1
|
Della Guardia L, Codella R. Exercise Restores Hypothalamic Health in Obesity by Reshaping the Inflammatory Network. Antioxidants (Basel) 2023; 12:antiox12020297. [PMID: 36829858 PMCID: PMC9951965 DOI: 10.3390/antiox12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at molecular and cellular level that positively impact local inflammation. This review discusses the positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals. The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and AGEs), and the improvement in the gut-brain axis represent alternative paths through which regular exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis investigating the crosstalk muscle-hypothalamus would help toward a deeper comprehension of the subject.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
2
|
Yoon HJ, Yoon DS, Baek HJ, Kang B, Jung UJ. Dietary Sinapic Acid Alleviates Adiposity and Inflammation in Diet-Induced Obese Mice. Prev Nutr Food Sci 2022; 27:407-413. [PMID: 36721747 PMCID: PMC9843723 DOI: 10.3746/pnf.2022.27.4.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/03/2023] Open
Abstract
Sinapic acid (SA), a hydroxycinnamic acid, is known to confer protection against oxidative stress, inflammation, diabetes, and liver disease. However, the effectiveness of SA in improving obesity remains obscure. Therefore, this study evaluated anti-obesity efficacy of SA and to elucidate its mechanism of action. Male mice were maintained for 16 weeks on high-fat diet (HFD) alone or with SA (0.004%, w/w) and bodyweight, fat mass, adipocyte size, food intake, and biochemical and molecular markers were evaluated. SA-supplemented mice demonstrated markedly decreased fat mass and adipocyte size compared to unsupplemented group, without any changes in bodyweight and food intake between the two groups. Plasma adipocytokines levels including leptin, resistin, monocyte chemoattractant protein (MCP)-1 and interleukin-6 were also markedly reduced by SA supplementation. SA tended to lower plasma insulin level and improved homeostatic index of insulin resistance and intraperitoneal glucose tolerance test in HFD-induced obese mice. The anti-adiposity effect of SA was maybe owing to down-regulation of the mRNA expression of lipogenic genes, including acetyl coenzyme A (CoA) carboxylase, fatty acid synthesis, stearoyl-CoA desaturase 1, and phosphatidate phosphatase, and peroxisome proliferator-activated receptor γ, a transcription factor responsible for governing lipid metabolism, in adipose tissues. SA significantly down-regulated pro-inflammatory nuclear factor kappa B, MCP-1, tumor necrosis factor-α, and Toll-like receptor 4 mRNA expression in adipose tissue. Thus, SA could be beneficial for the development of functional foods or herbal medications to combat obesity.
Collapse
Affiliation(s)
- Hye Jin Yoon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Dae Seong Yoon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hea Ja Baek
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Beodeul Kang
- Department of Marine Fisheries Education, Pukyong National University, Busan 48513, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea,
Correspondence to Un Ju Jung, E-mail:
| |
Collapse
|
3
|
Cook JJ, Wei M, Segovia B, Cosio-Lima L, Simpson J, Taylor S, Koh Y, Kim S, Lee Y. Endurance exercise-mediated metabolic reshuffle attenuates high-caloric diet-induced non-alcoholic fatty liver disease. Ann Hepatol 2022; 27:100709. [PMID: 35489641 DOI: 10.1016/j.aohep.2022.100709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases in the United States. Metabolic distress (obese diabetes) is the main causative element of NAFLD. While there is no cure for NAFLD, endurance exercise (EEx) has emerged as a therapeutic strategy against NAFLD. However, mechanisms of EXE-induced hepatic protection especially in female subjects remain unidentified. Thus, the aim of the study is to examine molecular mechanisms of EXE-induced hepatic protection against diet-induced NAFLD in female mice. MATERIAL AND METHODS Nine-week-old female C57BL/6J mice were randomly divided into three groups: normal-diet control group (CON, n=11); high-fat diet/high-fructose group (HFD/HF, n=11); and HFD/HF+EEx group (HFD/HF+EEx, n=11). The mice assigned to HFD/HF and HFD/HF+EEx groups were fed with HFD/HF for 12 weeks, after which the mice assigned to the EEx group began treadmill exercise for 12 weeks, with HFD/HF continued. RESULTS EEx attenuated hepatic steatosis, reduced de novo lipogenesis (reduction in ATP-Citrate- Lyase and diacylglycerol-O-acyltransferase 1), and enhanced mitochondrial biogenesis and fatty-acid activation (oxidative phosphorylation enzymes and Acyl-CoA synthetase1). Also, EEx prevented upregulation of gluconeogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphatase, and phosphoenolpyruvate-carboxykinase1), premature senescence (suppression of p53, p22, and p16, tumor-necrosis-factor-α, and interleukin-1β, and oxidative stress), and autophagy deficiency. Furthermore, EXE reversed apoptosis arrest (cleaved cysteine-dependent-aspartate-directed protease3 and Poly-(ADP-ribose)-polymerase1). CONCLUSION EEx-mediated reparations of metabolic and redox imbalance (utilization of pentose phosphate pathway), and autophagy deficiency caused by metabolic distress critically contribute to preventing/delaying severe progression of NAFLD. Also, EEx-induced anti-senescence and cell turnover are crucial protective mechanisms against NAFLD.
Collapse
Affiliation(s)
- Joshua J Cook
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
| | - Madeline Wei
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
| | - Benny Segovia
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
| | - Ludmila Cosio-Lima
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
| | - Jeffrey Simpson
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA
| | - Scott Taylor
- Department of Biology, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
| | - Yunsuk Koh
- Department of Health, Human Performance and Recreation, Robbins College of Human Sciences, Baylor University, Waco, TX 76798, USA
| | - Sangho Kim
- Department of Sport Science, College of Culture and Sports, School of Global Sport Studies, Korea University, Sejong 30019, South Korea
| | - Youngil Lee
- Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, FL 32514, USA.
| |
Collapse
|
4
|
Stanton KM, Liu H, Kienzle V, Bursill C, Bao S, Celermajer DS. The Effects of Exercise on Plaque Volume and Composition in a Mouse Model of Early and Late Life Atherosclerosis. Front Cardiovasc Med 2022; 9:837371. [PMID: 35419434 PMCID: PMC8995971 DOI: 10.3389/fcvm.2022.837371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundExercise is associated with a less atherogenic lipid profile; however, there is limited research on the effect of exercise on atherosclerotic plaque composition and markers of plaque stability.MethodsA total of 110 apolipoprotein (apo)E−/− mice were placed on a chow diet and randomly assigned to control or exercise for a period of 10 weeks, commencing either at 12 weeks of age (the early-stage atherosclerosis, EA group) or at 40 weeks of age (the late-stage atherosclerosis, LA group). At the end of the exercise period, blood was assayed for lipids. Histologic analysis of the aortic sinus was undertaken to assess plaque size and composition that includes macrophage content, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase-2 (MMP-2), and tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and 2).ResultsA total of 103 mice (38 EA, 65 LA) completed the protocol. In the EA group, exercise reduced plasma total cholesterol (TC) (−16%), free cholesterol (−13%), triglyceride (TG) (−35%), and phospholipid (−27%) levels, when compared to sedentary control mice (p < 0.01). In the EA group, exercise also significantly reduced plaque stenosis (−25%, p < 0.01), and there were higher levels of elastin (3-fold increase, p < 0.0001) and collagen (11-fold increase, p < 0.0001) in plaques, compared to control mice. There was an increase in plaque MMP-2 content in the exercise group (13% increase, p < 0.05) but no significant difference in macrophage or MCP-1 content. In the LA group, exercise reduced plaque stenosis (−18%, p < 0.05), but there was no significant difference in plaque composition. There was no difference in macrophage, MCP-1, or MMP-2 content in the LA groups. TIMP-1 was lower with exercise in both the EA and LA groups (−59%, p < 0.01 and −51%, p < 0.01 respectively); however, there was no difference in TIMP-2 levels.ConclusionA 10-week exercise period reduces atherosclerotic plaque stenosis when commenced at both early- and late-stage atherosclerosis. Intervening earlier with exercise had a greater beneficial effect on lipids and plaque composition than when starting exercise at a later disease stage.
Collapse
Affiliation(s)
- Kelly M. Stanton
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Kelly M. Stanton
| | - Hongjuan Liu
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - Vivian Kienzle
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
| | - Christina Bursill
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | - Shisan Bao
- Discipline of Pathology and School of Medical Science, University of Sydney, Sydney, NSW, Australia
| | - David S. Celermajer
- Clinical Research Group, Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
6
|
Della Guardia L, Codella R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev 2021; 62:83-93. [PMID: 34620559 DOI: 10.1016/j.cytogfr.2021.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022]
Abstract
Metabolic conditions share a common low-grade inflammatory milieu, which represents a key-factor for their ignition and maintenance. Exercise is instrumental for warranting systemic cardio-metabolic balance, owing to its regulatory effect on inflammation. This review explores the effect of physical activity in the modulation of sub-inflammatory framework characterizing dysmetabolic conditions. Regular exercise suppresses plasma levels of TNFα, IL-1β, FFAs and MCP-1, in dysmetabolic subjects. In addition, a single session of training increases the anti-inflammatory IL-10, IL-1 receptor antagonist (IL-1ra), and muscle-derived IL-6, mitigating low-grade inflammation. Resting IL-6 levels are decreased in trained-dysmetabolic subjects, compared to sedentary. On the other hand, the acute release of muscle-IL-6, after exercise, seems to exert a regulatory effect on the metabolic and inflammatory balance. In fact, muscle-released IL-6 is presumably implicated in fat loss and boosts plasma levels of IL-10 and IL-1ra. The improvement of adipose tissue functionality, following regular exercise, is also critical for the mitigation of sub-inflammation. This effect is likely mediated by muscle-released IL-15 and IL-6 and partly relies on the brown-shifting of white adipocytes, induced by exercise. In obese-dysmetabolic subjects, moderate training is shown to restore gut-microbiota health, and this mitigates the translocation of bacterial-LPS into bloodstream. Finally, regular exercise can lower plasma advanced glycated endproducts. The articulated physiology of circulating mediators and the modulating effect of the pathophysiological background, render the comprehension of the exercise-regulatory effect on sub-inflammation a key issue, in dysmetabolism.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|
7
|
Fernandes MSDS, Silva LDLDSE, Kubrusly MS, Lima TRLDA, Muller CR, Américo ALV, Fernandes MP, Cogliati B, Stefano JT, Lagranha CJ, Evangelista FS, Oliveira CP. Aerobic Exercise Training Exerts Beneficial Effects Upon Oxidative Metabolism and Non-Enzymatic Antioxidant Defense in the Liver of Leptin Deficiency Mice. Front Endocrinol (Lausanne) 2020; 11:588502. [PMID: 33329394 PMCID: PMC7732625 DOI: 10.3389/fendo.2020.588502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of liver disease, which is associated with several etiological factors, including stress and dysfunction in oxidative metabolism. However, studies showed that aerobic exercise training (AET) can combat the oxidative stress (OS) and improves mitochondrial functionality in the NAFLD. To test the hypothesis that AET improves oxidative metabolism and antioxidant defense in the liver of ob/ob mice. Male ob/ob mice with eight weeks old were separated into two groups: the sedentary group (S), n=7, and the trained group (T), n=7. The T mice were submitted to an 8-week protocol of AET at 60% of the maximum velocity achieved in the running capacity test. Before AET, no difference was observed in running test between the groups (S=10.4 ± 0.7 min vs. T= 13 ± 0.47 min). However, after AET, the running capacity was increased in the T group (12.8 ± 0.87 min) compared to the S group (7.2 ± 0.63 min). In skeletal muscle, the T group (26.91 ± 1.12 U/mg of protein) showed higher citrate synthase activity compared with the S group (19.28 ± 0.88 U/mg of protein) (p =0.006). In the analysis of BW evolution, significant reductions were seen in the T group as of the fourth week when compared to the S group. In addition, food intake was not significant different between the groups. Significant increases were observed in the activity of enzymes citrate synthase (p=0.004) and β-HAD (p=0.01) as well as in PGC-1α gene expression (p=0.002) in the liver of T group. The levels of TBARs and carbonyls, as well as SOD, CAT and GST were not different between the groups. However, in the nonenzymatic antioxidant system, we found that the T group had higher sulfhydryl (p = 0.02), GSH (p=0.001) and GSH/GSSG (p=0.02) activity. In conclusion, the AET improved body weight evolution and the aerobic capacity, increased the response of oxidative metabolism markers in the liver such as PGC-1α gene expression and citrate synthase and β-HAD enzyme activities in ob/ob mice. In addition, AET improved the non-enzymatic antioxidant defense and did not change the enzymatic defense.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas de Lucena de Simões e Silva
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Márcia Saldanha Kubrusly
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cynthia Rodrigues Muller
- Department of Experimental Pathophysiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Anna Laura Viacava Américo
- Department of Experimental Pathophysiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Claudia P. Oliveira,
| |
Collapse
|
8
|
Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1965364. [PMID: 31396298 PMCID: PMC6664693 DOI: 10.1155/2019/1965364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Background and Aim Exercise is an effective strategy to reduce obesity-induced oxidative stress. The purpose of this study was to compare the effects of two training modalities (moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT)) on the pro/antioxidant status of different tissues in obese Zucker rats. Methods Eight-week-old male Zucker rats (fa/fa, n = 36) were subdivided in three groups: MICT, HIIT, and control (no exercise) groups. Trained animals ran on a treadmill (0° slope), 5 days/week for 10 weeks (MICT: 51 min at 12 m·min-1; HIIT: 6 sets of 3 min at 10 m·min-1 followed by 4 min at 18 m·min-1). Epididymal (visceral) and subcutaneous adipose tissue, gastrocnemius muscle, and plasma samples were collected to measure oxidative stress markers (advanced oxidation protein products (AOPP), oxidized low-density lipoprotein (oxLDL)), antioxidant system markers (ferric-reducing ability of plasma (FRAP), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities), and prooxidant enzymes (NADPH oxidase and xanthine oxidase (XO) activities, myeloperoxidase content). Results Compared with the control, MICT increased GPx and catalase activities and the FRAP level in epididymal adipose tissue. HIIT increased the AOPP level in subcutaneous adipose tissue. In the muscle, HIIT increased both SOD and GPx activities and reduced the AOPP level, whereas MICT increased only SOD activity. Finally, plasma myeloperoxidase content was similarly decreased by both training modalities, whereas oxLDL was reduced only in the MICT group. Conclusion Both HIIT and MICT improved the pro/antioxidant status. However, HIIT was more efficient than MICT in the skeletal muscle, whereas MICT was more efficient in epididymal adipose tissue. This suggests that oxidative stress responses to HIIT and MICT are tissue-specific. This could result in ROS generation via different pathways in these tissues. From a practical point of view, the two training modalities should be combined to obtain a global response in people with obesity.
Collapse
|
9
|
Exercise training restores eNOS activation in the perivascular adipose tissue of obese rats: Impact on vascular function. Nitric Oxide 2019; 86:63-67. [PMID: 30836135 DOI: 10.1016/j.niox.2019.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study evaluated in obese rats the effect of exercise training on eNOS expressed in perivascular adipose tissue (PVAT) and its consequences on vascular function. METHODS Wistar rats were divided in 3 groups: control (standard diet), obese (high fat/high sucrose diet, HFS for 15 weeks), and exercised obese (HFS diet and exercise from week 6 to week 15, HFS-Ex) rats. The eNOS-adiponectin pathway and reactive oxygen species (ROS) were evaluated. Vascular reactivity was assessed on isolated aortic rings with or without PVAT and/or endothelium and exposed or not to the conditioned media of PVAT. RESULTS Obesity reduced eNOS level and phosphorylation on its activation site in the PVAT and had no impact on the vascular wall. Exercise training was able to increase eNOS and P-eNOS both in the vascular wall and in the PVAT. Interestingly, this was associated with increased level of adiponectin in the PVAT and to lower ROS in the vascular wall. Finally, PVAT of HFS-Ex aorta has eNOS-dependent anticontractile effects on endothelium denuded aortic rings and has beneficial effects on the endothelium-dependent vasorelaxation to ACh. CONCLUSION Exercise training in obese rats is able to impact PVAT eNOS with subsequent beneficial impact on vascular function.
Collapse
|
10
|
Mo JF, Wu JY, Zheng L, Yu YW, Zhang TX, Guo L, Bao Y. Therapeutic efficacy of polydatin for nonalcoholic fatty liver disease via regulating inflammatory response in obese mice. RSC Adv 2018; 8:31194-31200. [PMID: 35548751 PMCID: PMC9085635 DOI: 10.1039/c8ra05915b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a natural precursor of resveratrol, has been used to treat several diseases, such as cardiovascular diseases, hepatic diseases and various cancers. In this study, we aimed to investigate the protective effects and underlying mechanisms of PD on non-alcoholic fatty liver disease (NAFLD) using a high fat induced obese mice model. The studied subjects were randomly divided into a lean group, a high fat diet (HFD) group, and a high fat diet with PD (HFD + PD) group. The results showed that PD reduced the body weights in HFD mice. PD also downregulated the serum levels of triglyceride (TG), low density lipoprotein (LDL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and upregulated high density lipoprotein (HDL). Moreover, PD significantly alleviated hepatocyte steatosis and reduced Gr-1+ cells in the liver tissues of HFD mice. The mRNA levels of pro-inflammatory factors, such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), S100A8 and S100A9 were significantly decreased in the liver tissues of HFD mice with PD treatment, and the downregulation of MCP-1 and S100A9 protein expressions was also observed. In conclusion, PD had beneficial roles in suppressing lipid accumulation in hepatocytes and anti-inflammatory responses in the liver tissue of obese associated NAFLD.
Collapse
Affiliation(s)
- Juan-Fen Mo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Jia-Yuan Wu
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Li Zheng
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Ya-Wei Yu
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Tian-Xin Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Li Guo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Yi Bao
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| |
Collapse
|
11
|
Crisol BM, Lenhare L, Gaspar RS, Gaspar RC, Muñoz VR, da Silva AS, Cintra DE, de Moura LP, Pauli JR, Ropelle ER. The role of physical exercise on Sestrin1 and 2 accumulations in the skeletal muscle of mice. Life Sci 2018; 194:98-103. [DOI: 10.1016/j.lfs.2017.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/21/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|
12
|
Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9410954. [PMID: 28168013 PMCID: PMC5266865 DOI: 10.1155/2017/9410954] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/25/2016] [Indexed: 12/15/2022]
Abstract
Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.
Collapse
|
13
|
Cabral-Santos C, Castrillón CIM, Miranda RAT, Monteiro PA, Inoue DS, Campos EZ, Hofmann P, Lira FS. Inflammatory Cytokines and BDNF Response to High-Intensity Intermittent Exercise: Effect the Exercise Volume. Front Physiol 2016; 7:509. [PMID: 27867360 PMCID: PMC5095487 DOI: 10.3389/fphys.2016.00509] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to compare the effects of two similar high-intensity intermittent exercises (HIIE) but different volume 1.25 km (HIIE1.25) and 2.5 km (HIIE2.5) on inflammatory and BDNF responses. Ten physically active male subjects (age 25.22 ± 1.74 years, body mass 78.98 ± 7.31 kg, height 1.78 ± 0.06 m, VO2peak 59.94 ± 9.38 ml·kg·min-1) performed an incremental treadmill exercise test and randomly completed two sessions of HIIE on a treadmill (1:1 min at vVO2max with passive recovery). Blood samples were collected at rest, immediately and 60-min after the exercise sessions. Serum was analyzed for glucose, lactate, IL-6, IL-10, and BDNF levels. Blood lactate concentrations was higher immediately post-exercise compared to rest (HIIE1.25: 1.69 ± 0.26-7.78 ± 2.09 mmol·L-1, and HIIE2.5: 1.89 ± 0.26-7.38 ± 2.57 mmol·L-1, p < 0.0001). Glucose concentrations did not present changes under the different conditions, however, levels were higher 60-min post-exercise than at rest only in the HIIE1.25 condition (rest: 76.80 ± 11.14-97.84 ± 24.87 mg·dL-1, p < 0.05). BDNF level increased immediately after exercise in both protocols (HIIE1.25: 9.71 ± 306-17.86 ± 8.59 ng.mL-1, and HIIE2.5: 11.83 ± 5.82-22.84 ± 10.30 ng.mL-1). Although both exercises increased IL-6, level percent between rest and immediately after exercise was higher in the HIIE2.5 than HIIE1.25 (30 and 10%; p = 0.014, respectively). Moreover, IL-10 levels percent increase between immediately and 60-min post-exercise was higher in HIIE2.5 than HIIE1.25 (37 and 10%; p = 0.012, respectively). In conclusion, both HIIE protocols with the same intensity were effective to increase BDNF and IL-6 levels immediately after exercise while only IL-10 response was related to the durantion of exercise indicanting the importance of this exercise prescription variable.
Collapse
Affiliation(s)
- Carolina Cabral-Santos
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Carlos I M Castrillón
- Laboratório de Fisioterapia Desportiva, Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Rodolfo A T Miranda
- Laboratório de Fisioterapia Desportiva, Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Paula A Monteiro
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Daniela S Inoue
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| | - Eduardo Z Campos
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente PrudenteSão Paulo, Brasil; Department of Physical Education, Federal University of PernambucoRecife, Brazil
| | - Peter Hofmann
- Exercise Physiology, Training and Training Therapy Research Group, Institute of Sport Science, University of Graz Graz, Austria
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Departamento de Educação Física, Universidade Estadual Paulista - Presidente Prudente São Paulo, Brasil
| |
Collapse
|