1
|
Lin YT, Chen KT, Hsu CC, Liu HL, Jiang YT, Ho CW, Chen JC, Li HY, Weng CC, Hsu PH. Stimulation of dorsal root ganglion with low-intensity focused ultrasound ameliorates pain responses through the GABA inhibitory pathway. Life Sci 2024:123323. [PMID: 39709165 DOI: 10.1016/j.lfs.2024.123323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
AIMS Chronic pain is a critical public health issue that severely impacts quality of life and poses significant treatment challenges, particularly due to the risk of adverse effects associated with pharmacological therapies. The search for effective non-invasive treatment alternatives has become increasingly relevant. Low-intensity focused ultrasound (LIFU) has been identified as an effective non-invasive strategy for pain management, although the underlying mechanism remains unclear. This study aimed to evaluate the analgesic effects and cellular mechanisms of LIFU-induced neuromodulation targeted on dorsal root ganglia (DRG) in both inflammatory and neuropathic pain models. MATERIALS AND METHODS The study adopted in vivo complete Freund's adjuvant-induced inflammatory pain and chronic constriction injury-induced neuropathic pain rat models, along with ex vivo DRG primary cultures. KEY FINDINGS The application of LIFU resulted in a time-dependent analgesic response in both pain models. The neurophysiological analyses revealed that LIFU activated GABAergic neurons and deactivated CGRP-expressing neurons triggered by noxious stimuli. The analgesic effects of LIFU and the LIFU-deactivated CGRP-containing neurons were reversed by injecting GABA antagonist to the L5 DRG, confirming the mediation of these effects through the GABAergic pathways. Ex vivo LIFU stimulation of DRG resulted in increased GABA release and decreased capsaicin-triggered CGRP cascades, further supporting in vivo findings. SIGNIFICANCE We demonstrate, for the first time, that LIFU modulates the GABA-CGRP pathways in the peripheral sensory neurons to alleviate pain, which underscores the importance of GABAergic systems in LIFU-induced analgesia. Our results reveal potential clinical applications of FUS for pain management through the peripheral nervous system.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition & TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan.
| | - Ko-Ting Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy & Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 106319, Taiwan
| | - Yu-Ting Jiang
- Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chieh-Wen Ho
- Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Jin-Chung Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology, Chang Gung University, Taoyuan 33302, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hui-Yun Li
- Department of Natural Sciences, Oregon Institute of Technology, Klamath Falls, OR 97601, USA
| | - Chi-Chang Weng
- Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Hung Hsu
- Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| |
Collapse
|
2
|
Lee SY, Hsiung NH, Chapman KB, Cheng YK, Huang CL, Chen KB, Chang CH, Wen YR. A pilot study of novel ultrahigh-frequency dorsal root ganglia stimulation for chronic lower limb pain: Focusing on safety and feasibility. Pain Pract 2024. [PMID: 39560335 DOI: 10.1111/papr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
OBJECTIVES This single-arm, open-label, single-center observational pilot study assessed the safety and efficacy of ultrahigh-frequency dorsal root ganglia (UHF-DRG) stimulation in patients with chronic leg pain with or without low back pain. Such high-frequency electrostimulation had not been conducted in the human central nervous system previously. MATERIALS AND METHODS The primary objective was to evaluate the safety of UHF-DRG stimulation (2 Hz pulses with 50 msec pulse-width and 500 kHz intrapulse sine waves, 5-min duration per stimulation) by identifying incident adverse events (AE) and severe adverse events (SAE) during the trial. The secondary objectives included assessment of pain reduction using a numerical rating score (NRS), presence of paraesthesia, and changes in four pain medications (weak opioids, anticonvulsants, antidepressants, and non-steroid-anti-inflammatory drugs). One DRG lead was implanted for one day then removed, and the patients received maximal three times of UHF stimulation in total. RESULTS The study focused on ten cases. Two of them did not complete the study due to difficulty of lead implantation. There was no SAE in this trial. Among the ten cases, AEs occurred in eight, three experienced injection-related local pain and one of them had a post-dural-puncture headache, others had symptoms un-related to implantation procedure or UHF stimulation. The average NRS was reduced from 6.4 ± 1.1 at baseline to 2.9 ± 1.1 on the second-day post-implantation, and it was striking that the NRS was maintained at 3.6 ± 2.8 until 2 days after lead removal. The results showed a trend of lower frequency in medication use for all types of analgesics. CONCLUSIONS In this first-in-human pilot study, we discovered that intermittent pulsed UHF-DRG stimulations ameliorated chronic lower limb pain for an extended period in humans. Our finding opens up a new neuromodulatory concept and may initiate a novel paradigm for treating intractable pain.
Collapse
Affiliation(s)
- Shang-Yi Lee
- Department of Anesthesiology, Taichung Veterans General Hospital Puli Branch, Nantou, Taiwan
| | - Nai-Huan Hsiung
- Department of Nursing and Graduate Institute of Nursing, Asia University, Taichung, Taiwan
| | - Kenneth B Chapman
- Department of Anesthesiology, New York University Langone Medical Center, New York City, New York, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Liang Huang
- Department of Psychiatry, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | | | - Yeong-Ray Wen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Gimer Medical Co. Ltd., Taipei, Taiwan
- Chun Chuan Orthopedic and Pain Specialty Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin Alleviates CCI-Induced Neuropathic Pain in Rats by Modulating the IL34/CSFIR Axis and Attenuating the Schwann Cell-Macrophage Cascade Response in the DRG. Mol Neurobiol 2024; 61:5027-5041. [PMID: 38159197 DOI: 10.1007/s12035-023-03876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the potential therapeutic applications of (+)-catechin in the treatment of neuropathic pain. In vivo study, 32 SD rats were randomly divided into four groups: sham group, chronic constriction injury (CCI) group, CCI + ibuprofen group and CCI+ (+)-catechin group. They were subjected to behavioural tests, ELISA, immunohistochemistry and Western blotting. The mechanisms involved were investigated using specific inhibitors in cell experiments. Results of in vivo experiments showed that (+)-catechin could reduce the cold sensitivity pain in a rat model of CCI; ELISA and immunohistochemistry results showed that (+)-catechin could decrease the levels of IL-8, IL-6, TNF-α, CCL2 and CCL5 in serum and the expression levels of nNOS, COX2, IL6, TNF-α, IBA-1 and CSF1R in DRG of CCI rats. Finally, western blot confirmed that (+)-catechin could diminish the levels of IL-34/CSF1R/JAK2/STAT3 signalling pathway in DRG of CCI rats. In vitro studies showed that (+)-catechin reduced IL-34 secretion in LPS-induced RSC96 cells. Meanwhile, (+)-catechin administration in LPS-induced Schwann cell-conditioned medium (L-CM) significantly inhibited the proliferation and migration of RAW264.7 cells; in addition, L-CM+(+)-catechin reduced the activation of the CSF1R/JAK2/STAT3 signalling pathway. (+)-Catechin attenuated the Schwann cell-macrophage cascade response in the DRG by modulating the IL34/CSFIR axis and inhibiting activation of the JAK2/STAT3 pathway, thereby attenuating CCI-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Zhang S, Chen L, Ladez SR, Seferge A, Liu J, Feng B. Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation. Front Neurosci 2024; 18:1404903. [PMID: 39077428 PMCID: PMC11284050 DOI: 10.3389/fnins.2024.1404903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction We recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). Methods We explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. Results Suprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50-1000 Hz stimulation and C-fibers blocked by 10-50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. Discussion The current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
5
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
6
|
Zhu X, Jia Z, Zhou Y, Wu J, Cao M, Hu C, Yu L, Chen Z. Current advances in the pain treatment and mechanisms of Traditional Chinese Medicine. Phytother Res 2024. [PMID: 39031847 DOI: 10.1002/ptr.8259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese Medicine (TCM), as a unique medical model in China, has been shown to be effective in the treatment of many diseases. It has been proven that TCM can increase the pain threshold, increase the level of endorphins and enkephalins in the body, and reduce the body's response to adverse stimuli. In recent years, TCM scholars have made valuable explorations in the field of pain treatment, using methods such as internal and external application of TCM and acupuncture to carry out research on pain treatment and have achieved more satisfactory results. TCM treats pain in a variety of ways, and with the discovery of a variety of potential bioactive substances for pain treatment. With the new progress in the research of other TCM treatment methods for pain, TCM will have greater potential in the clinical application of pain.
Collapse
Affiliation(s)
- Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Abd-Elsayed A, Moghim R, Reffat N. Dorsal root ganglion stimulation (DRG-s) for potential resolution of restless leg syndrome symptoms and increased cost savings for patients: A case study. Pain Pract 2024; 24:805-807. [PMID: 38239056 DOI: 10.1111/papr.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
INTRODUCTION We report successful use of dorsal root ganglion stimulation (DRG-s) to treat a patient with persistent symptoms of restless leg syndrome (RLS). METHODS The treatment involved the placement of a small device millimeters away from the patient's DRG, which are nerves near the spinal cord that carry sensory information from the periphery of the body to the brain. The device automatically delivers electrical impulse to the DRG to alter and decrease pain perception in the brain. RESULTS Our case report elucidates the use of this procedure as a targeted therapy for RLS, with a nearly 90% reduction in reported symptoms in our patient, thus potentially reducing morbidity associated with this condition. Furthermore, we report a 10-year cost savings of nearly $90,000 following DRG-s for our patient. CONCLUSION This case study aims to demonstrate the effectiveness of DRG-s neuromodulation in managing RLS, a condition that is often difficult and costly to treat.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Noora Reffat
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Liu Y, Gao H, Shang Y, Sun S, Guan W, Zheng T, Wu L, Cong M, Zhang L, Li G. IKVAV functionalized oriented PCL/Fe 3O 4 scaffolds for magnetically modulating DRG growth behavior. Colloids Surf B Biointerfaces 2024; 239:113967. [PMID: 38761494 DOI: 10.1016/j.colsurfb.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yuqing Shang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Linliang Wu
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; The People's Hospital of Rugao, Affiliated Hospital of Nantong University, Nantong 226599, PR China
| | - Meng Cong
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Cornish P, Humphrey N, Cornish A, Emmerson RB. An in silico analysis of neuromodulation for pain relief: Determining the role of classical electrodynamics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3813. [PMID: 38508998 DOI: 10.1002/cnm.3813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
There has been ongoing debate about the efficacy and mechanism of action of neuromodulation devices in pain relief applications. It has recently been suggested that both issues may be resolved if electromagnetic theory is incorporated into the understanding and application of this technology, and we therefore undertook an in silico analysis to further explore this idea. We created a CAD replication of a standard neuromodulation electrode array with a generic linear 3/6 mm 8-contact lead, developed a parameterized algorithmic model for the pulse delivered by the device and assigned material properties to biologic media to accurately reflect their electromagnetic properties. We then created a physical simulation of the device's output both in air and in the biophysical environment. The simulations confirmed the presence of an electromagnetic field (EM field). Variations in programming of the device affected the strength of the EM field by orders of magnitude. The biologic media all absorbed the EM field, an effect which was particularly pronounced in cerebrospinal fluid and muscle. We discuss the implications of all these findings in relation to the literature. We suggest that knowledge of electromagnetic theory and its application within the biophysical space is required for the optimal use of neuromodulation devices in pain relief applications.
Collapse
Affiliation(s)
- Philip Cornish
- Specialised Pain Medicine Pty Ltd, Adelaide, South Australia, Australia
| | - Nabil Humphrey
- Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, South Australia, Australia
| | - Anne Cornish
- Specialised Pain Medicine Pty Ltd, Adelaide, South Australia, Australia
| | | |
Collapse
|
10
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
11
|
Rees TA, Tasma Z, Garelja ML, O'Carroll SJ, Walker CS, Hay DL. Calcitonin receptor, calcitonin gene-related peptide and amylin distribution in C1/2 dorsal root ganglia. J Headache Pain 2024; 25:36. [PMID: 38481170 PMCID: PMC10938748 DOI: 10.1186/s10194-024-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Michael L Garelja
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand.
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
12
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Fatima K, Javed SO, Saleem A, Marsia S, Zafar R, Noorani K, Kumar S, Ali SM, Ismail I, Hashim I, Ganatra FA. Long-term efficacy of spinal cord stimulation for chronic primary neuropathic pain in the contemporary era: a systematic review and meta-analysis. J Neurosurg Sci 2024; 68:128-139. [PMID: 36943763 DOI: 10.23736/s0390-5616.23.05930-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Spinal cord stimulation (SCS) is a modern neuromodulation technique extensively proven to be an effective modality for treatment of chronic neuropathic pain. It has been mainly studied for complex regional pain syndrome (CRPS) and failed back surgery syndrome (FBSS) and recent data almost uniformly establishes its statistically significant positive therapeutic results. It has also been compared with other available treatment modalities across various studies. However, long term data on maintenance of its efficacious potential remains less explored. Few studies have reported data on long follow-up times (>= 12 months) and have compared its efficacy with other treatment options for chronic pain, respectively. Our study pools and analyzes the available data and compares SCS with other treatment options. It also analyzes the efficacy of SCS in long term management of patients with chronic pain. EVIDENCE ACQUISITION We reviewed all the data available on MEDLINE, Embase and Cochrane CENTRAL using a search strategy designed to fit our pre-set inclusion and exclusion criteria. Both single-arm and double-arm studies were included. The primary outcome was defined as decrease of visual analogue scale (VAS) by >50% at 6, 12 and/or 24 months after SCS. EVIDENCE SYNTHESIS According to the pooled data of double-arm studies, SCS has unanimously proven its superiority over other treatment options at 6 months follow-up; however it fails to prove statistically significant difference in results at longer treatment intervals. Dorsal root ganglion stimulation, a relatively recent technique with the same underlying physiologic mechanisms as SCS, showed far more promising results than SCS. Single-arm studies show around 70% patients experiencing greater than 50% reduction in their VAS scores at 6 and 12 months. CONCLUSIONS SCS is a viable option for management of chronic neuropathic pain secondary to FBSS and CRPS. However, data available for its long term efficacy remains scarce and show no further statistically significant results.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed O Javed
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Aqsa Saleem
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Shayan Marsia
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Ramsha Zafar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Komal Noorani
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Sahlish Kumar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan -
| | - Sara M Ali
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Iqra Ismail
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Insiya Hashim
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Fatima A Ganatra
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
14
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Santos SS, de Souza MB, Lauria PSS, Juiz PJL, Villarreal CF, Viana MDM. Technological Trends Involving Probiotics in the Treatment of Diabetic Neuropathy: A Patent Review (2009-2022). Curr Diabetes Rev 2024; 20:e220523217168. [PMID: 37221688 DOI: 10.2174/1573399820666230522121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Diabetic neuropathy (DN) causes neuropathic pain, and current treatments are unsatisfactory. Recently studies have demonstrated an assertive correlation between gut microbiota and pain modulation. OBJECTIVE Considering the emerging search for new therapies for the control of DN and the growing commercial interest in the probiotics market, this study aimed to provide patents on the use of probiotics in the control of DN. METHODS This is a patent prospection performed in the Espacenet Patent database, using the association of keywords and IPC related to probiotics in medical preparations and foods, from 2009 to December 2022. RESULTS Results have shown that in 2020, there was a boom in patent filing in the area. Asian countries accounted for more than 50% of all 48 inventions (n = 48), with Japan as the only applicant in 2021. Products being developed in recent years point to effects that may represent an advancement in DN treatment, such as reduced concentration of pro-inflammatory mediators, metabolites and neurotransmitters release, and hypoglycemic potential. All effects were more related to the Lactobacillus and Bifidobacterium genera, associated with more than one property mentioned. CONCLUSION The mechanisms attributed to the microorganisms suggest the therapeutic potential of probiotics in the non-pharmacological treatment of pain. New applications for probiotics have resulted from great research interest by academia, but also reflect commercial interests despite the paucity of clinical trials. Thus, the present work supports the evolution of research to explore the benefits of probiotics and their clinical use in DN.
Collapse
Affiliation(s)
- Sthefane Silva Santos
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariana Bastos de Souza
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Cristiane Flora Villarreal
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Max Denisson Maurício Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
16
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Ji H, Kim KR, Park JJ, Lee JY, Sim Y, Choi H, Kim S. Combination Gene Delivery Reduces Spinal Cord Pathology in Rats With Peripheral Neuropathic Pain. THE JOURNAL OF PAIN 2023; 24:2211-2227. [PMID: 37442406 DOI: 10.1016/j.jpain.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Hyelin Ji
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jang-Joon Park
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Ju Youn Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Yeomoon Sim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Business Development, Handok Inc., Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Healthcare Research Institute, Kolon Advanced Research Center, Kolon Industries, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
18
|
Krawczyk A, Mozel S, Rycerz K, Jaworska-Adamu J, Arciszewski MB. Immunoreactivity of glutamine synthetase in satellite glia around various subpopulations of lumbar dorsal root ganglia neurons in adult rats treated with monosodium glutamate. J Chem Neuroanat 2023; 134:102347. [PMID: 37838216 DOI: 10.1016/j.jchemneu.2023.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Satellite glial cells (SGCs), involved inter alia in glutamate (Glu) metabolism, form a glial sheath around sensory neurons of dorsal root ganglia (DRGs). SGCs show a presence of glutamine synthetase (GS) which transform uptaken Glu into glutamine (Gln). In DRGs, this aminoacid is used mainly by small neurons which are able to synthetize substance P (SP) that play a crucial role in nociception. The aim of the study was to define the influence of monosodium glutamate (MSG) on GS immunoreactivity in satellite glia around various subpopulations of neurons including SP immunopositive cells in DRGs of adult rats. The studies were carried out on lumbar DRGs slides in rats which received subcutaneous injection of saline solution (control group) or 4 g/kg b. w. of MSG (MSG group). Immunofluorescence reactions were conducted with use of anti-GS and anti-SP antibodies. Administration of MSG to adult rats increased the GS immunoexpression in SGCs. In rats receiving MSG, a number of small neurons with GS-immunopositive glial sheath was not altered when compared to control individuals, whereas there was a statistically significant increase of GS immunoexpression in SGCs around large and medium neurons. Moreover, in these animals, a statistically significant increase in the number of small SP-positive neurons with GS-positive glial sheath was observed. SP is responsible for transmission of pain, thus the obtained results may be useful for further research concerning the roles of glia in nociceptive pathway regulation.
Collapse
Affiliation(s)
- Aleksandra Krawczyk
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Sylwia Mozel
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland.
| | - Karol Rycerz
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Jadwiga Jaworska-Adamu
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Marcin Bartłomiej Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| |
Collapse
|
19
|
Graca MJ, Lubenow TR, Landphair WR, McCarthy RJ. Efficacy and Safety of Cervical and High-Thoracic Dorsal Root Ganglion Stimulation Therapy for Complex Regional Pain Syndrome of the Upper Extremities. Neuromodulation 2023; 26:1781-1787. [PMID: 36402657 DOI: 10.1016/j.neurom.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate analgesic and safety considerations for high thoracic and cervical dorsal root ganglion (DRG) neuromodulation for complex regional pain syndrome (CRPS). We hypothesized that DRG neuromodulation would provide sustained analgesia with complications like that of low thoracic or lumbar electrode implantation. MATERIALS AND METHODS A single-center, retrospective study was conducted of patients with CRPS I or II of the upper extremities, refractory to previous therapies, who were treated with DRG neuromodulation in the upper thoracic and cervical spine. The primary outcome was successful DRG therapy, defined as ≥ 50% pain relief on a Numeric Rating Scale (NRS) 0 to 10 pain scale at six months after implantation. A secondary outcome was a reduction in daily opioid use after DRG therapy. RESULTS After a DRG stimulation trial, 17 of 20 patients (85%) had ≥ 50% improvement in NRS pain and underwent a permanent pulse generator implant, with 100% endorsing ≥ 50% pain relief at six months. Mean NRS pain scores before DRG neuromodulation were 9.3 ± 1.1, with a mean reduction of 5.5 (95% CI, 4.5-6.6; p < 0.001) at six months. Ten patients were taking opioids at baseline; the median (interquartile range) dose was 45 mg (23 to 120) morphine equivalents (MME), which was reduced to 20 MME (15 to 40) at six months. The median reduction in daily MME use was -25 (95% CI, -100 to 20; p = 0.099). Six of 20 patients (30%) experienced a complication: three had lead migration; two experienced paresthesias; and one had a reduction in shoulder mobility. One patient had symptoms of a reversible spinal cord compression immediately after implant, requiring emergent electrode removal. CONCLUSIONS DRG neuromodulation for patients with CRPS of the upper extremities produced clinically important analgesia and reduced opioid use for ≥ six months but was associated with one serious complication.
Collapse
Affiliation(s)
- Mateusz J Graca
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Timothy R Lubenow
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA.
| | - William R Landphair
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Robert J McCarthy
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
20
|
Deng Y, Tang S, Cheng J, Zhang X, Jing D, Lin Z, Zhou J. Integrated analysis reveals Atf3 promotes neuropathic pain via orchestrating JunB mediated release of inflammatory cytokines in DRG macrophage. Life Sci 2023; 329:121939. [PMID: 37451398 DOI: 10.1016/j.lfs.2023.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The dorsal root ganglion (DRG) is actively involved in the development of neuropathic pain (NP), serving as an intermediate station for pain signals from the peripheral nervous system to the central nervous system. The mechanism by which DRG is involved in NP regulation is not fully understood. The immune system plays a pivotal role in the physiological and pathological states of the human body. In recent years, the immune system has been thought to play an increasingly important role in the pathogenesis of NP. The immune system plays a key role in pain through specific immune cells and their immune-related genes (IRGs). However, the mechanism by which IRGs of DRG regulate NP action has not been fully elucidated. Here, we performed Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of IRGs in DRG bulk-RNA sequencing data from spared nerve injury (SNI) model mice and found that their IRGs were enriched in many pathways, especially in the immune response pathway. Subsequently, we analyzed single-cell RNA sequencing (scRNA-seq) data from DRGs extracted from the SNI model and identified eight cell populations. Among them, the highest IRG activity was presented in macrophages. Next, we analyzed the scRNA and bulk-sequencing data and deduced five common transcription factors (TFs) from differentially expressed genes (DEGs). The protein-protein interaction (PPI) network suggested that Atf3 and JunB are closely related. In vitro experiments, we verified that the protein and mRNA expressions of Atf3 and JunB were up-regulated in macrophages after lipopolysaccharide (LPS) stimulation. Moreover, the down-regulation of Atf3 reduced the release of inflammatory cytokines and decreased the protein and mRNA expression levels of JunB. The down-regulation of JunB also reduced the release of inflammatory cytokines. Furthermore, overexpression of JunB attenuated the effect of Atf3 down-regulation in reducing the release of inflammatory cytokines. Therefore, we speculated that Atf3 might promote NP through JunB-mediated release of inflammatory factors in DRG macrophages.
Collapse
Affiliation(s)
- Yingdong Deng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Jiurong Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Xiangsheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Danqin Jing
- College of Anesthesiology, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Ziqiang Lin
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
21
|
Hong JY, Kim H, Yeo C, Lee J, Jeon WJ, Lee YJ, Ha IH. Epidural Injection of Harpagoside for the Recovery of Rats with Lumbar Spinal Stenosis. Cells 2023; 12:2281. [PMID: 37759506 PMCID: PMC10526993 DOI: 10.3390/cells12182281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Epidural administration is the leading therapeutic option for the management of pain associated with lumbar spinal stenosis (LSS), which is characterized by compression of the nerve root due to narrowing of the spinal canal. Corticosteroids are effective in alleviating LSS-related pain but can lead to complications with long-term use. Recent studies have focused on identifying promising medications administered epidurally to affected spinal regions. In this study, we aimed to investigate the effectiveness of harpagoside (HAS) as an epidural medication in rats with LSS. HAS at various concentrations was effective for neuroprotection against ferrous sulfate damage and consequent promotion of axonal outgrowth in primary spinal cord neurons. When two concentrations of HAS (100 and 200 μg/kg) were administered to the rat LSS model via the epidural space once a day for 4 weeks, the inflammatory responses around the silicone block used for LSS were substantially reduced. Consistently, pain-related factors were significantly suppressed by the epidural administration of HAS. The motor functions of rats with LSS significantly improved. These findings suggest that targeted delivery of HAS directly to the affected area via epidural injection holds promise as a potential treatment option for the recovery of patients with LSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea; (J.Y.H.); (H.K.); (C.Y.); (J.L.); (W.-J.J.); (Y.J.L.)
| |
Collapse
|
22
|
Hua L, Sha K, Lu H, Han Y, Ou C, Wang JL, Zhang Y. Clinical Efficacy Evaluation of Ultrasound-Guided C2 Dorsal Root Nerve Pulsed Radiofrequency Combined with Stellate Ganglion Block in the Treatment of Cervicogenic Headache: A Retrospective Cohort Study. J Pain Res 2023; 16:2655-2663. [PMID: 37533562 PMCID: PMC10392809 DOI: 10.2147/jpr.s409226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose To explore the therapeutic effect of C2 dorsal root ganglion pulsed radiofrequency (PRF) combined with stellate ganglion block (SGB) in patients with cervicogenic headache (CEH). Patients and Methods We retrospectively reviewed 90 patients diagnosed with CEH who were admitted to our hospital between May 2019 and May 2022. All patients were divided into three groups (n = 30 each) according to the actual treatment method used: ultrasound-guided SGB, ultrasound-guided C2 dorsal root ganglion PRF treatment, and ultrasound-guided C2 dorsal root ganglion PRF combined with SGB treatment. Patients' pain intensity, sleep, and mood changes were assessed by statistically analyzing their pain visual analog scale (VAS), Pittsburgh Sleep Quality Inventory (PSQI), and short-form McGill Pain Questionnaire affective item scores before and after treatment. Results The post-treatment VAS, PSQI, and McGill scores were significantly decreased in all patients (P < 0.05), and all three scores in ultrasound-guided C2 dorsal root ganglion PRF combined with SGB were lower than those in ultrasound-guided SGB alone and ultrasound-guided C2 dorsal root ganglion PRF alone (P < 0.05). Conclusion The use of ultrasound-guided C2 dorsal root ganglion PRF combined with SGB in patients with CHE is effective in alleviating pain and improving sleep, and deserves to be replicated in the clinic.
Collapse
Affiliation(s)
- Lu Hua
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| | - Kaiyuan Sha
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| | - HongCheng Lu
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| | - Ying Han
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| | - Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yue Zhang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou Southwest Medical University, Luzhou, Sichuan Province646000People’s Republic of China
| |
Collapse
|
23
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
24
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
25
|
Laksono RM, Kalim H, Rohman MS, Widodo N, Ahmad MR, Halim W. Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca 2+ Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate. J Pain Res 2023; 16:1697-1711. [PMID: 37252110 PMCID: PMC10216856 DOI: 10.2147/jpr.s409658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background The molecular mechanism of pulsed radiofrequency (PRF) in chronic pain management is not fully understood. Chronic pain involves the activation of specific N-Methyl D-Aspartate receptors (NMDAR) to induce central sensitization. This study aims to determine the effect of PRF on central sensitization biomarker phosphorylated extracellular signal-regulated kinase (pERK), Ca2+ influx, cytosolic ATP level, and mitochondrial membrane potential (Δψm) of the sensitized dorsal root ganglion (DRG) neuron following NMDAR activation. Methods This study is a true experimental in-vitro study on a sensitized DRG neuron induced with 80 µM NMDA. There are six treatment groups including control, NMDA 80 µM, Ketamine 100 µM, PRF 2Hz, NMDA 80 µM + PRF 2 Hz, and NMDA 80 µM + PRF 2 Hz + ketamine 100 µM. We use PRF 2 Hz 20 ms for 360 seconds. Statistical analysis was performed using the One-Way ANOVA and the Pearson correlation test with α=5%. Results In the sensitized DRG neuron, there is a significant elevation of pERK. There is a strong correlation between Ca2+, cytosolic ATP level, and Δψm with pERK intensity (p<0.05). PRF treatment decreases pERK intensity from 108.48 ± 16.95 AU to 38.57 ± 5.20 AU (p<0.05). PRF exposure to sensitized neurons also exhibits a Ca2+ influx, but still lower than in the unexposed neuron. PRF exposure in sensitized neurons has a higher cytosolic ATP level (0.0458 ± 0.0010 mM) than in the unexposed sensitized neuron (0.0198 ± 0.0004 mM) (p<0.05). PRF also decreases Δψm in the sensitized neuron from 109.24 ± 6.43 AU to 33.21 ± 1.769 AU (p<0.05). Conclusion PRF mechanisms related to DRG neuron sensitization are by decreasing pERK, altering Ca2+ influx, increasing cytosolic ATP level, and decreasing Δψm which is associated with neuron sensitization following NMDAR activation.
Collapse
Affiliation(s)
- Ristiawan Muji Laksono
- Doctoral Program in Biomedical Science, Faculty of Medicine, Brawijaya University, Malang, Indonesia
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
| | - Muhammad Ramli Ahmad
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Willy Halim
- Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
26
|
Beauchene C, Zurn CA, Ehrens D, Duff I, Duan W, Caterina M, Guan Y, Sarma SV. Steering Toward Normative Wide-Dynamic-Range Neuron Activity in Nerve-Injured Rats With Closed-Loop Peripheral Nerve Stimulation. Neuromodulation 2023; 26:552-562. [PMID: 36402658 PMCID: PMC10081946 DOI: 10.1016/j.neurom.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Chronic pain is primarily treated with pharmaceuticals, but the effects remain unsatisfactory. A promising alternative therapy is peripheral nerve stimulation (PNS), but it has been associated with suboptimal efficacy because its modulation mechanisms are not clear and the current therapies are primarily open loop (ie, manually adjusting the stimulation parameters). In this study, we developed a proof-of-concept computational modeling as the first step toward implementing closed-loop PNS in future biological studies. When developing new pain therapies, a useful pain biomarker is the wide-dynamic-range (WDR) neuron activity in the dorsal horn. In healthy animals, the WDR neuron activity occurs in a stereotyped manner; however, this response profile can vary widely after nerve injury to create a chronic pain condition. We hypothesized that if injury-induced changes of neuronal response can be normalized to resemble those of a healthy condition, the pathological aspects of pain may be treated while maintaining protective physiological nociception. MATERIALS AND METHODS Using an in vivo electrophysiology data set of WDR neuron recordings obtained in nerve-injured rats and naïve rats, we constructed sets of linear phenomenologic models of WDR firing rate during windup stimulation for both conditions. Then, we applied robust control systems techniques to identify a closed-loop PNS controller, which can drive the dynamics of WDR neuron response in neuropathic pain model into ranges associated with normal physiological pain. RESULTS The sets of identified linear models can accurately predict, in silico, nonlinear neural responses to electrical stimulation of the peripheral nerve. In addition, we showed that continuous closed-loop control of PNS can be used to normalize WDR neuron firing responses in three injured cases. CONCLUSIONS In this proof-of-concept study, we show how tractable, linear mathematical models of pain-related neurotransmission can be used to inform the development of closed-loop PNS. This new application of robust control to neurotechnology may also be expanded and applied across other neuromodulation applications.
Collapse
Affiliation(s)
- Christine Beauchene
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Claire A Zurn
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Ehrens
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Duff
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wanru Duan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
28
|
Yu Y, Xu X, Lin C, Liu R. Systematic identification of potential key microRNAs and circRNAs in the dorsal root ganglia of mice with sciatic nerve injury. Front Mol Neurosci 2023; 16:1119164. [PMID: 36998510 PMCID: PMC10043392 DOI: 10.3389/fnmol.2023.1119164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
BackgroundNeuropathic pain (NeP) is a pathological condition arising from a lesion or disease affecting the somatosensory system. Accumulating evidence has shown that circular RNAs (circRNAs) exert critical functions in neurodegenerative diseases by sponging microRNAs (miRNAs). However, the functions and regulatory mechanisms of circRNAs as competitive endogenous RNAs (ceRNAs) in NeP remain to be determined.MethodsThe sequencing dataset GSE96051 was obtained from the public Gene Expression Omnibus (GEO) database. First, we conducted a comparison of gene expression profiles in the L3/L4 dorsal root ganglion (DRG) of sciatic nerve transection (SNT) mice (n = 5) and uninjured mice (Control) (n = 4) to define the differentially expressed genes (DEGs). Then, critical hub genes were screened by exploring protein–protein interaction (PPI) networks with Cytoscape software, and the miRNAs bound to them were predicted and selected and then validated by qRT-PCR. Furthermore, key circRNAs were predicted and filtered, and the network of circRNA-miRNA-mRNA in NeP was constructed.ResultsA total of 421 DEGs were identified, including 332 upregulated genes and 89 downregulated genes. Ten hub genes, including IL6, Jun, Cd44, Timp1, and Csf1, were identified. Two miRNAs, mmu-miR-181a-5p and mmu-miR-223-3p, were preliminarily verified as key regulators of NeP development. In addition, circARHGAP5 and circLPHN3 were identified as key circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these differentially expressed mRNAs and targeting miRNAs were involved in signal transduction, positive regulation of receptor-mediated endocytosis and regulation of neuronal synaptic plasticity. These findings have useful implications for the exploration of new mechanisms and therapeutic targets for NeP.ConclusionThese newly identified miRNAs and circRNAs in networks reveal potential diagnostic or therapeutic targets for NeP.
Collapse
Affiliation(s)
- Youfen Yu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xueru Xu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Institute of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rongguo Liu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Rongguo Liu,
| |
Collapse
|
29
|
Hu QQ, He XF, Ma YQ, Ma LQ, Qu SY, Wang HZ, Kang YR, Chen LH, Li X, Liu BY, Shao XM, Fang JF, Liang Y, Fang JQ, Jiang YL. Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 2023; 19:29-41. [PMID: 35218450 PMCID: PMC9984662 DOI: 10.1007/s11302-022-09844-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.
Collapse
Affiliation(s)
- Qun-Qi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Qi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Li-Qian Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Si-Ying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Han-Zhi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yu-Rong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Lu-Hang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Bo-Yu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jun-Fan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jian-Qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Yong-Liang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
30
|
Lin T, Hu L, Hu F, Li K, Wang CY, Zong LJ, Zhao YQ, Zhang X, Li Y, Yang Y, Wang Y, Jiang CY, Wu X, Liu WT. NET-Triggered NLRP3 Activation and IL18 Release Drive Oxaliplatin-Induced Peripheral Neuropathy. Cancer Immunol Res 2022; 10:1542-1558. [PMID: 36255412 PMCID: PMC9716254 DOI: 10.1158/2326-6066.cir-22-0197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023]
Abstract
Oxaliplatin is an antineoplastic agent frequently used in the treatment of gastrointestinal tumors. However, it causes dose-limiting sensorimotor neuropathy, referred to as oxaliplatin-induced peripheral neuropathy (OIPN), for which there is no effective treatment. Here, we report that the elevation of neutrophil extracellular traps (NET) is a pathologic change common to both cancer patients treated with oxaliplatin and a murine model of OIPN. Mechanistically, we found that NETs trigger NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and the subsequent release of IL18 by macrophages, resulting in mechanical hyperalgesia. In NLRP3-deficient mice, the mechanical hyperalgesia characteristic of OIPN in our model was reduced. In addition, in the murine model, treatment with the IL18 decoy receptor IL18BP prevented the development of OIPN. We further showed that eicosapentaenoic acid (EPA) reduced NET formation by suppressing the LPS-TLR4-JNK pathway and thereby abolished NLRP3 inflammasome activation and the subsequent secretion of IL18, which markedly prevented oxaliplatin-induced mechanical hyperalgesia in mice. These results identify a role for NET-triggered NLRP3 activation and IL18 release in the development of OIPN and suggest that utilizing IL18BP and EPA could be effective treatments for OIPN.
Collapse
Affiliation(s)
- Tongtong Lin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Juan Zong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Qian Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yang Yang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| |
Collapse
|
31
|
Lingegowda H, Williams BJ, Spiess KG, Sisnett DJ, Lomax AE, Koti M, Tayade C. Role of the endocannabinoid system in the pathophysiology of endometriosis and therapeutic implications. J Cannabis Res 2022; 4:54. [PMID: 36207747 PMCID: PMC9540712 DOI: 10.1186/s42238-022-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis patients experience debilitating chronic pain, and the first-line treatment is ineffective at managing symptoms. Although surgical removal of the lesions provides temporary relief, more than 50% of the patients experience disease recurrence. Despite being a leading cause of hysterectomy, endometriosis lacks satisfactory treatments and a cure. Another challenge is the poor understanding of disease pathophysiology which adds to the delays in diagnosis and overall compromised quality of life. Endometriosis patients are in dire need of an effective therapeutic strategy that is both economical and effective in managing symptoms, while fertility is unaffected. Endocannabinoids and phytocannabinoids possess anti-inflammatory, anti-nociceptive, and anti-proliferative properties that may prove beneficial for endometriosis management, given that inflammation, vascularization, and pain are hallmark features of endometriosis. Endocannabinoids are a complex network of molecules that play a central role in physiological processes including homeostasis and tissue repair, but endocannabinoids have also been associated in the pathophysiology of several chronic inflammatory diseases including endometriosis and cancers. The lack of satisfactory treatment options combined with the recent legalization of recreational cannabinoids in some parts of the world has led to a rise in self-management strategies including the use of cannabinoids for endometriosis-related pain and other symptoms. In this review, we provide a comprehensive overview of endocannabinoids with a focus on their potential roles in the pathophysiology of endometriosis. We further provide evidence-driven perspectives on the current state of knowledge on endometriosis-associated pain, inflammation, and therapeutic avenues exploiting the endocannabinoid system for its management.
Collapse
Affiliation(s)
- Harshavardhan Lingegowda
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bailey J Williams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katherine G Spiess
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
32
|
Zhang J, Zhang X, Li L, Bai L, Gao Y, Yang Y, Wang L, Qiao Y, Wang X, Xu JT. Activation of Double-Stranded RNA-Activated Protein Kinase in the Dorsal Root Ganglia and Spinal Dorsal Horn Regulates Neuropathic Pain Following Peripheral Nerve Injury in Rats. Neurotherapeutics 2022; 19:1381-1400. [PMID: 35655111 PMCID: PMC9587175 DOI: 10.1007/s13311-022-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 10/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-activated kinase (PKR) is an important component in inflammation and immune dysfunction. However, the role of PKR in neuropathic pain remains unclear. Here, we showed that lumbar 5 spinal nerve ligation (SNL) led to a significant increase in the level of phosphorylated PKR (p-PKR) in both the dorsal root ganglia (DRG) and spinal dorsal horn. Images of double immunofluorescence staining revealed that p-PKR was expressed in myelinated A-fibers, unmyelinated C-fibers, and satellite glial cells in the DRG. In the dorsal horn, p-PKR was located in neuronal cells, astrocytes, and microglia. Data from behavioral tests showed that intrathecal (i.t.) injection of 2-aminopurine (2-AP), a specific inhibitor of PKR activation, and PKR siRNA prevented the reductions in PWT and PWL following SNL. Established neuropathic pain was also attenuated by i.t. injection of 2-AP and PKR siRNA, which started on day 7 after SNL. Prior repeated i.t. injections of PKR siRNA prevented the SNL-induced degradation of IκBα and IκBβ in the cytosol and the nuclear translocation of nuclear factor κB (NF-κB) p65 in both the DRG and dorsal horn. Moreover, the SNL-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production was diminished by this treatment. Collectively, these results suggest that peripheral nerve injury-induced PKR activation via NF-κB signaling-regulated expression of proinflammatory cytokines in the DRG and dorsal horn contributes to the pathogenesis of neuropathic pain. Our findings suggest that pharmacologically targeting PKR might be an effective therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liren Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Liying Bai
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yan Gao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Li Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Yiming Qiao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Xueli Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
- Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
33
|
Li X, Chen H, Zhu Y, Li Y, Zhang T, Tang J. Lidocaine reduces pain behaviors by inhibiting the expression of Nav1.7 and Nav1.8 and diminishing sympathetic sprouting in SNI rats. Mol Pain 2022. [PMCID: PMC9478707 DOI: 10.1177/17448069221124925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a significant clinical challenge, and the mechanisms of neuropathic pain remain elusive. Previous studies have shown that spontaneous potential, which is triggered by Nav1.7 and Nav1.8 in the dorsal root ganglion (DRG), is crucial for the development of inflammatory and neuropathic pain. Functional coupling between the sympathetic nervous system and somatosensory nerves after a nerve injury has also been noted as an important factor in neuropathic pain. However, the relationship of sympathetic sprouting with Nav1.7 and Nav1.8 remains unclear. Therefore, we dynamically examined the mechanical withdrawal threshold (MWT), changes in Nav1.7 and Nav1.8, and sympathetic sprouting after lidocaine treatment in the spared nerve injury (SNI) model of rats. After lidocaine treatment, the MWT obviously increased, showing that hypersensitivity was significantly relieved and the abnormal expression of Nav1.7 and Nav1.8 caused by SNI was also significantly reduced. In addition, lidocaine distinctly inhibited sympathetic nerve sprouting and basket formation around the Nav1.7 and Nav1.8 neurons in the DRG. These results indicate that lidocaine may alleviate neuropathic pain by inhibiting the expression of Nav1.7 and Nav1.8, and diminishing sympathetic sprouting in DRG.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | | | - Yujing Zhu
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Yanyan Li
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Tan Zhang
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| | - Jun Tang
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
34
|
Edinoff AN, Kaufman S, Alpaugh ES, Lawson J, Apgar TL, Imani F, Khademi SH, Cornett EM, Kaye AD. Burst Spinal Cord Stimulation in the Management of Chronic Pain: Current Perspectives. Anesth Pain Med 2022; 12:e126416. [PMID: 36158139 PMCID: PMC9364520 DOI: 10.5812/aapm-126416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last several decades, opioid diversion, misuse, and over-prescription have run rampant in the United States. Spinal cord stimulation (SCS) has been FDA approved for treatment for a primary indication of neuropathic limb pain that is resistant to more conservative medical therapy. The disorders qualified for treatment include neuropathic, post-surgical, post-amputation, osteodegenerative, and pain related to vascular disease. Some of the most frequently cited conditions for treatment of SCS include failed back surgery syndrome, complex regional pain syndrome (CRPS) Type I and Type II, and post-herpetic neuralgias. Developments in SCS systems have led to the differentiation between the delivered electromechanical waveform patterns, including tonic, burst, and high-frequency. Burst SCS mitigates traditional paresthesia due to expedited action potential and offers improved pain relief. Burst SCS has been shown in available studies to be non-inferior to the traditional SCS, which can cause pain paresthesia in patients who already have chronic pain. Burst SCS does not seem to cause or need the paresthesia seen in traditional SCS, making SCS not tolerable to patients. Moreover, some studies suggest that burst SCS may decrease opioid consumption in patients with chronic pain. This can make burst SCS an extremely useful tool in the battle against chronic pain and the raging opioid epidemic. As of now, more research needs to be performed to further delineate the effectiveness and long-term safety of this device.
Collapse
Affiliation(s)
- Amber N. Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Sarah Kaufman
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - E. Saunders Alpaugh
- Department of Anesthesiology, Louisiana State University Health Science Center New Orleans, LA, USA
| | - Jesse Lawson
- Department of Emergency Medicine, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Tucker L. Apgar
- Department of Chemical Biology and Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University, Shreveport, LA, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University, Shreveport, LA, USA
| |
Collapse
|
35
|
Gill J, Kohan L, Hasoon J, Urits I, Viswanath O, Sadegi K, Orhurhu V, Lee AC, Aner MM, Simopoulos TT. Contralateral and Lateral Views: Analysis of the Technical Aspects of Spinal Cord Stimulator Lead Insertion. Anesth Pain Med 2022; 12:e123357. [PMID: 35433387 PMCID: PMC8995871 DOI: 10.5812/aapm.123357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Spinal cord stimulation (SCS) is an established treatment modality for neuropathic pain. The critical part of this technique is safe access to the epidural space for lead placement. There have been innovations in radiological views, improving access to the epidural space. Objectives This study analyzes the adoption of these technical advantages in daily practice Methods We conducted a survey of members in the Spine Intervention Society and American Society of Regional Anesthesia in regard to the practice patterns in SCS therapy. Here we present our findings regarding the use of contralateral oblique (CLO) and lateral views as well direct upper thoracic or cervicothoracic access for SCS lead insertion Results A total of 195 unique responses were received between March 20, 2020 and June 26, 2020. Forty-five percent of respondents “always used” the lateral view technique while 15% “always used” CLO view for SCS lead insertion. Overall, sixty-five percent of respondents used the CLO view with varying frequency. Cervical and upper thoracic approach for cervical SCS lead placement is always or often used by 66.8% of the respondents. Conclusions A depth view (CLO or lateral) is always used by only 45 - 60% of the respondents and CLO view has been rapidly adopted in clinical practice for SCS lead insertion. Direct cervicothoracic and upper thoracic is the preferred approach for cervical lead placement by the majority.
Collapse
Affiliation(s)
- Jatinder Gill
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lynn Kohan
- Department of Anesthesia, Critical Care, and Pain Medicine, University of Virginia Medical Center, Charlottesville, VA, USA
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Pain Specialists of America, Austin, TX, USA
- Corresponding Author: Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
- Valley Anesthesiology and Pain Consultants, Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Kambiz Sadegi
- Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran.
| | - Vwaire Orhurhu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Williamsport PA, USA
| | - Anthony C Lee
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Musa M Aner
- Department of Anesthesia, Critical Care, and Pain Medicine, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, NH, USA
| | - Thomas T. Simopoulos
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Kaye AD, Edinoff AN, Yan JY, Kaye AJ, Alvarado MA, Pham AD, Chami AA, Shah RJ, Dixon BM, Shafeinia A, Cornett EM, Fox C. Novel Local Anesthetics in Clinical Practice: Pharmacologic Considerations and Potential Roles for the Future. Anesth Pain Med 2022; 12:e123112. [PMID: 35433373 PMCID: PMC8995776 DOI: 10.5812/aapm.123112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
The treatment of pain, both acute and chronic, has been a focus of medicine for generations. Physicians have tried to develop novel ways to effectively manage pain in surgical and post-surgical settings. One intervention demonstrating efficacy is nerve blocks. Single-injection peripheral nerve blocks (PNBs) are usually preferred over continuous PNBs, since they are not associated with longer lengths of stay. The challenge of single injection PNBs is their length of duration, which at present is a major limitation. Novel preparations of local anesthetics have also been studied, and these new preparations could allow for extended duration of action of anesthetics. An emerging preparation of bupivacaine, exparel, uses a multivesicular liposomal delivery system which releases medication in a steady, controlled manner. Another extended-release local anesthetic, HTX-011, consists of a combination of bupivacaine and low-dose meloxicam. Tetrodotoxin, a naturally occurring reversible site 1 sodium channel toxin derived from pufferfish and shellfish, has shown the potential to block conduction of isolated nerves. Neosaxitoxin is a more potent reversible site 1 sodium channel toxin also found in shellfish that can also block nerve conduction. These novel formulations show great promise in terms of the ability to prolong the duration of single injection PNBs. This field is still currently in development, and more researchers will need to be done to ensure the efficacy and safety of these novel formulations. These formulations could be the future of pain management if ongoing research continues to prove positive effects and low side effect profiles.
Collapse
Affiliation(s)
- Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Amber N. Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
- Corresponding Author: Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA.
| | - Justin Y. Yan
- Department of Anesthesiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aaron J. Kaye
- Louisiana State University Health Sciences Center, New Orleans, Los Angeles, USA
| | - Michael A. Alvarado
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Alex D. Pham
- Department of Anesthesiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Azem A. Chami
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Rutvij J. Shah
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Bruce M. Dixon
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Amineh Shafeinia
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Pain Research Center, Department of Anesthesiology and Pain Medicine, Akbar Abadi Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| | - Charles Fox
- Department of Anesthesiology, Louisiana State University Health Science Center, Shreveport, Los Angeles, USA
| |
Collapse
|
37
|
Chen EY, Beutler SS, Kaye AD, Edinoff AN, Khademi SH, Stoltz AE, Rueb NR, Cornett EM, Suh WJ. Mirogabalin as a Novel Gabapentinoid for the Treatment of Chronic Pain Conditions: An Analysis of Current Evidence. Anesth Pain Med 2021; 11:e121402. [PMID: 35291398 PMCID: PMC8909537 DOI: 10.5812/aapm.121402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
: Neuropathic pain is a challenge for physicians to treat and often requires a multimodal approach with both pharmacologic and lifestyle interventions. Mirogabalin, a potent, selective ligand of the α2δ-1 and α2δ-2 subunits of voltage-gated calcium channels (VGCCs), provides analgesia by inhibiting neurotransmitter release at the presynaptic end of the neuron. Mirogabalin offers more sustained analgesia than its gabapentinoid counterparts in addition to a wider safety margin for adverse events. Recent clinical trials of mirogabalin have demonstrated both efficacy and tolerability of the drug for the treatment of diabetic peripheral neuropathic pain and postherpetic neuralgia, leading to its approval in Japan. While still not yet FDA approved, mirogabalin is still in its infancy and offers potential into the treatment of neuropathic pain and its associated comorbidities.
Collapse
Affiliation(s)
- Eric Y. Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Sascha S. Beutler
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, USA
- Corresponding Author: Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, USA.
| | - Amber N. Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Science Center Shreveport, Shreveport, USA
| | - Seyed-Hossein Khademi
- Department of Anesthesiology, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding Author: Department of Anesthesiology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Andrea E. Stoltz
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nicole R. Rueb
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, USA
| | - Winston J. Suh
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, USA
| |
Collapse
|
38
|
Sarrafpour S, Hasoon J, Urits I, Viswanath O, Mahmoudi K, Simopoulos TT, Gill J, Kohan L. Antibiotics for Spinal Cord Stimulation Trials and Implants: A Survey Analysis of Practice Patterns. Anesth Pain Med 2021; 11:e120611. [PMID: 35075422 PMCID: PMC8782197 DOI: 10.5812/aapm.120611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord stimulation (SCS) is an established treatment modality for neuropathic pain. Published guidelines exist to aid physicians in proper antibiotic use during and after spinal cord stimulation trials and implants. In this brief review, we present and analyze the current antibiotic practice patterns of clinicians. Methods The study protocol was reviewed and granted an exemption by an Institutional Review Board. The survey queried practice parameters in regards to spinal cord stimulation therapy. The American Society of Regional Anesthesia and Pain Medicine (ASRA) and Society of Interventional Spine (SIS) distributed the survey to their active members by emails with a web link to the survey. Results Our results indicate that 82% and 69% of physicians do not utilize nasal swabs for methicillin-sensitive Staphylococcus aureus (MSSA) or methicillin-resistant Staphylococcus aureus (MRSA), respectively, prior to SCS trial and implantation. During trials, 47% providers administer a single dose of antibiotics, 35% administer antibiotics for the duration of the trial, and 17% do not administer antibiotics. During implantation, 44% of physicians administer a single dose during the procedure, 11% administer antibiotics up to 24 hours, 24% administer antibiotics between 3-5 days, 14% administer antibiotics for more than 5 days, and 4% do not administer antibiotics. Conclusions Our study suggests a portion of pain physicians do not adhere to the Neuromodulation Appropriateness Consensus Committee (NACC) guidelines in regards to antibiotic administration for SCS trial and implantation. Further analysis and surveys would allow insight into common practices. More information and education would be beneficial to optimize peri-procedure antibiotic use to reduce infection risk and decrease antimicrobial resistance.
Collapse
Affiliation(s)
- Syena Sarrafpour
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
- Corresponding Author: Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jamal Hasoon
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
- Louisiana State University Health Sciences Center, Department of Anesthesia and Pain Management, Shreveport, LA, USA
| | - Omar Viswanath
- Louisiana State University Health Sciences Center, Department of Anesthesia and Pain Management, Shreveport, LA, USA
- Valley Anesthesiology and Pain Consultants – Envision Physician Services, Phoenix, AZ, USA
- University of Arizona College of Medicine–Phoenix, Department of Anesthesiology, Phoenix, AZ, USA
| | - Kamran Mahmoudi
- Pain Research Center, Department of Anesthesiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding Author: Pain Research Center, Department of Anesthesiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Thomas T. Simopoulos
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Jatinder Gill
- Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Lynn Kohan
- University of Virginia Medical Center, Department of Anesthesia, Critical Care, and Pain Medicine, Charlottesville, VA, USA
| |
Collapse
|
39
|
Noor N, Urits I, Degueure A, Rando L, Kata V, Cornett EM, Kaye AD, Imani F, Narimani-Zamanabadi M, Varrassi G, Viswanath O. A Comprehensive Update of the Current Understanding of Chronic Fatigue Syndrome. Anesth Pain Med 2021; 11:e113629. [PMID: 34540633 PMCID: PMC8438707 DOI: 10.5812/aapm.113629] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
This is a comprehensive literature review of chronic fatigue syndrome (CFS). We provide a description of the background, etiology, pathogenesis, diagnosis, and management regarding CFS. CFS is a multifaceted illness that has many symptoms and a wide array of clinical presentations. As of recent, CFS has been merged with myalgic encephalomyelitis (ME). Much of the difficulty in its management has stemmed from a lack of a concrete understanding of its etiology and pathogenesis. There is a potential association between dysfunction of the autoimmune, neuroendocrine, or autonomic nervous systems and the development of CFS. Possible triggering events, such as infections followed by an immune dysregulation resulting have also been proposed. In fact, ME/CFS was first described following Epstein Barr virus (EBV) infections, but it was later determined that it was not always preceded by EBV infection. Patient diagnosed with CFS have shown a noticeably earlier activation of anaerobic metabolism as a source of energy, which is suggestive of impaired oxygen consumption. The differential diagnoses range from tick-borne illnesses to psychiatric disorders to thyroid gland dysfunction. Given the many overlapping symptoms of CFS with other illnesses makes diagnosing it far from an easy task. The Centers for Disease Control and Prevention (CDC) considers it a diagnosing of exclusion, stating that self-reported fatigue for at minimum of six months and four of the following symptoms are necessary for a proper diagnosis: memory problems, sore throat, post-exertion malaise, tender cervical or axillary lymph nodes, myalgia, multi-joint pain, headaches, and troubled sleep. In turn, management of CFS is just as difficult. Treatment ranges from conservative, such as cognitive behavioral therapy (CBT) and antidepressants, to minimally invasive management. Minimally invasive management involving ranscutaneous electrical acupoint stimulation of target points has demonstrated significant improvement in fatigue and associated symptoms in a 2017 randomized controlled study. The understanding of CFS is evolving before us as we continue to learn more about it. As further reliable studies are conducted, providing a better grasp of what the syndrome encompasses, we will be able to improve our diagnosis and management of it.
Collapse
Affiliation(s)
- Nazir Noor
- Mount Sinai Medical Center, Department of Anesthesiology, Miami Beach, FL, USA
- Corresponding Author: Mount Sinai Medical Center, Department of Anesthesiology, Miami Beach, FL, USA.
| | - Ivan Urits
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
- Southcoast Health, Southcoast Physician Group Pain Medicine, MA, USA
| | - Arielle Degueure
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Lauren Rando
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Vijay Kata
- Louisiana State University Health Shreveport School of Medicine, Shreveport, LA, USA
| | - Elyse M. Cornett
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Alan D. Kaye
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Narimani-Zamanabadi
- Department of Anesthesiology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Corresponding Author: Department of Anesthesiology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| | | | - Omar Viswanath
- Louisiana State University Health Shreveport, Department of Anesthesiology, Shreveport, LA, USA
- Valley Anesthesiology and Pain Consultants – Envision Physician Services, Phoenix, AZ, USA
- Creighton University School of Medicine, Department of Anesthesiology, Omaha, NE, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
40
|
Sun C, Wang YT, Dai YJ, Liu ZH, Yang J, Cheng ZQ, Dong DS, Wang CF, Zhao GL, Lu GJ, Song T, Jin Y, Kaye AD, Imani F, Sadegi K, Sun LL, Sun YH. Programmable Pump for Intrathecal Morphine Delivery to Cisterna Magna: Clinical Implications in Novel Management of Refractory Pain Above Middle Thoracic Vertebrae Level Utilizing a Prospective Trial Protocol and Review. Anesth Pain Med 2021; 11:e115873. [PMID: 34540643 PMCID: PMC8438709 DOI: 10.5812/aapm.115873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cisterna Intrathecal Drug Delivery system (IDDS) with morphine has proven to be effective in treating refractory cancer pain above the middle thoracic vertebrae level in some countries. However, it has not been fully investigated in others. We designed the current project to investigate the efficacy and safety of cisterna IDDS for pain relief in refractory pain above the middle thoracic vertebrae level in advanced cancer patients. METHODS This study protocol allows for eligible cancer patients to receive the cisterna IDDS operation. Pain intensity (Visual Analogue scale, VAS), quality of life (36-Item Short-Form Health Survey, SF-36), and depression (Self-Rating Depression scale, SDS) are assessed along with side effects in the postoperative follow-up visits. Recent literature suggests a potential role for cisterna IDDS morphine delivery for refractory pain states above the middle thoracic level. CONCLUSION The results of this study may provide further evidence that cisterna IDDS of morphine can serve as an effective and safe pain relief strategy for refractory pain above the middle thoracic vertebrae level in advanced cancer patients.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Tong Wang
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Yu-Jie Dai
- Department of Clinical Nutrition, Xijing Hospital, The Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Zhi-Hui Liu
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Zhu-Qiang Cheng
- Department of Anesthesiology, Pain Medicine Center, Jinling Hospital, Nanjing, China
| | - Dao-Song Dong
- Department of Pain Medicine, The First Affiliated Hospital of Chinese Medical University, Shenyang, China
| | - Cheng-Fu Wang
- Department of Pain Medicine, The First Affiliated Hospital of Chinese Medical University, Shenyang, China
| | - Guo-Li Zhao
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Gui-Jun Lu
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Song
- Department of Pain Medicine, The First Affiliated Hospital of Chinese Medical University, Shenyang, China
| | - Yi Jin
- Department of Anesthesiology, Pain Medicine Center, Jinling Hospital, Nanjing, China
| | - Alan D. Kaye
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, USA
- Corresponding Author: Department of Anesthesiology, LSU Health Shreveport, Shreveport, USA.
| | - Farnad Imani
- Pain Research Center, Department of Anesthesiology and Pain Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kambiz Sadegi
- Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran
- Corresponding Author: Department of Anesthesiology, Zabol University of Medical Sciences, Zabol, Iran.
| | - Li-Li Sun
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Yong-Hai Sun
- Department of Anesthesiology, Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|