to neurotoxic substances is a worldwide problem that can affect children's neurodevelopment (ND). In Latin American and Caribbean (LAC) countries there are over 300 million children living under the threat of neurodevelopmental delays due to toxic environmental exposure. Large industrial centers, intense mining and agricultural activities, along with changing complex ecosystems constitute a mosaic that drives contamination of air, water and the food chain. Neurotoxic contaminants such as pesticides (organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, and manganese fungicides), chemicals of industrial use (phthalates), and metals (Hg, Pb, Al, As, F, Cd, Mo, Mn) are at the center of environmental exposure studies. Exposure to neurotoxic substances singly or in combination with other compounds or socioeconomic stressors (maternal education, socio-economic and nutritional status) intertwined with occupational and para-occupational exposure can affect ND (motor, cognition, behavior) of children. Significant negative effects of pesticides and neurotoxic elements on ND were found in all studied countries, affecting especially the less-privileged children from laboring families. Studies showed that exposures to the neurotoxicants in human milk are secondary to their more lasting effects during prenatal exposure. This review integrates exposure (prenatal and breastfeeding), metabolism, and ND effects of neurotoxicants. It highlights the overwhelming evidence showing that current levels of exposures are hazardous and detrimental to children's ND in LAC countries. The evidence indicates that a reduction in neurotoxicant exposure is essential to protect children's ND. Therefore, it is urgent to adopt policies and actions that prevent and remediate region-specific children's ND issues.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
14
|
Jansen EC, Hector EC, Goodrich JM, Cantoral A, Téllez Rojo MM, Basu N, Song PXK, Olascoaga LT, Peterson KE. Mercury exposure in relation to sleep duration, timing, and fragmentation among adolescents in Mexico City. ENVIRONMENTAL RESEARCH 2020; 191:110216. [PMID: 32956656 PMCID: PMC7750915 DOI: 10.1016/j.envres.2020.110216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Mercury intoxication is known to be associated with adverse symptoms of fatigue and sleep disturbances, but whether low-level mercury exposure could affect sleep remains unclear. In particular, children may be especially vulnerable to both mercury exposures and to poor sleep. We sought to examine associations between mercury levels and sleep disturbances in Mexican youth. METHODS The study sample comprised 372 youth from the Early Life Exposures to Environmental Toxicants (ELEMENT) cohort, a birth cohort from Mexico City. Sleep (via 7-day actigraphy) and concurrent urine mercury were assessed during a 2015 follow-up visit. Mercury was also assessed in mid-childhood hair, blood, and urine during an earlier study visit, and was considered a secondary analysis. We used linear regression and varying coefficient models to examine non-linear associations between Hg exposure biomarkers and sleep duration, timing, and fragmentation. Unstratified and sex-stratified analyses were adjusted for age and maternal education. RESULTS During the 2015 visit, participants were 13.3 ± 1.9 years, and 48% were male. There was not a cross-sectional association between urine Hg and sleep characteristics. In secondary analysis using earlier biomarkers of Hg, lower and higher blood Hg exposure was associated with longer sleep duration among girls only. In both boys and girls, Hg biomarker levels in 2008 were associated with later adolescent sleep midpoint (for Hg urine in girls, and for blood Hg in boys). For girls, each unit log Hg was associated with 0.2 h later midpoint (95% CI 0 to 0.4), and for boys each unit log Hg was associated with a 0.4 h later sleep midpoint (95% CI 0.1 to 0.8). CONCLUSIONS There were mostly null associations between Hg exposure and sleep characteristics among Mexican children. Yet, in both boys and girls, higher Hg exposure in mid-childhood (measured in urine and blood, respectively) was related to later sleep timing in adolescence.
Collapse
Affiliation(s)
- Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Emily C Hector
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Martha María Téllez Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Libni Torres Olascoaga
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|