1
|
Girase R, Ahmad I, Oh JM, Mathew B, Vagolu SK, Tønjum T, Sriram D, Kumari J, Desai NC, Agrawal Y, Kim H, Patel HM. Design and Synthesis of the Linezolid Bioisosteres to Resolve the Serotonergic Toxicity Associated with Linezolid. ACS Med Chem Lett 2024; 15:924-937. [PMID: 38894926 PMCID: PMC11181505 DOI: 10.1021/acsmedchemlett.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Serotonergic toxicity due to MAO enzyme inhibition is a significant concern when using linezolid to treat MDR-TB. To address this issue, we designed linezolid bioisosteres with a modified acetamidomethyl side chain at the C-5 position of the oxazolidine ring to balance activity and reduce toxicity. Among these bioisosteres, R7 emerged as a promising candidate, demonstrating greater effectiveness against M. tuberculosis (Mtb) H37Rv cells with an MIC of 2.01 μM compared to linezolid (MIC = 2.31 μM). Bioisostere R7 also exhibited remarkable activity (MIC50) against drug-resistant Mtb clinical isolates, with values of 0.14 μM (INHR, inhA+), 0.53 μM (INHR, katG+), 0.24 μM (RIFR, rpoB+), and 0.92 μM (INHR INHR, MDR). Importantly, it was >6.52 times less toxic as compared to the linezolid toward the MAO-A and >64 times toward the MAO-B enzyme, signifying a substantial improvement in its drug safety profile.
Collapse
Affiliation(s)
- Rukaiyya
T. Girase
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Jong Min Oh
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 690525, India
| | - Siva K. Vagolu
- Department
of Microbiology, University of Oslo, N-0316 Oslo, Norway
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, N-0316 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Jyothi Kumari
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Nisheeth C. Desai
- Division
of Medicinal Chemistry, Department of Chemistry, (DST-FIST Sponsored)
Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji
Bhavnagar University, Bhavnagar 364 002, India
| | - Yogesh Agrawal
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Harun M. Patel
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| |
Collapse
|
2
|
Chitwood MH, Colijn C, Yang C, Crudu V, Ciobanu N, Codreanu A, Kim J, Rancu I, Rhee K, Cohen T, Sobkowiak B. The recent rapid expansion of multidrug resistant Ural lineage Mycobacterium tuberculosis in Moldova. Nat Commun 2024; 15:2962. [PMID: 38580642 PMCID: PMC10997638 DOI: 10.1038/s41467-024-47282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
The projected trajectory of multidrug resistant tuberculosis (MDR-TB) epidemics depends on the reproductive fitness of circulating strains of MDR M. tuberculosis (Mtb). Previous efforts to characterize the fitness of MDR Mtb have found that Mtb strains of the Beijing sublineage (Lineage 2.2.1) may be more prone to develop resistance and retain fitness in the presence of resistance-conferring mutations than other lineages. Using Mtb genome sequences from all culture-positive cases collected over two years in Moldova, we estimate the fitness of Ural (Lineage 4.2) and Beijing strains, the two lineages in which MDR is concentrated in the country. We estimate that the fitness of MDR Ural strains substantially exceeds that of other susceptible and MDR strains, and we identify several mutations specific to these MDR Ural strains. Our findings suggest that MDR Ural Mtb has been transmitting efficiently in Moldova and poses a substantial risk of spreading further in the region.
Collapse
Affiliation(s)
- Melanie H Chitwood
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, 8888 University Drive West, Burnaby, BC, Canada
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 132 Outer Ring East Road, Guangzhou University Town Guangdong, Guangdong, PR China
| | - Valeriu Crudu
- Phthisiopneumology Institute, Strada Constantin Vârnav 13, Chisinau, Republic of Moldova
| | - Nelly Ciobanu
- Phthisiopneumology Institute, Strada Constantin Vârnav 13, Chisinau, Republic of Moldova
| | - Alexandru Codreanu
- Phthisiopneumology Institute, Strada Constantin Vârnav 13, Chisinau, Republic of Moldova
| | - Jaehee Kim
- Department of Computational Biology, Cornell University, 237 Tower Road, Ithaca, NY, USA
| | - Isabel Rancu
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
| | - Benjamin Sobkowiak
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, 60 College Street, New Haven, CT, USA
| |
Collapse
|
3
|
Maladan Y, Safari D, Parikesit AA. Structural dynamics insights into the M306L, M306V, and D1024N mutations in Mycobacterium tuberculosis inducing resistance to ethambutol. Genomics Inform 2023; 21:e32. [PMID: 37813628 PMCID: PMC10584647 DOI: 10.5808/gi.23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 10/11/2023] Open
Abstract
Resistance to anti-tuberculosis drugs, especially ethambutol (EMB), has been widely reported worldwide. EMB resistance is caused by mutations in the embB gene, which encodes the arabinosyl transferase enzyme. This study aimed to detect mutations in the embB gene of Mycobacterium tuberculosis from Papua and to evaluate their impact on the effectiveness of EMB. We analyzed 20 samples of M. tuberculosis culture that had undergone whole-genome sequencing, of which 19 samples were of sufficient quality for further bioinformatics analysis. Mutation analysis was performed using TBProfiler, which identified M306L, M306V, D1024N, and E378A mutations. In sample TB035, the M306L mutation was present along with E378A. The binding affinity of EMB to arabinosyl transferase was calculated using AutoDock Vina. The molecular docking results revealed that all mutants demonstrated an increased binding affinity to EMB compared to the native protein (-0.948 kcal/mol). The presence of the M306L mutation, when coexisting with E378A, resulted in a slight increase in binding affinity compared to the M306L mutation alone. The molecular dynamics simulation results indicated that the M306L, M306L + E378A, M306V, and E378A mutants decreased protein stability. Conversely, the D1024N mutant exhibited stability comparable to the native protein. In conclusion, this study suggests that the M306L, M306L + E378A, M306V, and E378A mutations may contribute to EMB resistance, while the D1024N mutation may be consistent with continued susceptibility to EMB.
Collapse
Affiliation(s)
- Yustinus Maladan
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta 13210, Indonesia
| |
Collapse
|
4
|
Choudhary S, Kesavan AK, Juneja V, Thakur S. Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tuberculosis. FRONTIERS IN BIOINFORMATICS 2023; 3:1125479. [PMID: 37122997 PMCID: PMC10130521 DOI: 10.3389/fbinf.2023.1125479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Computational prediction and protein structure modeling have come to the aid of various biological problems in determining the structure of proteins. These technologies have revolutionized the biological world of research, allowing scientists and researchers to gain insights into their biological questions and design experimental research much more efficiently. Pathogenic Mycobacterium spp. is known to stay alive within the macrophages of its host. Mycobacterium tuberculosis is an acid-fast bacterium that is the most common cause of tuberculosis and is considered to be the main cause of resistance of tuberculosis as a leading health issue. The genome of Mycobacterium tuberculosis contains more than 4,000 genes, of which the majority are of unknown function. An attempt has been made to computationally model and dock one of its proteins, Rv1250 (MTV006.22), which is considered as an apparent drug-transporter, integral membrane protein, and member of major facilitator superfamily (MFS). The most widely used techniques, i.e., homology modeling, molecular docking, and molecular dynamics (MD) simulation in the field of structural bioinformatics, have been used in the present work to study the behavior of Rv1250 protein from M. tuberculosis. The structure of unknown TB protein, i.e., Rv1250 was retrived using homology modeling with the help of I-TASSER server. Further, one of the sites responsible for infection was identified and docking was done by using the specific Isoniazid ligand which is an inhibitor of this protein. Finally, the stability of protein model and analysis of stable and static interaction between protein and ligand molecular dynamic simulation was performed at 100 ns The designing of novel Rv1250 enzyme inhibitors is likely achievable with the use of proposed predicted model, which could be helpful in preventing the pathogenesis caused by M. tuberculosis. Finally, the MD simulation was done to evaluate the stability of the ligand for the specific protein.
Collapse
Affiliation(s)
- Sumita Choudhary
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Department of Biotechnology and Microbiology, Kannur University, Dr. E. K. Janaki Ammal Campus, PalayadKannur, Kerala, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| | - Vijay Juneja
- Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
| | - Sheetal Thakur
- University Centre for Research & Development, Department of Biotechnology, Chandigarh University, Gharuan-Mohali, Punjab, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| |
Collapse
|
5
|
Differential Impact of the rpoB Mutant on Rifampin and Rifabutin Resistance Signatures of Mycobacterium tuberculosis Is Revealed Using a Whole-Genome Sequencing Assay. Microbiol Spectr 2022; 10:e0075422. [PMID: 35924839 PMCID: PMC9430608 DOI: 10.1128/spectrum.00754-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Drug resistance in Mycobacterium tuberculosis (MTB) has long been a serious health issue worldwide. Most drug-resistant MTB isolates were identified due to treatment failure or in clinical examinations 3~6 months postinfection. In this study, we propose a whole-genome sequencing (WGS) pipeline via the Nanopore MinION platform to facilitate the efficacy of phenotypic identification of clinical isolates. We used the Nanopore MinION platform to perform WGS of clinical MTB isolates, including susceptible (n = 30) and rifampin- (RIF) or rifabutin (RFB)-resistant isolates (n = 20) according to results of a susceptibility test. Nonsynonymous variants within the rpoB gene associated with RIF resistance were identified using the WGS analytical pipeline. In total, 131 variants within the rpoB gene in RIF-resistant isolates were identified. The presence of the emergent Asp531Gly or His445Gln was first identified to be associated with the rifampin and rifabutin resistance signatures of clinical isolates. The results of the minimum inhibitory concentration (MIC) test further indicated that the Ser450Leu or the mutant within the rifampin resistance-determining region (RRDR)-associated rifabutin-resistant signature was diminished in the presence of novel mutants, including Phe669Val, Leu206Ile, or Met148Leu, identified in this study. IMPORTANCE Current approaches to diagnose drug-resistant MTB are time-consuming, consequently leading to inefficient intervention or further disease transmission. In this study, we curated lists of coding variants associated with differential rifampin and rifabutin resistant signatures using a single molecule real-time (SMRT) sequencing platform with a shorter hands-on time. Accordingly, the emerging WGS pipeline constitutes a potential platform for efficacious and accurate diagnosis of drug-resistant MTB isolates.
Collapse
|
6
|
Dass SA, Balakrishnan V, Arifin N, Lim CSY, Nordin F, Tye GJ. The COVID-19/Tuberculosis Syndemic and Potential Antibody Therapy for TB Based on the Lessons Learnt From the Pandemic. Front Immunol 2022; 13:833715. [PMID: 35242137 PMCID: PMC8886238 DOI: 10.3389/fimmu.2022.833715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
2020 will be marked in history for the dreadful implications of the COVID-19 pandemic that shook the world globally. The pandemic has reshaped the normality of life and affected mankind in the aspects of mental and physical health, financial, economy, growth, and development. The focus shift to COVID-19 has indirectly impacted an existing air-borne disease, Tuberculosis. In addition to the decrease in TB diagnosis, the emergence of the TB/COVID-19 syndemic and its serious implications (possible reactivation of latent TB post-COVID-19, aggravation of an existing active TB condition, or escalation of the severity of a COVID-19 during TB-COVID-19 coinfection), serve as primary reasons to equally prioritize TB. On a different note, the valuable lessons learnt for the COVID-19 pandemic provide useful knowledge for enhancing TB diagnostics and therapeutics. In this review, the crucial need to focus on TB amid the COVID-19 pandemic has been discussed. Besides, a general comparison between COVID-19 and TB in the aspects of pathogenesis, diagnostics, symptoms, and treatment options with importance given to antibody therapy were presented. Lastly, the lessons learnt from the COVID-19 pandemic and how it is applicable to enhance the antibody-based immunotherapy for TB have been presented.
Collapse
Affiliation(s)
- Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Tissue Engineering Centre (TEC), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
7
|
Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 2021; 170:106103. [PMID: 34936936 DOI: 10.1016/j.ejps.2021.106103] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Jiun Yee Chee
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Manoj Lakshmanan
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Chai Fung Chin
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
8
|
Kazakova O, Racoviceanu R, Petrova A, Mioc M, Militaru A, Udrescu L, Udrescu M, Voicu A, Cummings J, Robertson G, Ordway DJ, Slayden RA, Șoica C. New Investigations with Lupane Type A-Ring Azepane Triterpenoids for Antimycobacterial Drug Candidate Design. Int J Mol Sci 2021; 22:12542. [PMID: 34830423 PMCID: PMC8621456 DOI: 10.3390/ijms222212542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Roxana Racoviceanu
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Anastasiya Petrova
- Ufa Institute of Chemistry, The Ufa Federal Research Centre, The Russian Academy of Sciences, 71, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Marius Mioc
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| | - Adrian Militaru
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Lucreția Udrescu
- Department I-Drug Analysis, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 2 Vasile Pârvan Blvd., 300223 Timişoara, Romania; (A.M.); (M.U.)
| | - Adrian Voicu
- Department III-Informatics and Medical Biostatistics, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Jason Cummings
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Gregory Robertson
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Diane J. Ordway
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Richard A. Slayden
- Department of Microbiology, Immunology & Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA; (J.C.); (G.R.); (D.J.O.); (R.A.S.)
| | - Codruța Șoica
- Department II-Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.R.); (M.M.); (C.Ș.)
- Res Ctr Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. 2, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Mugumbate G, Nyathi B, Zindoga A, Munyuki G. Application of Computational Methods in Understanding Mutations in Mycobacterium tuberculosis Drug Resistance. Front Mol Biosci 2021; 8:643849. [PMID: 34651013 PMCID: PMC8505691 DOI: 10.3389/fmolb.2021.643849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the End TB Strategy by the World Health Organization aiming for zero deaths, disease, and suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play a major role in conferring drug resistance within Mtb; hence, computational methods and tools are being used to understand the mechanisms by which they facilitate drug resistance. In this article, computational techniques such as molecular docking and molecular dynamics are applied to explore point mutations and their roles in affecting binding affinities for anti-TB drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of computational techniques, chemoinformatics, and bioinformatics in molecular biosciences and resources supporting machine learning techniques are in abundance, and this has seen a spike in its use to predict mutations in Mtb. This article highlights the importance of molecular modeling in deducing how point mutations in proteins confer resistance through destabilizing binding sites of drugs and effectively inhibiting the drug action.
Collapse
Affiliation(s)
- Grace Mugumbate
- Department of Chemical Sciences, Midlands State University, Gweru, Zimbabwe
| | - Brilliant Nyathi
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Albert Zindoga
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Gadzikano Munyuki
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
10
|
Balupuri A, Balasubramanian PK, Cho SJ. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Analysis of mutations leading to para-aminosalicylic acid resistance in Mycobacterium tuberculosis. Sci Rep 2019; 9:13617. [PMID: 31541138 PMCID: PMC6754364 DOI: 10.1038/s41598-019-48940-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Thymidylate synthase A (ThyA) is the key enzyme involved in the folate pathway in Mycobacterium tuberculosis. Mutation of key residues of ThyA enzyme which are involved in interaction with substrate 2′-deoxyuridine-5′-monophosphate (dUMP), cofactor 5,10-methylenetetrahydrofolate (MTHF), and catalytic site have caused para-aminosalicylic acid (PAS) resistance in TB patients. Focusing on R127L, L143P, C146R, L172P, A182P, and V261G mutations, including wild-type, we performed long molecular dynamics (MD) simulations in explicit solvent to investigate the molecular principles underlying PAS resistance due to missense mutations. We found that these mutations lead to (i) extensive changes in the dUMP and MTHF binding sites, (ii) weak interaction of ThyA enzyme with dUMP and MTHF by inducing conformational changes in the structure, (iii) loss of the hydrogen bond and other atomic interactions and (iv) enhanced movement of protein atoms indicated by principal component analysis (PCA). In this study, MD simulations framework has provided considerable insight into mutation induced conformational changes in the ThyA enzyme of Mycobacterium.
Collapse
|
12
|
Patra P, Mondal N, Patra BC, Bhattacharya M. Epitope-Based Vaccine Designing of Nocardia asteroides Targeting the Virulence Factor Mce-Family Protein by Immunoinformatics Approach. Int J Pept Res Ther 2019; 26:1165-1176. [PMID: 32435172 PMCID: PMC7223102 DOI: 10.1007/s10989-019-09921-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2019] [Indexed: 12/23/2022]
Abstract
Nocardia asteroides is the main causative agent responsible for nocardiosis disease in immunocompromised patient viz. Acquired Immunodeficiency Syndrome (AIDS), malignancy, diabetic, organ recipient and genetic disorders. The virulence factor and outer membrane protein pertains immense contribution towards the designing of epitopic vaccine and limiting the robust outbreak of diseases. While epitopic based vaccine element carrying B and T cell epitope along with adjuvant is highly immunoprophylactic in nature. Present research equips immunoinformatics to figure out the suitable epitopes for effective vaccine designing. The selected epitopes VLGSSVQTA, VNIELKPEF and VVPSNLFAV amino acids sequence are identified by HLA-DRB alleles of both MHC class (MHC-I and II) molecules. Simultaneously, these also accessible to B-cell, confirmed through the ABCPred server. Antigenic property expression is validated by the Vaxijen antigenic prediction web portal. Molecular docking between the epitopes and T cell receptor delta chain authenticate the accurate interaction between epitope and receptor with significantly low binding energy. Easy access of epitopes to immune system also be concluded as transmembrane nature of the protein verified by using of TMHMM server. Appropriate structural identity of the virulence factor Mce-family protein generated through Phyre2 server and subsequently validated by ProSA and PROCHECK program suite. The structural configuration of theses epitopes also shaped using DISTILL web server. Both the structure of epitopes and protein will contribute a significant step in designing of epitopic vaccine against N. asteroides. Therefore, such immunoinformatics based computational drive definitely provides a conspicuous impel towards the development of epitopic vaccine as a promising remedy of nocardiosis.
Collapse
Affiliation(s)
- Prasanta Patra
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Niladri Mondal
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Bidhan Chandra Patra
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India.,2Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Manojit Bhattacharya
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India.,2Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| |
Collapse
|
13
|
Genetic Diversity of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in the Capital of Iran, Revealed by Whole-Genome Sequencing. J Clin Microbiol 2019; 57:JCM.01477-18. [PMID: 30404943 DOI: 10.1128/jcm.01477-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
The emergence and spread of multidrug resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains is a critical global health problem. Between 2014 and 2018, 606 MTBC strains were isolated from 13,892 suspected pulmonary tuberculosis (TB) patients in Tehran, Iran, including 16 (2.6%) MDR-TB cases. A combination of phenotypic and genotypic methods (whole-genome sequencing) was employed for the identification of additional drug resistances and strain-to-strain genetic distances as a marker for recent transmission events. MDR and extensively drug-resistant (XDR) TB cases were almost exclusively infected by lineage 2/Beijing strains (14/16, P < 0.001). We further showed that recent transmission and/or recent introduction of lineage 2/Beijing strains contribute to high XDR-TB rates among all MDR-TB cases and should be considered an emerging threat for TB control in Tehran. In addition, the extensive pre-existing drug resistance profiles of MDR/XDR strains will further challenge TB diagnostics in the region.
Collapse
|
14
|
Characterization of Mutations Conferring Resistance to Rifampin in Mycobacterium tuberculosis Clinical Strains. Antimicrob Agents Chemother 2018; 62:AAC.01093-18. [PMID: 30061294 DOI: 10.1128/aac.01093-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Resistance of Mycobacterium tuberculosis to rifampin (RMP), mediated by mutations in the rpoB gene coding for the beta-subunit of RNA polymerase, poses a serious threat to the efficacy of clinical management and, thus, control programs for tuberculosis (TB). The contribution of many individual rpoB mutations to the development and level of RMP resistance remains elusive. In this study, the incidence of mutations throughout the rpoB gene among 115 Mycobacterium tuberculosis clinical isolates, both resistant and susceptible to RMP, was determined. Of the newly discovered rpoB mutations, the role of three substitutions in the causation of RMP resistance was empirically tested. The results from in vitro mutagenesis experiments were combined with the assessment of the prevalence of rpoB mutations, and their reciprocal co-occurrences, across global M. tuberculosis populations. Twenty-two different types of mutations in the rpoB gene were identified and distributed among 58 (89.2%) RMP-resistant strains. The MICs of RMP were within the range of 40 to 800 mg/liter, with MIC50 and MIC90 values of 400 and 800 mg/liter, respectively. None of the mutations (Gln429His, Met434Ile, and Arg827Cys) inspected for their role in the development of RMP resistance produced an RMP-resistant phenotype in isogenic M. tuberculosis H37Rv strain-derived mutants. These mutations are supposed to compensate for fitness impairment incurred by other mutations directly associated with drug resistance.
Collapse
|
15
|
Prakash R, Gupta R, Katoch VM, Tiwari PK. Molecular modelling and docking analysis of katG and rpoB gene in MDR-TB isolates from North Central Indian population. J Infect Public Health 2017; 10:593-599. [DOI: 10.1016/j.jiph.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/10/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022] Open
|
16
|
Singh A, Grover S, Sinha S, Das M, Somvanshi P, Grover A. Mechanistic Principles Behind Molecular Mechanism of Rifampicin Resistance in Mutant RNA Polymerase Beta Subunit of
Mycobacterium tuberculosis. J Cell Biochem 2017; 118:4594-4606. [DOI: 10.1002/jcb.26124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Aditi Singh
- Department of BiotechnologyTERI UniversityVasant KunjNew Delhi110 070India
- School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110067India
| | - Sonam Grover
- Kusuma School of Biological SciencesIIT DelhiNew Delhi110016India
| | - Siddharth Sinha
- Department of BiotechnologyTERI UniversityVasant KunjNew Delhi110 070India
| | - Mriganko Das
- School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110067India
| | - Pallavi Somvanshi
- Department of BiotechnologyTERI UniversityVasant KunjNew Delhi110 070India
| | - Abhinav Grover
- School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
17
|
Phelan J, Coll F, McNerney R, Ascher DB, Pires DEV, Furnham N, Coeck N, Hill-Cawthorne GA, Nair MB, Mallard K, Ramsay A, Campino S, Hibberd ML, Pain A, Rigouts L, Clark TG. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 2016; 14:31. [PMID: 27005572 PMCID: PMC4804620 DOI: 10.1186/s12916-016-0575-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/02/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. METHODS To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. RESULTS The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. CONCLUSIONS Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to improve the design of tuberculosis control measures, such as diagnostics, and inform patient management.
Collapse
Affiliation(s)
- Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,University of Cape Town Lung Institute, Lung Infection & Immunity Unit, Old Main Building, Groote Schuur Hospital, Observatory, Cape Town, 7925, South Africa
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Douglas E V Pires
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, Brazil
| | - Nick Furnham
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nele Coeck
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Grant A Hill-Cawthorne
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mridul B Nair
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kim Mallard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Andrew Ramsay
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organisation, Geneva, Switzerland
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, Antwerp University, Antwerp, Belgium
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. .,Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK. .,Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|