1
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. Role of estrogen in sex differences in memory, emotion and neuropsychiatric disorders. Mol Biol Rep 2024; 51:415. [PMID: 38472517 DOI: 10.1007/s11033-024-09374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No. 77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Kim H, Baek SH, Kim JW, Ryu S, Lee JY, Kim JM, Chung YC, Kim SW. Inflammatory markers of symptomatic remission at 6 months in patients with first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:68. [PMID: 37794014 PMCID: PMC10550944 DOI: 10.1038/s41537-023-00398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Neuroinflammation contributes to the pathophysiology of various mental illnesses including schizophrenia. We investigated peripheral inflammatory cytokines as a biomarker for predicting symptomatic remission in patients with first-episode schizophrenia. The study included 224 patients aged 15-60 years who fulfilled the criteria for schizophrenia spectrum disorder with a treatment duration ≤6 months. Serum levels of tumor necrosis factor (TNF) -α, interferon-γ, interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured. Psychotic symptoms, depressive symptoms, and general functioning were assessed using the Positive and Negative Syndrome Scale, Beck Depression Inventory (BDI), Calgary Depression Scale for Schizophrenia, and Personal and Social Performance scale, respectively. Duration of untreated psychosis (DUP) was also recorded. We investigated the factors associated with remission for each sex in logistic regression analysis. In total, 174 patients achieved remission at the 6-month follow-up (females, 83.5%; males, 70.9%). Remission was associated with older age and lower BDI scores in male patients and with lower TNF-α levels and shorter DUP in female patients. Our findings suggest that peripheral inflammatory cytokines may impede early symptomatic remission in female patients with schizophrenia. In addition, depressive symptoms in males and long DUP in females may be poor prognostic factors for early remission in patients with first-episode psychosis.
Collapse
Affiliation(s)
- Honey Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Community Mental Health and Welfare Center, Gwangju, Korea
| | - Seon-Hwa Baek
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Community Mental Health and Welfare Center, Gwangju, Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Community Mental Health and Welfare Center, Gwangju, Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
- Mindlink, Gwangju Bukgu Community Mental Health and Welfare Center, Gwangju, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea.
- Mindlink, Gwangju Bukgu Community Mental Health and Welfare Center, Gwangju, Korea.
| |
Collapse
|
3
|
DuMont M, Agostinis A, Singh K, Swan E, Buttle Y, Tropea D. Sex representation in neurodegenerative and psychiatric disorders' preclinical and clinical studies. Neurobiol Dis 2023:106214. [PMID: 37385457 DOI: 10.1016/j.nbd.2023.106214] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Many studies show the importance of biological sex for the onset, progression, and response to treatment in brain disorders. In line with these reports, health agencies have requested that all trials, both at the clinical and preclinical level, use a similar number of male and female subjects to correctly interpret the results. Despite these guidelines, many studies still tend to be unbalanced in the use of male and female subjects. In this review we consider three neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and three psychiatric disorders: Depression, Attention Deficit Hyperactivity Disorder, and Schizophrenia. These disorders were chosen because of their prevalence and their recognized sex-specific differences in onset, progression, and response to treatment. Alzheimer's disease and Depression demonstrate higher prevalence in females, whereas Parkinson's Disease, Amyotrophic lateral sclerosis, Attention Deficit Hyperactivity Disorder, and schizophrenia show higher prevalence in males. Results from preclinical and clinical studies examining each of these disorders revealed sex-specific differences in risk factors, diagnostic biomarkers, and treatment response and efficacy, suggesting a role for sex-specific therapies in neurodegenerative and neuropsychiatric disorders. However, the qualitative analysis of the percentage of males and females enrolled in clinical trials in the last two decades shows that for most of the disorders, there is still a sex bias in the patients' enrolment.
Collapse
Affiliation(s)
- Mieke DuMont
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Kiran Singh
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Evan Swan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Yvonne Buttle
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Daniela Tropea
- Department of Psychiatry and Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, Dublin 2, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases.
| |
Collapse
|
4
|
Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, Szeląg E, Błaszczak K, Wiatrak B, Danielewski M, Piasny J, Szeląg A. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int J Mol Sci 2023; 24:6492. [PMID: 37047464 PMCID: PMC10094807 DOI: 10.3390/ijms24076492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Schizophrenia is a severe mental disorder with a chronic, progressive course. The etiology of this condition is linked to the interactions of multiple genes and environmental factors. The earlier age of onset of schizophrenia, the higher frequency of negative symptoms in the clinical presentation, and the poorer response to antipsychotic treatment in men compared to women suggests the involvement of sex hormones in these processes. This article aims to draw attention to the possible relationship between testosterone and some clinical features in male schizophrenic patients and discuss the complex nature of these phenomena based on data from the literature. PubMed, Web of Science, and Google Scholar databases were searched to select the papers without limiting the time of the publications. Hormone levels in the body are regulated by many organs and systems, and take place through the neuroendocrine, hormonal, neural, and metabolic pathways. Sex hormones play an important role in the development and function of the organism. Besides their impact on secondary sex characteristics, they influence brain development and function, mood, and cognition. In men with schizophrenia, altered testosterone levels were noted. In many cases, evidence from available single studies gave contradictory results. However, it seems that the testosterone level in men affected by schizophrenia may differ depending on the phase of the disease, types of clinical symptoms, and administered therapy. The etiology of testosterone level disturbances may be very complex. Besides the impact of the illness (schizophrenia), stress, and antipsychotic drug-induced hyperprolactinemia, testosterone levels may be influenced by, i.a., obesity, substances of abuse (e.g., ethanol), or liver damage.
Collapse
Affiliation(s)
- Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Krzysztof Kowalski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25/27, 50-375 Wroclaw, Poland
| | - Tomasz Tomkalski
- Department of Endocrinology, Diabetology and Internal Medicine, Tadeusz Marciniak Lower Silesia Specialist Hospital–Centre for Medical Emergency, A.E. Fieldorfa 2, 54-049 Wroclaw, Poland
| | - Dagmara Gaweł-Dąbrowska
- Department of Population Health, Division of Public Health, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Ewa Szeląg
- Department of Maxillofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Karolina Błaszczak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| |
Collapse
|
5
|
Bender O, Celik I, Dogan R, Atalay A, Shoman ME, Ali TFS, Beshr EAM, Mohamed M, Alaaeldin E, Shawky AM, Awad EM, Ahmed ASF, Younes KM, Ansari M, Anwar S. Vanillin-Based Indolin-2-one Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS OMEGA 2023; 8:6968-6981. [PMID: 36844536 PMCID: PMC9948168 DOI: 10.1021/acsomega.2c07793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 μM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey
| | - Rumeysa Dogan
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Arzu Atalay
- Biotechnology
Institute, Ankara University, 06135 Ankara, Turkey
| | - Mai E. Shoman
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taha F. S. Ali
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Eman A. M. Beshr
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mahmoud Mohamed
- Department
of Pharmacognosy, College of Clinical Pharmacy, Al Baha University, 65528 Al Baha, Saudi Arabia
| | - Eman Alaaeldin
- Department
of Pharmaceutics, Faculty of Pharmacy, Minia
University, 61519 Minia, Egypt
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, 21955 Makkah, Saudi Arabia
- Central
Laboratory for Micro-analysis, Minia University, 61519 Minia, Egypt
| | - Eman M. Awad
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Al-Shaimaa F. Ahmed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Kareem M. Younes
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, ET-11562 Cairo, Egypt
| | - Mukhtar Ansari
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, 81442 Hail, Saudi Arabia
| |
Collapse
|
6
|
Isenbrandt A, Morissette M, Bourque M, Lamontagne-Proulx J, Coulombe K, Soulet D, Di Paolo T. Effect of sex and gonadectomy on brain MPTP toxicity and response to dutasteride treatment in mice. Neuropharmacology 2021; 201:108784. [PMID: 34555366 DOI: 10.1016/j.neuropharm.2021.108784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023]
Abstract
The main neuropathological feature of Parkinson's disease (PD) is degeneration of dopamine (DA) neurons in the substantia nigra (SN); PD prevalence is higher in men, suggesting a role of sex hormones in neuroprotection. This study sought the effects of sex hormones in the brain in a mouse model of PD and modulation of steroid metabolism/synthesis with the 5α-reductase inhibitor dutasteride shown to protect 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice. Male and female mice were gonadectomized (GDX) or SHAM operated. They were treated with vehicle or dutasteride (5 mg/kg) for 10 days and administered a low dose of MPTP (5.5 mg/kg) or saline on the 5th day to model early PD; brains were collected thereafter. Striatal measures of the active metabolite 1-methyl-4-phenylpyridinium (MPP+) contents showed no difference supporting an effect of the experimental conditions investigated. In SHAM MPTP male mice loss of striatal DA and metabolites, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding in the striatum and SN was prevented by dutasteride treatment; these changes were inversely correlated with glial fibrillary acidic protein (GFAP, an astrogliosis marker) levels. In SHAM female mice MPTP treatment had little or no effect on striatal and SN DA markers and GFAP levels whereas GDX male and female mice showed a similar loss of striatal DA markers and increase of GFAP. No effect of dutasteride treatment was observed in GDX male and female mice. In conclusion, sex differences in mice MPTP toxicity and response to dutasteride were observed that were lost upon gonadectomy implicating neuroinflammation.
Collapse
Affiliation(s)
- Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec, (Québec) G1V 0A6, Canada.
| |
Collapse
|
7
|
Kopylov AT, Petrovsky DV, Stepanov AA, Rudnev VR, Malsagova KA, Butkova TV, Zakharova NV, Kostyuk GP, Kulikova LI, Enikeev DV, Potoldykova NV, Kulikov DA, Zulkarnaev AB, Kaysheva AL. Convolutional neural network in proteomics and metabolomics for determination of comorbidity between cancer and schizophrenia. J Biomed Inform 2021; 122:103890. [PMID: 34438071 DOI: 10.1016/j.jbi.2021.103890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
The association between cancer risk and schizophrenia is widely debated. Despite many epidemiological studies, there is still no strong evidence regarding the molecular basis for the comorbidity between these two pathological conditions. The vast majority of assays have been performed using clinical records of schizophrenic patients or those undergoing cancer treatment and monitored for sufficient time to find shared features between the considered conditions. We performed mass spectrometry-based proteomic and metabolomic investigations of patients with different cancer phenotypes (breast, ovarian, renal, and prostate) and patients with schizophrenia. The resulting vast quantity of proteomic and metabolomic data were then processed using systems biology and one-dimensional (1D) convolutional neural network (1DCNN) machine learning approaches. Traditional systematic approaches permit the segregation of schizophrenia and cancer phenotypes on the level of biological processes, while 1DCNN recognized "signatures" that could segregate distinct cancer phenotypes and schizophrenia at the comorbidity level. The designed network efficiently discriminated unrelated pathologies with a model accuracy of 0.90 and different subtypes of oncophenotypes with an accuracy of 0.94. The proposed strategy integrates systematic analysis of identified compounds and application of 1DCNN model for unidentified ones to reveal the similarity between distinct phenotypes.
Collapse
Affiliation(s)
- Arthur T Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation.
| | - Denis V Petrovsky
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| | - Alexander A Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| | - Vladimir R Rudnev
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| | - Kristina A Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| | - Tatyana V Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| | - Natalya V Zakharova
- N.A.Alekseev 1(st) Clinical Hospital of Psychiatry, Moscow Healthcare Department, 2 Zagorodnoe road, 115119, Russian Federation
| | - Georgy P Kostyuk
- N.A.Alekseev 1(st) Clinical Hospital of Psychiatry, Moscow Healthcare Department, 2 Zagorodnoe road, 115119, Russian Federation
| | - Liudmila I Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 3 Institutskaya str., 142290 Pushchino, Moscow Region, Russian Federation
| | - Dmitry V Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 2/1 Bolshaya Pirogovskaya str., 119435 Moscow, Russian Federation
| | - Natalia V Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 2/1 Bolshaya Pirogovskaya str., 119435 Moscow, Russian Federation
| | - Dmitry A Kulikov
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute, 61/2 Schepkina str., 129110 Moscow, Russian Federation
| | - Alexey B Zulkarnaev
- M.F. Vladimirsky Moscow Regional Research and Clinical Institute, 61/2 Schepkina str., 129110 Moscow, Russian Federation
| | - Anna L Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry "Scientific and Education Center," 10 Pogodinskaya str., 119121 Moscow, Russian Federation
| |
Collapse
|
8
|
Huang W, Li YH, Huang SQ, Chen H, Li ZF, Li XX, Li XS, Cheng Y. Serum Progesterone and Testosterone Levels in Schizophrenia Patients at Different Stages of Treatment. J Mol Neurosci 2020; 71:1168-1173. [PMID: 33159671 DOI: 10.1007/s12031-020-01739-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
It has been suggested that dysregulation of hormones is associated with schizophrenia (SCZ). This study aimed to measure the serum levels of progesterone and testosterone in 125 SCZ patients at different stages of treatment and 96 healthy control (HC) subjects. Our results showed that first-episode drug-free SCZ patients had significantly increased testosterone levels when compared with HC subjects, and chronic medication, but not short-term medication, further increased the serum testosterone levels in the patients. Further analysis suggested that the sex of the patients did not affect testosterone levels. In contrast, serum progesterone levels did not show significant differences between first-episode, drug-free SCZ patients and controls, and the antipsychotics increased progesterone levels in the male SCZ patients, but not female patients. Interestingly, our analyses demonstrated that the serum progesterone levels were negatively correlated with PANSS total score and PNASS positive score, suggesting a correlation between blood hormone levels and disease severity in SCZ patients. Taken together, our data showed differential changes in serum testosterone and progesterone levels in SCZ patients with or without antipsychotics, and our results suggest that increased sex hormone levels may be a defensive response to protect the human body under stress.
Collapse
Affiliation(s)
- Wei Huang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yong-Hang Li
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Shi-Qing Huang
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Hui Chen
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zai-Fang Li
- The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xi-Xi Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- The Third People's Hospital of Foshan, Foshan, Guangdong, China.
| | - Yong Cheng
- The Third People's Hospital of Foshan, Foshan, Guangdong, China. .,Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
9
|
Petrine JCP, Del Bianco-Borges B. The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 2020; 35:180-197. [PMID: 32780464 DOI: 10.1002/ptr.6816] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Functional foods have nutritional properties and organic functions, which are beneficial to health. Certain types of functional food components are so-called phytoestrogens, non-steroidal compounds derived from the metabolism of precursors contained in plants, which originate secondary metabotypes known to induce biological responses and by mimicry or modulating the action of endogenous estrogen. These molecules are involved in several physiological and pathological processes related to reproduction, bone remodeling, skin, cardiovascular, nervous, immune systems, and metabolism. This review aimed to present an overview of phytoestrogens regarding their chemical structure, actions, and effects in the organism given several pathologies. Several studies have demonstrated beneficial phytoestrogen actions, such as lipid profile improvement, cognitive function, menopause, oxidative stress, among others. Phytoestrogens effects are not completely elucidated, being necessary future research to understand the exact action mechanisms, whether they are via estrogen receptor or whether other hidden mechanisms produce these effects. Thus, this review makes a general approach to the phytoestrogen actions, beneficial effects, risk and limitations. However, the complexities of biological effects after ingestion of phytoestrogens and the differences in their metabolism and bioavailability indicate that interpretation of either risk or benefits needs to be made with caution.
Collapse
Affiliation(s)
- Jéssica C P Petrine
- Departamento de Ciências da Saúde, Universidade Federal de Lavras, Lavras, Brasil
| | | |
Collapse
|
10
|
Antipsychotic effects of sex hormones and atypical hemispheric asymmetries. Cortex 2020; 127:313-332. [DOI: 10.1016/j.cortex.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
|
11
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Owens SJ, Weickert TW, Purves-Tyson TD, Ji E, White C, Galletly C, Liu D, O'Donnell M, Shannon Weickert C. Sex-Specific Associations of Androgen Receptor CAG Trinucleotide Repeat Length and of Raloxifene Treatment with Testosterone Levels and Perceived Stress in Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2019; 5:28-41. [PMID: 31019916 PMCID: PMC6465742 DOI: 10.1159/000495062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022]
Abstract
Lower testosterone levels are associated with greater negative symptoms in men with schizophrenia. Testosterone signals via androgen receptor (AR). A functional variant in the AR gene (CAG trinucleotide repeat polymorphism) is associated with circulating testosterone and mood-related symptoms in healthy people. Raloxifene increases testosterone in healthy males and reduces symptom severity and improves cognition in schizophrenia; however, whether raloxifene increases testosterone in men with schizophrenia is unknown. We assessed the interaction of a functional AR gene variant and adjunctive raloxifene on peripheral testosterone and symptom severity in schizophrenia. Patients with schizophrenia (59 males and 38 females) participated in a randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene (120 mg/day). Healthy adults (46 males and 41 females) were used for baseline comparison. Baseline circulating testosterone was decreased in male patients compared to male controls and positively correlated with CAG repeat length in male controls and female patients. Male patients with short, compared to long, CAG repeat length had higher stress scores. Raloxifene treatment increased testosterone in male patients, but was unrelated to AR CAG repeat length, suggesting that raloxifene's effects may not depend on AR activity. Sex-specific alterations of the relationship between AR CAG repeat length and testosterone suggest that altered AR activity may impact perceived stress in men with schizophrenia.
Collapse
Affiliation(s)
- Samantha J. Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Tertia D. Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Ellen Ji
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher White
- Department of Endocrinology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Maryanne O'Donnell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
13
|
Seeman MV. Women who suffer from schizophrenia: Critical issues. World J Psychiatry 2018; 8:125-136. [PMID: 30425943 PMCID: PMC6230925 DOI: 10.5498/wjp.v8.i5.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Many brain diseases, including schizophrenia, affect men and women unequally - either more or less frequently, or at different times in the life cycle, or to varied degrees of severity. With updates from recent findings, this paper reviews the work of my research group over the last 40 years and underscores issues that remain critical to the optimal care of women with schizophrenia, issues that overlap with, but are not identical to, the cares and concerns of men with the same diagnosis. Clinicians need to be alert not only to the overarching needs of diagnostic groups, but also to the often unique needs of women and men.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Institute of Medical Science, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
14
|
Osborne DM, Sandau US, Jones AT, Vander Velden JW, Weingarten AM, Etesami N, Huo Y, Shen HY, Boison D. Developmental role of adenosine kinase for the expression of sex-dependent neuropsychiatric behavior. Neuropharmacology 2018; 141:89-97. [PMID: 30145320 DOI: 10.1016/j.neuropharm.2018.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Deficits in social memory, cognition, and aberrant responses to stimulants are common among persons affected by schizophrenia and other conditions with a presumed developmental etiology. We previously found that expression changes in the adenosine metabolizing enzyme adenosine kinase (ADK) in the adult brain are associated with deficits in various cognitive domains. To distinguish between developmental and adult functions of ADK, we used two transgenic mouse lines with widespread disruption of ADK expression in the adult brain, but differences in the onset of ADK deletion. Specifically, we compared Nestin-Cre+/-:ADK-floxfl/fl (ADKΔBrain) mice with global loss of ADK in the whole brain, beginning in mid-gestation and persisting for life, with Gfa2-Cre+/-:ADK-floxfl/fl (ADKΔAstro) mice that have normal ADK expression throughout development, but lose astrocyte-specific ADK-expression in young adulthood. Because ADK-expression in adulthood is generally confined to astrocytes, adult ADKΔAstro mice show a similar expression profile of ADK in key areas of the brain related to neuropsychiatric behavior, compared to adult ADKΔBrain mice. We sought to determine a neurodevelopmental role of ADK on the expression of psychiatric behaviors in adult male and female mice. Adult ADKΔBrain mice showed significant deficits in social memory in males, significant contextual learning impairments in both sexes, and a hyper-responsiveness to amphetamine in males. In contrast, ADKΔAstro mice showed normal social memory and contextual learning but hypo-responsiveness to amphetamine in males. Our results demonstrate a key developmental role of ADK in mediating behaviors in adulthood related to neuropsychiatric disease and support the greater prevalence of these disorders among males.
Collapse
Affiliation(s)
- D M Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA.
| | - U S Sandau
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A T Jones
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - J W Vander Velden
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A M Weingarten
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - N Etesami
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Y Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H Y Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - D Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
15
|
Gupta P, Uner OE, Nayak S, Grant GR, Kalb RG. SAP97 regulates behavior and expression of schizophrenia risk enriched gene sets in mouse hippocampus. PLoS One 2018; 13:e0200477. [PMID: 29995933 PMCID: PMC6040763 DOI: 10.1371/journal.pone.0200477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023] Open
Abstract
Synapse associated protein of 97KDa (SAP97) belongs to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), that are highly enriched in the postsynaptic density of synapses and play an important role in organizing protein complexes necessary for synaptic development and plasticity. The Dlg-MAGUK family of proteins are structurally very similar, and an effort has been made to parse apart the unique function of each Dlg-MAGUK protein by characterization of knockout mice. Knockout mice have been generated and characterized for PSD-95, PSD-93, and SAP102, however SAP97 knockout mice have been impossible to study because the SAP97 null mice die soon after birth due to a craniofacial defect. We studied the transcriptomic and behavioral consequences of a brain-specific conditional knockout of SAP97 (SAP97-cKO). RNA sequencing from hippocampi from control and SAP97-cKO male animals identified 67 SAP97 regulated transcripts. As large-scale genetic studies have implicated MAGUKs in neuropsychiatric disorders such as intellectual disability, autism spectrum disorders, and schizophrenia (SCZ), we analyzed our differentially expressed gene (DEG) set for enrichment of disease risk-associated genes, and found our DEG set to be specifically enriched for SCZ-related genes. Subjecting SAP97-cKO mice to a battery of behavioral tests revealed a subtle male-specific cognitive deficit and female-specific motor deficit, while other behaviors were largely unaffected. These data suggest that loss of SAP97 may have a modest contribution to organismal behavior. The SAP97-cKO mouse serves as a stepping stone for understanding the unique role of SAP97 in biology.
Collapse
Affiliation(s)
- Preetika Gupta
- Neuroscience Graduate Group, Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ogul E. Uner
- School of Arts and Sciences, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Kalb
- Feinberg School of Medicine, Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Patel S, Homaei A, Raju AB, Meher BR. Estrogen: The necessary evil for human health, and ways to tame it. Biomed Pharmacother 2018; 102:403-411. [PMID: 29573619 DOI: 10.1016/j.biopha.2018.03.078] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 92182, San Diego, CA, USA.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Akondi Butchi Raju
- Department of Pharmacology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Biswa Ranjan Meher
- Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| |
Collapse
|
17
|
Owens SJ, Murphy CE, Purves-Tyson TD, Weickert TW, Shannon Weickert C. Considering the role of adolescent sex steroids in schizophrenia. J Neuroendocrinol 2018; 30. [PMID: 28941299 DOI: 10.1111/jne.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/06/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a disabling illness that is typically first diagnosed during late adolescence to early adulthood. It has an unremitting course and is often treatment-resistant. Many clinical aspects of the illness suggest that sex steroid-nervous system interactions may contribute to the onset, course of symptoms and the cognitive impairment displayed by men and women with schizophrenia. Here, we discuss the actions of oestrogen and testosterone on the brain during adolescent development and in schizophrenia from the perspective of experimental studies in animals, human post-mortem studies, magnetic resonance imaging studies in living humans and clinical trials of sex steroid-based treatments. We present evidence of potential beneficial, as well as detrimental, effects of both testosterone and oestrogen. We provide a rationale for the necessity to further elucidate sex steroid mechanisms of action at different ages, sexes and brain regions to more fully understand the role of testosterone and oestrogen in the pathophysiology of schizophrenia. The weight of the evidence suggests that sex steroid hormones influence mammalian brain function, including both cognition and emotion, and that pharmaceutical agents aimed at sex steroid receptors appear to provide a novel treatment avenue to reduce symptoms and improve cognition in men and women with schizophrenia.
Collapse
Affiliation(s)
- S J Owens
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - C E Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - T D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - T W Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - C Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Khan MM. Translational Significance of Selective Estrogen Receptor Modulators in Psychiatric Disorders. Int J Endocrinol 2018; 2018:9516592. [PMID: 30402099 PMCID: PMC6196929 DOI: 10.1155/2018/9516592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating data from various clinical trial studies suggests that adjuvant therapy with ovarian hormones (estrogens) could be effective in reducing cognitive deficit and psychopathological symptoms in women with psychiatric disorders. However, estrogen therapy poses serious limitations and health issues including feminization in men and increased risks of thromboembolism, hot flashes, breast hyperplasia, and endometrium hyperplasia when used for longer duration in older women (aged ≥ 60 years) or in women who have genetic predispositions. On the other hand, selective estrogen receptor modulators (SERMs), which may (or may not) carry some risks of hot flashes, thromboembolism, breast hyperplasia, and endometrial hyperplasia, are generally devoid of feminization effect. In clinical trial studies, adjuvant therapy with tamoxifen, a triphenylethylene class of SERM, has been found to reduce the frequency of manic episodes in patients with bipolar disorder, whereas addition of raloxifene, a benzothiophene class of SERM, to regular doses of antipsychotic drugs has been found to reduce cognitive deficit and psychological symptoms in men and women with schizophrenia, including women with treatment refractory psychosis. These outcomes together with potent neurocognitive, neuroprotective, and cardiometabolic properties suggest that SERMs could be the potential targets for designing effective and safer therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Mohammad M. Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, P.O. Box 16418, Az-Zawiyah, Libya
| |
Collapse
|
19
|
Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev 2017; 83:589-603. [DOI: 10.1016/j.neubiorev.2017.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
|
20
|
Minichino A, Ando' A, Francesconi M, Salatino A, Delle Chiaie R, Cadenhead K. Investigating the link between drug-naive first episode psychoses (FEPs), weight gain abnormalities and brain structural damages: Relevance and implications for therapy. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:9-22. [PMID: 28363765 DOI: 10.1016/j.pnpbp.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Evidence suggests that obesity and overweight may be associated with severe brain structural abnormalities and poor cognitive and functional outcomes in the general population. Despite these observations and the high prevalence of weight gain abnormalities in patients with psychosis spectrum disorders (PSDs), no studies have investigated the impact that these metabolic disturbances may have on brain structures and development in the earliest stages of PSDs. In the present review we shed light on the association between weight gain and brain structural abnormalities that may affect the course of illness in drug-naïve FEPs. Given the lack of studies directly investigating this issue, we firstly identified and critically evaluated the literature assessing weight gain abnormalities and gray or white matter (GM, WM) volumes (either globally or in specific regions of interest) in otherwise healthy obese/overweight adolescents and young adults. We then compared the results of this systematic review with those of two recent meta-analysis investigating GM and WM abnormalities in drug-naïve FEPs. Weight gain in otherwise healthy subjects was consistently associated with frontal and temporal GM atrophy and with reduced integrity of WM in the corpus callosum. Of relevance, all these brain regions are affected in drug-naïve FEPs, and their integrity is associated with clinical, cognitive and functional outcomes. The underlying mechanisms that may explain the association between weight gain, adiposity, and brain damage in both healthy subjects and drug-naïve FEPs are widely discussed. On the basis of this knowledge, we tried: a) to deduce an integrative model for the development of obesity in psychosis spectrum disorders; b) to identify the key vulnerability factors underlying the association between weight gain and psychosis; c) to provide information on new potential targets of intervention.
Collapse
Affiliation(s)
- Amedeo Minichino
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States.
| | - Agata Ando'
- Department of Psychology, University of Turin, Italy
| | - Marta Francesconi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Italy; Department of Psychiatry, UCSD, La Jolla, CA, United States
| | | | | | | |
Collapse
|
21
|
Zafirovic S, Obradovic M, Sudar-Milovanovic E, Jovanovic A, Stanimirovic J, Stewart AJ, Pitt SJ, Isenovic ER. 17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Mol Cell Endocrinol 2017; 446:12-20. [PMID: 28163099 DOI: 10.1016/j.mce.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the in vivo effects of 17β-estradiol (E2) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E2 while the other half were placebo-treated. 24 h after treatment animals were sacrificed. E2 reduced cardiac free fatty acid (FFA) (p < 0.05), L-arginine (p < 0.01), iNOS mRNA (p < 0.01), and protein (p < 0.05) levels and translocation of the FFA transporter (CD36) (p < 0.01) to the plasma membrane (PM) in HF fed rats. In contrast, Akt phosphorylation at Thr308 (p < 0.05) and translocation of the glucose transporter GLUT4 (p < 0.05) to the PM increased after E2 treatment in HF rats. Our results indicate that E2 acts via the PI3K/Akt signalling pathway to partially protect myocardial metabolism by attenuating the detrimental effects of increased iNOS expression/activity in HF fed rats.
Collapse
Affiliation(s)
- Sonja Zafirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Julijana Stanimirovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom.
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.
| |
Collapse
|
22
|
Abstract
The aim of this narrative review is to provide readers with a summary of the recent literature on women and schizophrenia and to address commonly asked questions about the role of gender in this illness. Important gender distinctions were found in the knowledge base around schizophrenia, particularly in the areas of symptom onset, hormonal and immune effects, and antipsychotic drug kinetics and their consequences. We also discuss and address commonly asked questions about gender and schizophrenia. This review concludes that gender differences influence the effectiveness of various treatments and need to be taken into account when planning comprehensive care services for individuals with schizophrenia.
Collapse
Affiliation(s)
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, 260 Heath St. W. Suite 605, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
23
|
Patel S. Disruption of aromatase homeostasis as the cause of a multiplicity of ailments: A comprehensive review. J Steroid Biochem Mol Biol 2017; 168:19-25. [PMID: 28109841 DOI: 10.1016/j.jsbmb.2017.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/15/2017] [Indexed: 01/15/2023]
Abstract
Human health is beset with a legion of ailments, which is exacerbated by lifestyle errors. Out of the numerous enzymes in human body, aromatase, a cytochrome P450 enzyme is particularly very critical. Occurring at the crossroads of multiple signalling pathways, its homeostasis is vital for optimal health. Unfortunately, medications, hormone therapy, chemical additives in food, and endocrine-disrupting personal care products are oscillating the aromatase concentration beyond the permissible level. As this enzyme converts androgens (C19) into estrogens (C18), its agitation has different outcomes in different genders and age groups. Some common pathologies associated with aromatase disruption include breast cancer, prostate cancer, polycystic ovary syndrome (PCOS), endometriosis, osteoporosis, ovarian cancer, gastric cancer, pituitary cancer, Alzheimer's disease, schizophrenia, male hypogonadism, and transgender issues. Several drugs, cosmetics and pesticides act as the activators and suppressors of this enzyme. This carefully-compiled critical review is expected to increase public awareness regarding the threats resultant of the perturbations of this enzyme and to motivate researchers for further investigation of this field.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
24
|
Schulster M, Bernie AM, Ramasamy R. The role of estradiol in male reproductive function. Asian J Androl 2017; 18:435-40. [PMID: 26908066 PMCID: PMC4854098 DOI: 10.4103/1008-682x.173932] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traditionally, testosterone and estrogen have been considered to be male and female sex hormones, respectively. However, estradiol, the predominant form of estrogen, also plays a critical role in male sexual function. Estradiol in men is essential for modulating libido, erectile function, and spermatogenesis. Estrogen receptors, as well as aromatase, the enzyme that converts testosterone to estrogen, are abundant in brain, penis, and testis, organs important for sexual function. In the brain, estradiol synthesis is increased in areas related to sexual arousal. In addition, in the penis, estrogen receptors are found throughout the corpus cavernosum with high concentration around neurovascular bundles. Low testosterone and elevated estrogen increase the incidence of erectile dysfunction independently of one another. In the testes, spermatogenesis is modulated at every level by estrogen, starting with the hypothalamus-pituitary-gonadal axis, followed by the Leydig, Sertoli, and germ cells, and finishing with the ductal epithelium, epididymis, and mature sperm. Regulation of testicular cells by estradiol shows both an inhibitory and a stimulatory influence, indicating an intricate symphony of dose-dependent and temporally sensitive modulation. Our goal in this review is to elucidate the overall contribution of estradiol to male sexual function by looking at the hormone's effects on erectile function, spermatogenesis, and libido.
Collapse
Affiliation(s)
| | | | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
25
|
Mitrović N, Zarić M, Drakulić D, Martinović J, Sévigny J, Stanojlović M, Nedeljković N, Grković I. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes. J Mol Neurosci 2016; 61:412-422. [PMID: 27981418 DOI: 10.1007/s12031-016-0877-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia.
| |
Collapse
|
26
|
Crider A, Pillai A. Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders. J Pharmacol Exp Ther 2016; 360:48-58. [PMID: 27789681 DOI: 10.1124/jpet.116.237412] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022] Open
Abstract
Estrogens, the primary female sex hormones, were originally characterized through their important role in sexual maturation and reproduction. However, recent studies have shown that estrogens play critical roles in a number of brain functions, including cognition, learning and memory, neurodevelopment, and adult neuroplasticity. A number of studies from both clinical as well as preclinical research suggest a protective role of estrogen in neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. Alterations in the levels of estrogen receptors have been found in subjects with ASD or schizophrenia, and adjunctive estrogen therapy has been shown to be effective in enhancing the treatment of schizophrenia. This review summarizes the findings on the role of estrogen in the pathophysiology of neurodevelopmental disorders with a focus on ASD and schizophrenia. We also discuss the potential of estrogen as a therapeutic target in the above disorders.
Collapse
Affiliation(s)
- Amanda Crider
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
27
|
Moffitt O, Findley JC. A case of first-onset psychosis and repeated relapses secondary to discontinuation of non-prescription estrogen replacement therapy in a transgendered female. Gynecol Endocrinol 2016; 32:796-798. [PMID: 27426632 DOI: 10.1080/09513590.2016.1202230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The estrogen hypothesis of psychosis states that estrogens contribute a protective effect against the development of psychotic disorders. Conversely, hypoestrogenic states have been shown to be associated with the occurrence of psychotic disorders in women. We present the case of a 24-year-old transgendered female who experienced a first-onset psychosis and subsequent relapses associated with discontinuation of non-prescription estrogen replacement therapy.
Collapse
Affiliation(s)
- Olivia Moffitt
- a Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston , Houston , TX , USA
| | - Jonathan Chase Findley
- a Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston , Houston , TX , USA
| |
Collapse
|
28
|
L-Type Calcium Channels Modulation by Estradiol. Mol Neurobiol 2016; 54:4996-5007. [PMID: 27525676 DOI: 10.1007/s12035-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Collapse
|
29
|
Romano E, Cosentino L, Laviola G, De Filippis B. Genes and sex hormones interaction in neurodevelopmental disorders. Neurosci Biobehav Rev 2016; 67:9-24. [DOI: 10.1016/j.neubiorev.2016.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
|
30
|
Doğan Bulut S, Bulut S, Güriz O. The relationship between sex hormone profiles and symptoms of schizophrenia in men. Compr Psychiatry 2016; 69:186-92. [PMID: 27423360 DOI: 10.1016/j.comppsych.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022] Open
Abstract
AIM Recent studies have shown that sex hormones play a role in the development of schizophrenia and the severity of disease symptoms. However, study results have been inconsistent. This study compares the relationship between severity of disease symptoms and levels of estradiol, progesterone, testosterone, DHEA-S, prolactin and cortisol in male schizophrenia patients and a matched group of healthy controls. METHODS The study sample included 38 men diagnosed with schizophrenia according to DSM-IV TR criteria, and matched by age with 38 healthy controls. All subjects were between 18 and 55years old, 22 of them had been treated with olanzapine and 16 with quetiapine. Their symptom severity was evaluated by administering the Scale for the Assessment of Positive Symptoms (SAPS) and Scale for the Assessment of Negative Symptoms (SANS). Hormone levels for schizophrenia patients and healthy controls were evaluated using a chemiluminescence immunoassay method. The hormone profiles of schizophrenia patients and healthy controls were compared statistically. We examined the relationship between subjects' and controls' hormone levels and their scores on the SANS and SAPS scales. RESULTS This study found statistically significant elevated levels of serum DHEA-S, cortisol, and prolactin (p=0.012, p=0.009, and p=0.021 respectively), in schizophrenia patients as compared to a control group. Subjects' serum estradiol and progesterone levels (p=0.005 and p<0.001 respectively), were significantly lower than controls' levels. There was a positive correlation between subjects' SANS scores, estradiol (p=0.001) and progesterone levels (p=0.027). No relationship was found between subjects' hormone levels and their SAPS scores. CONCLUSION There may be a relationship between progesterone, estradiol, cortisol and DHEA-S, and the pathophysiology of schizophrenia. These hormones can be used as biological markers for the disorder of schizophrenia. More studies with larger sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Süheyla Doğan Bulut
- Psychiatry Department, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, İrfan Baştuğ cad. no.12 Dışkapı-Altındağ, Ankara 06110, Turkey.
| | - Serdar Bulut
- Psychiatry Department, Yenimahalle Teaching and Research Hospital, Yeni Batı mah. 2026 cad. 2367 sok. no.4 Batıkent, Ankara 06370, Turkey.
| | - Olga Güriz
- Psychiatry Department, Dışkapı Yıldırım Beyazıt Teaching and Research Hospital, İrfan Baştuğ cad. no.12 Dışkapı-Altındağ, Ankara 06110, Turkey.
| |
Collapse
|
31
|
Schizophrenia interactome with 504 novel protein-protein interactions. NPJ SCHIZOPHRENIA 2016; 2:16012. [PMID: 27336055 PMCID: PMC4898894 DOI: 10.1038/npjschz.2016.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein–protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities.
Collapse
|
32
|
Lu Q, Schnitzler GR, Ueda K, Iyer LK, Diomede OI, Andrade T, Karas RH. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells. PLoS One 2016; 11:e0152807. [PMID: 27035664 PMCID: PMC4818104 DOI: 10.1371/journal.pone.0152807] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs), which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen) in vascular injury require the estrogen receptor alpha (ERα). ERα transduces the effects of estrogen via a classical DNA binding, "genomic" signaling pathway and via a more recently-described "rapid" signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα) that is specifically defective in rapid signaling, but is competent to regulate transcription through the "genomic" pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen.
Collapse
Affiliation(s)
- Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Gavin R. Schnitzler
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail: (GRS); (RHK)
| | - Kazutaka Ueda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Lakshmanan K. Iyer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Olga I. Diomede
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Tiffany Andrade
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Richard H. Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail: (GRS); (RHK)
| |
Collapse
|
33
|
Neuroactive Steroids in First-Episode Psychosis: A Role for Progesterone? SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:1942828. [PMID: 27747103 PMCID: PMC5055965 DOI: 10.1155/2016/1942828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 01/10/2023]
Abstract
Neuroactive steroids may play a role in the pathophysiology of psychotic disorders, but few studies examined this issue. We compared serum levels of cortisol, testosterone, dehydroepiandrosterone, and progesterone between a representative sample of first-episode psychosis (FEP) patients and age- and gender-matched healthy subjects. Furthermore, we analyzed the associations between neuroactive steroids levels and the severity of psychotic symptom dimensions. Male patients had lower levels of progesterone than controls (p = 0.03). Progesterone levels were inversely associated with the severity of positive symptoms (p = 0.007). Consistent with preclinical findings, results suggest that progesterone might have a role in the pathophysiology of psychotic disorders.
Collapse
|
34
|
Hodgetts S, Hausmann M, Weis S. High estradiol levels improve false memory rates and meta-memory in highly schizotypal women. Psychiatry Res 2015; 229:708-14. [PMID: 26292620 DOI: 10.1016/j.psychres.2015.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/01/2015] [Accepted: 08/10/2015] [Indexed: 01/18/2023]
Abstract
Overconfidence in false memories is often found in patients with schizophrenia and healthy participants with high levels of schizotypy, indicating an impairment of meta-cognition within the memory domain. In general, cognitive control is suggested to be modulated by natural fluctuations in oestrogen. However, whether oestrogen exerts beneficial effects on meta-memory has not yet been investigated. The present study sought to provide evidence that high levels of schizotypy are associated with increased false memory rates and overconfidence in false memories, and that these processes may be modulated by natural differences in estradiol levels. Using the Deese-Roediger-McDermott paradigm, it was found that highly schizotypal participants with high estradiol produced significantly fewer false memories than those with low estradiol. No such difference was found within the low schizotypy participants. Highly schizotypal participants with high estradiol were also less confident in their false memories than those with low estradiol; low schizotypy participants with high estradiol were more confident. However, these differences only approached significance. These findings suggest that the beneficial effect of estradiol on memory and meta-memory observed in healthy participants is specific to highly schizotypal individuals and might be related to individual differences in baseline dopaminergic activity.
Collapse
Affiliation(s)
- Sophie Hodgetts
- Department of Psychology, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Markus Hausmann
- Department of Psychology, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Susanne Weis
- Department of Psychology, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
35
|
Labouesse MA, Langhans W, Meyer U. Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice. Psychopharmacology (Berl) 2015; 232:2981-94. [PMID: 25893642 DOI: 10.1007/s00213-015-3935-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
RATIONALE Multiple lines of evidence suggest that the sex steroid hormone 17-β estradiol (E2) plays a protective role in schizophrenia. Systemic E2 enhances prepulse inhibition (PPI) of the acoustic startle reflex, an operational measure of sensorimotor gating known to be impaired in schizophrenia and related disorders. However, the relative contribution of different estrogen-receptor (ER) isoforms in these associations still awaits examination. OBJECTIVES The present study explored the effects of ER-α and ER-β stimulation or blockade on PPI and their functional relevance in an amphetamine-induced PPI deficiency model in male mice. METHODS Prior to the assessment of PPI, C57BL/6N male mice were injected with the ER-α agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), the ER-α antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1N-pyrozole dihydrochloride (MPP), the ER-β agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN), or the ER-β antagonist 4-[2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl] phenol (PHTPP), with or without concomitant amphetamine treatment. RESULTS Acute pharmacological stimulation and blockade of ER-α, respectively, led to a dose-dependent increase and decrease in basal PPI. In contrast, acute treatment with preferential ER-β modulators spared PPI under basal conditions. Pretreatment with either ER-α or ER-β agonist was, however, effective in blocking amphetamine-induced PPI disruption. CONCLUSIONS Our study demonstrates that activation of either ER isoform is capable of modulating dopamine-dependent PPI levels. At the same time, our results suggest that endogenous ER-α signaling may be more relevant than ER-β in the regulation of sensorimotor gating under basal conditions.
Collapse
Affiliation(s)
- Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland,
| | | | | |
Collapse
|
36
|
Mendrek A. Is It Important to Consider Sex and Gender in Neurocognitive Studies? Front Psychiatry 2015; 6:83. [PMID: 26082728 PMCID: PMC4451577 DOI: 10.3389/fpsyt.2015.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Adrianna Mendrek
- Department of Psychology, Bishop's University , Sherbrooke, QC , Canada
| |
Collapse
|
37
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
38
|
Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol 2014; 171:4595-619. [PMID: 24697577 DOI: 10.1111/bph.12710] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories.
Collapse
Affiliation(s)
- N Kokras
- Department of Pharmacology, Medical School, University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, University of Athens, Greece
| | | |
Collapse
|