1
|
Gomez GT, Shi L, Fohner AE, Chen J, Yang Y, Fornage M, Duggan MR, Peng Z, Daya GN, Tin A, Schlosser P, Longstreth WT, Kalani R, Sharma M, Psaty BM, Nevado-Holgado AJ, Buckley NJ, Gottesman RF, Lutsey PL, Jack CR, Sullivan KJ, Mosley T, Hughes TM, Coresh J, Walker KA. Plasma proteome-wide analysis of cerebral small vessel disease identifies novel biomarkers and disease pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24314972. [PMID: 39417098 PMCID: PMC11483013 DOI: 10.1101/2024.10.07.24314972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort. Our proteome-wide analysis of older adults (mean age: 76) identified 13 WMH-associated plasma proteins involved in synaptic function, endothelial integrity, and angiogenesis, two of which remained associated with late-life WMH volume when measured nearly 20 years earlier, during midlife. We replicated the relationship between 9 candidate proteins and WMH volume in one or more external cohorts; we found that 11 of the 13 proteins were associated with risk for future dementia; and we leveraged publicly available proteomic data from brain tissue to demonstrate that a subset of WMH-associated proteins was differentially expressed in the context of cerebral atherosclerosis, pathologically-defined Alzheimer's disease, and cognitive decline. Bidirectional two-sample Mendelian randomization analyses examined the causal relationships between candidate proteins and WMH volume, while pathway and network analyses identified discrete biological processes (lipid/cholesterol metabolism, NF-kB signaling, hemostasis) associated with distinct forms of SVD. Finally, we synthesized these findings to identify two plasma proteins, oligodendrocyte myelin glycoprotein (OMG) and neuronal pentraxin receptor (NPTXR), as top candidate biomarkers for elevated WMH volume and its clinical manifestations.
Collapse
|
2
|
Piura Y, Bregman N, Kavé G, Karni A, Kolb H, Vigiser I, Day GS, Lopez-Chiriboga S, Shiner T, Regev K. Long-term cognitive outcomes in Susac syndrome: A case series. J Neuroimmunol 2024; 393:578396. [PMID: 38908330 DOI: 10.1016/j.jneuroim.2024.578396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Susac syndrome (SuS) presents with encephalopathy, visual disturbances, and hearing loss from immune-mediated microvascular occlusion. While acute SuS is well-described, long-term cognitive outcomes with current treatments are underknown. We assessed ten SuS patients treated in accordance with evidence-based guidelines using immunotherapies targeting humoral and cell-mediated pathways. Patients were followed for a median 3.6 years. Initially, cognition inversely correlated with corpus callosum lesions on MRI. All reported cognitive improvement; 5/10 patients had residual deficits in visual attention and executive function. Early, aggressive treatment was associated with good outcomes; extensive early corpus callosum lesions may identify patients at-risk of persistent cognitive deficits.
Collapse
Affiliation(s)
- Yoav Piura
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - Noa Bregman
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gitit Kavé
- Department of Education and Psychology, The Open University of Israel, Ra'anana, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Arnon Karni
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Hadar Kolb
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Ifat Vigiser
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Gregory S Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL, USA
| | | | - Tamara Shiner
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; School of Medicine, Tel Aviv University, Tel Aviv, Israel; Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Cognitive Neurology Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Keren Regev
- Department of Neurology, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; The Neuroimmunology and Multiple Sclerosis Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Goncharov NV, Popova PI, Kudryavtsev IV, Golovkin AS, Savitskaya IV, Avdonin PP, Korf EA, Voitenko NG, Belinskaia DA, Serebryakova MK, Matveeva NV, Gerlakh NO, Anikievich NE, Gubatenko MA, Dobrylko IA, Trulioff AS, Aquino AD, Jenkins RO, Avdonin PV. Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci 2024; 25:1888. [PMID: 38339164 PMCID: PMC10855959 DOI: 10.3390/ijms25031888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. Further, damage to the endothelium can be both a cause and a consequence of many diseases, especially in elderly people. The purpose of this study was to carry out immunological and biochemical profiling of elderly people with acute ischemic stroke (AIS), chronic cerebral circulation insufficiency (CCCI), prediabetes or newly diagnosed type II diabetes mellitus (DM), and subcortical ischemic vascular dementia (SIVD). Socio-demographic, lifestyle, and cognitive data were obtained. Biochemical, hematological, and immunological analyses were carried out, and extracellular vesicles (EVs) with endothelial CD markers were assessed. The greatest number of significant deviations from conditionally healthy donors (HDs) of the same age were registered in the SIVD group, a total of 20, of which 12 were specific and six were non-specific but with maximal differences (as compared to the other three groups) from the HDs group. The non-specific deviations were for the MOCA (Montreal Cognitive Impairment Scale), the MMSE (Mini Mental State Examination) and life satisfaction self-assessment scores, a decrease of albumin levels, and ADAMTS13 (a Disintegrin and Metalloproteinase with a Thrombospondin Type 1 motif, member 13) activity, and an increase of the VWF (von Willebrand factor) level. Considering the significant changes in immunological parameters (mostly Th17-like cells) and endothelial CD markers (CD144 and CD34), vascular repair was impaired to the greatest extent in the DM group. The AIS patients showed 12 significant deviations from the HD controls, including three specific to this group. These were high NEFAs (non-esterified fatty acids) and CD31 and CD147 markers of EVs. The lowest number of deviations were registered in the CCCI group, nine in total. There were significant changes from the HD controls with no specifics to this group, and just one non-specific with a maximal difference from the control parameters, which was α1-AGP (alpha 1 acid glycoprotein, orosomucoid). Besides the DM patients, impairments of vascular repair were also registered in the CCCI and AIS patients, with a complete absence of such in patients with dementia (SIVD group). On the other hand, microvascular damage seemed to be maximal in the latter group, considering the biochemical indicators VWF and ADAMTS13. In the DM patients, a maximum immune response was registered, mainly with Th17-like cells. In the CCCI group, the reaction was not as pronounced compared to other groups of patients, which may indicate the initial stages and/or compensatory nature of organic changes (remodeling). At the same time, immunological and biochemical deviations in SIVD patients indicated a persistent remodeling in microvessels, chronic inflammation, and a significant decrease in the anabolic function of the liver and other tissues. The data obtained support two interrelated assumptions. Taking into account the primary biochemical factors that trigger the pathological processes associated with vascular pathology and related diseases, the first assumption is that purine degradation in skeletal muscle may be a major factor in the production of uric acid, followed by its production by non-muscle cells, the main of which are endothelial cells. Another assumption is that therapeutic factors that increase the levels of endothelial progenitor cells may have a therapeutic effect in reducing the risk of cerebrovascular disease and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, bld 93 Kuzmolovsky, Leningrad Region 188663, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | | | | | | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | | | | | | | | - Irina A. Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | - Arthur D. Aquino
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
4
|
Tang Z, Li X, Yin N, Zhao M, Hu Q, Lv P. Influences and mechanism of erythropoietin on the cognitive function of vascular dementia rats. Aging (Albany NY) 2023; 15:12264-12274. [PMID: 37934569 PMCID: PMC10683607 DOI: 10.18632/aging.205178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE To investigate the influences and mechanism of erythropoietin (EPO) on the cognitive function of vascular dementia (VD) rats. METHODS 1) Spatial memory capacity was assessed by Morris water maze test; 2) Pathological conditions of brain tissues were detected by hematoxylin-eosin (HE) staining; 3) The effect of treatment on apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining; 4) Western blotting was used to examine the protein expression in hippocampal neurons. RESULTS The escape latency and swimming distance in the EPO group were much shorter than those in the Model group on the fifth day. In the spatial exploration test, the time spent in the target quadrant was longer, the number of platform crossings was larger and the swimming speed was higher in the Sham group and EPO group than those in the Model group. The results of HE staining showed that the cells in the hippocampal CA1 region were arranged closely in the Sham group, loosely and disorderly in the Model group but significantly better in the EPO group. Compared with that in the Model group, the number of apoptotic cells in the EPO group was obviously smaller. The results of Western blotting revealed that the expressions of EPO, p-EPOR, p-SHP2, p-TrKB, p-PI3K, p-ERK1/2 and Bcl-2 rose, while the expressions of P22, P47, Caspase-3, Caspase-9 and Bax significantly declined in the EPO group. CONCLUSIONS EPO can effectively ameliorate the cognitive dysfunction induced by chronic hypoperfusion in VD rats by mediating oxidative stress-related pathways.
Collapse
Affiliation(s)
- Zhipeng Tang
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiuqin Li
- Department of Geriatric Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ming Zhao
- Department of Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qingchuan Hu
- Department of Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Geriatric Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Mohamed AA, Marques O. Diagnostic Efficacy and Clinical Relevance of Artificial Intelligence in Detecting Cognitive Decline. Cureus 2023; 15:e47004. [PMID: 37965412 PMCID: PMC10641267 DOI: 10.7759/cureus.47004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cognitive impairment is an age-associated disorder of increasing prevalence as the aging population continues to grow. Classified based on the level of cognitive decline, memory, function, and capacity to conduct activities of daily living, cognitive impairment ranges from mild cognitive impairment to dementia. When considering the insidious nature of the etiologies responsible for varying degrees of cognitive impairment, early diagnosis may provide a clinical benefit through the facilitation of early treatment. Typical diagnosis relies heavily on evaluation in a primary care setting. However, there is evidence that other diagnostic tools may aid in an earlier diagnosis of the different underlying pathologies responsible for cognitive impairment. Artificial intelligence represents a new intersecting field with healthcare that may aid in the early detection of neurodegenerative disorders. When assessing the role of AI in detecting cognitive decline, it is important to consider both the diagnostic efficacy of AI algorithms and the clinical relevance and impact of early interventions as a result of early detection. Thus, this review highlights promising investigations and developments in the space of artificial intelligence and healthcare and their potential to impact patient outcomes.
Collapse
Affiliation(s)
- Ali A Mohamed
- Neurological Surgery, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
- Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, USA
| | - Oge Marques
- Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
- Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, USA
| |
Collapse
|
6
|
Sadeghzadeh J, Jafarzadeh J, Hadinezhad P, Nazari A, Sohrabi S, Musazadeh V, Barzegar A, Shahabi P. Profiling inflammatory mechanisms, hyperphosphorylated tau of hippocampal tissue and spatial memory following vitamin D3 treatment in the mice model of vascular dementia. Int Immunopharmacol 2023; 120:110314. [PMID: 37220695 DOI: 10.1016/j.intimp.2023.110314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effect of vitamin D3 (VitD3) on inflammatory mechanisms, hyperphosphorylated tau (p-tau) in the hippocampus, and cognitive impairment of the mouse model of vascular dementia (VaD). METHODS In this study, 32 male mice were randomly assigned to the control, VaD, VitD3 (300 IU/Kg/day), and VitD3 (500 IU/Kg/day) groups. VaD and VitD3 groups were gavaged daily for 4 weeks with a gastric needle. For biochemical assessments, blood samples and the hippocampus were isolated. IL-1β and TNF-α were analyzed by ELISA, and p-tau and other inflammatory molecules were measured by western blot. RESULTS VitD3 supplements significantly (P < 0.05) decreased the level of inflammatory factors in the hippocampus and prevented apoptosis. However, regarding p-tau in hippocampal tissue, this decrease was not statistically significant (P > 0.05). The results of behavioral assessments showed that VitD3 significantly improved the spatial memory of treated mice. CONCLUSION These results suggest that the neuroprotective effects of VitD3 are mainly associated with their anti-inflammatory effects.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Jafarzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pezhman Hadinezhad
- Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran; Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences,Sari, Iran
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Sohrabi
- School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Departments of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Ma J, Chen T, Wang R. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway. Neurochem Int 2023; 167:105535. [PMID: 37209830 DOI: 10.1016/j.neuint.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2023]
Abstract
Subcortical ischemic vascular dementia (SIVD), which is caused by chronic cerebral hypoperfusion, is a common subtype of vascular dementia, accompanied by white matter damage and cognitive impairment. Currently, there are no effective treatments for this condition. Oxidative stress is a key factor in the pathogenesis of white matter damage. Astragaloside IV (AS-IV), one of the main active components of astragaloside, has antioxidant properties and promotes cognitive improvement; however, its effect on SIVD and its potential mechanism remain unknown. We aimed to clarify whether AS-IV had a protective effect against SIVD injury caused by right unilateral common carotid artery occlusion and the underlying mechanism. The results showed that AS-IV treatment improved cognitive function and white matter damage, inhibited oxidative stress and glial cells activation, and promoted the survival of mature oligodendrocytes after chronic cerebral hypoperfusion. Moreover, the protein expression levels of NQO1, HO-1, SIRT1 and Nrf2 were increased by AS-IV treatment. However, pre-treatment with EX-527, a SIRT1-specific inhibitor, eliminated the beneficial effects of AS-IV. These results demonstrate that AS-IV plays a neuroprotective role in SIVD by suppressing oxidative stress and increasing the number of mature oligodendrocytes via the modulation of SIRT1/Nrf2 signaling. Our results support AS-IV as a potential therapeutic agent for SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
8
|
Sagaro GG, Traini E, Amenta F. Activity of Choline Alphoscerate on Adult-Onset Cognitive Dysfunctions: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2023; 92:59-70. [PMID: 36683513 PMCID: PMC10041421 DOI: 10.3233/jad-221189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Choline alphoscerate (alpha glyceryl phosphorylcholine, α-GPC) is a choline-containing phospholipid used as a medicine or nutraceutical to improve cognitive function impairment occurring in neurological conditions including adult-onset dementia disorders. Despite its 1985 marketing authorization, there are still discrepancies between countries regarding its approval as a prescription medicine and discussions about its effectiveness. OBJECTIVE This study aimed to evaluate the efficacy of the α-GPC compound for treating cognitive impairment in patients with adult-onset neurological disorders. METHODS Relevant studies were identified by searching PubMed, Web of Science, and Embase. Studies that evaluated the effects of α-GPC alone or in combination with other compounds on adult-onset cognitive impairment reporting cognition, function, and behavior were considered. We assessed the risk of bias of selected studies using the Cochrane risk of bias tool. RESULTS A total of 1,326 studies and 300 full-text articles were screened. We included seven randomized controlled trials (RCTs) and one prospective cohort study that met our eligibility criteria. We found significant effects of α-GPC in combination with donepezil on cognition [4 RCTs, mean difference (MD):1.72, 95% confidence interval (CI): 0.20 to 3.25], functional outcomes [3 RCTs, MD:0.79, 95% CI: 0.34 to 1.23], and behavioral outcomes [4 RCTs; MD: -7.61, 95% CI: -10.31 to -4.91]. We also observed that patients who received α-GPC had significantly better cognition than those who received either placebo or other medications [MD: 3.50, 95% CI: 0.36 to 6.63]. CONCLUSION α-GPC alone or in combination with donepezil improved cognition, behavior, and functional outcomes among patients with neurological conditions associated with cerebrovascular injury.
Collapse
Affiliation(s)
- Getu Gamo Sagaro
- Clinical Research, Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Enea Traini
- Clinical Research, Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- Clinical Research, Telemedicine and Telepharmacy Center, School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| |
Collapse
|
9
|
Tu MC, Chung HW, Hsu YH, Yang JJ, Wu WC. Neurovascular Correlates of Cobalamin, Folate, and Homocysteine in Dementia. J Alzheimers Dis 2023; 96:1329-1338. [PMID: 37980672 PMCID: PMC10741318 DOI: 10.3233/jad-230763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cobalamin (Cbl) and folate are common supplements clinicians prescribe as an adjuvant therapy for dementia patients, on the presumption of their neurotrophic and/or homocysteine (Hcy) lowering effect. However, the treatment efficacy has been found mixed and the effects of Cbl/folate/Hcy on the human brain remain to be elucidated. OBJECTIVE To explore the neurovascular correlates of Cbl/folate/Hcy in Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD). METHODS Sixty-seven AD patients and 57 SIVD patients were prospectively and consecutively recruited from an outpatient clinic. Multimodal 3-Tesla magnetic resonance imaging was performed to quantitatively evaluate cerebral blood flow (CBF) and white matter integrity. The relationship between neuroimaging metrics and the serum levels of Cbl/folate/Hcy was examined by using the Kruskal-Wallis test, partial correlation analysis, and moderation analysis, at a significance level of 0.05. RESULTS As a whole, CBF mainly associated with Cbl/folate while white matter hyperintensities exclusively associated with Hcy. As compared with AD, SIVD exhibited more noticeable CBF correlates (spatially widespread with Cbl and focal with folate). In SIVD, a bilateral Cbl-moderated CBF coupling was found between medial prefrontal cortex and ipsilateral basal ganglia, while in the fronto-subcortical white matter tracts, elevated Hcy was associated with imaging metrics indicative of increased injury in both axon and myelin sheath. CONCLUSIONS We identified the neurovascular correlates of previously reported neurotrophic effect of Cbl/folate and neurotoxic effect of Hcy in dementia. The correlates exhibited distinct patterns in AD and SIVD. The findings may help improving the formulation of supplemental Cbl/folate treatment for dementia.
Collapse
Affiliation(s)
- Min-Chien Tu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Minxiong, Taiwan
- Center for Innovative Research on Aging Society, National Chung Cheng University, Minxiong, Taiwan
| | - Jir-Jei Yang
- Department of Medical Imaging, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Wen-Chau Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Joo L, Shim WH, Suh CH, Lim SJ, Heo H, Kim WS, Hong E, Lee D, Sung J, Lim JS, Lee JH, Kim SJ. Diagnostic performance of deep learning-based automatic white matter hyperintensity segmentation for classification of the Fazekas scale and differentiation of subcortical vascular dementia. PLoS One 2022; 17:e0274562. [PMID: 36107961 PMCID: PMC9477348 DOI: 10.1371/journal.pone.0274562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose To validate the diagnostic performance of commercially available, deep learning-based automatic white matter hyperintensity (WMH) segmentation algorithm for classifying the grades of the Fazekas scale and differentiating subcortical vascular dementia. Methods This retrospective, observational, single-institution study investigated the diagnostic performance of a deep learning-based automatic WMH volume segmentation to classify the grades of the Fazekas scale and differentiate subcortical vascular dementia. The VUNO Med-DeepBrain was used for the WMH segmentation system. The system for segmentation of WMH was designed with convolutional neural networks, in which the input image was comprised of a pre-processed axial FLAIR image, and the output was a segmented WMH mask and its volume. Patients presented with memory complaint between March 2017 and June 2018 were included and were split into training (March 2017–March 2018, n = 596) and internal validation test set (April 2018–June 2018, n = 204). Results Optimal cut-off values to categorize WMH volume as normal vs. mild/moderate/severe, normal/mild vs. moderate/severe, and normal/mild/moderate vs. severe were 3.4 mL, 9.6 mL, and 17.1 mL, respectively, and the AUC were 0.921, 0.956 and 0.960, respectively. When differentiating normal/mild vs. moderate/severe using WMH volume in the test set, sensitivity, specificity, and accuracy were 96.4%, 89.9%, and 91.7%, respectively. For distinguishing subcortical vascular dementia from others using WMH volume, sensitivity, specificity, and accuracy were 83.3%, 84.3%, and 84.3%, respectively. Conclusion Deep learning-based automatic WMH segmentation may be an accurate and promising method for classifying the grades of the Fazekas scale and differentiating subcortical vascular dementia.
Collapse
Affiliation(s)
- Leehi Joo
- Department of Radiology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Su Jin Lim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwon Heo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Woo Seok Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Jeong SH, Lee HS, Jung JH, Baik K, Sohn YH, Chung SJ, Lee PH. Associations between white matter hyperintensities, striatal dopamine loss, and cognition in drug-naïve Parkinson's disease. Parkinsonism Relat Disord 2022; 97:1-7. [PMID: 35276583 DOI: 10.1016/j.parkreldis.2022.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study investigated the relationship between white matter hyperintensities (WMHs), nigrostriatal dopamine deficits, and cognitive decline in patients with drug-naïve early-stage Parkinson's disease (PD). METHOD This cross-sectional study enrolled 309 non-demented patients with de novo PD who underwent [18F] N-(3-fluoropropyl)-2β-carbonethoxy-3β-(4-iodophenyl) nortropane positron emission tomography, brain magnetic resonance imaging, and a detailed neuropsychological test at baseline. We quantified dopamine transporter (DAT) availability in each striatal sub-region and applied the Scheltens scale to assess the severity of periventricular and deep WMHs. The relationships between WMHs, DAT availability, and cognition in PD were assessed using multivariate linear regression and mediation analyses while adjusting for age at parkinsonian symptom onset, sex, disease duration, and vascular risk factors. RESULTS The severities of periventricular and frontal WMHs were associated with striatal DAT availability. Periventricular WMHs affected the level of cognitive performance in all cognitive domains, while frontal WMHs affected the attention/working memory and frontal/executive function domains. The effects of WMHs on attention/working memory and frontal/executive dysfunction were mostly direct with minimal mediating effects through striatal DAT availability. Meanwhile, striatal DAT availability fully mediated the association between WMHs and cognitive impairment in the visuospatial and memory function domains. CONCLUSION This study demonstrated the different effects of WMHs on cognitive impairment depending on the cognitive domains in PD. These findings suggest a close link between comorbid WMHs, striatal dopamine depletion, and cognition in patients with PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Inje University Busan Paik Hospital, Busan, South Korea; Dementia and Neurodegenerative Disease Research Center, Inje University, Busan, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Ohtomo R, Ishikawa H, Kinoshita K, Chung KK, Hamanaka G, Ohtomo G, Takase H, Wrann CD, Katsuki H, Iwata A, Lok J, Lo EH, Arai K. Treadmill Exercise During Cerebral Hypoperfusion Has Only Limited Effects on Cognitive Function in Middle-Aged Subcortical Ischemic Vascular Dementia Mice. Front Aging Neurosci 2022; 13:756537. [PMID: 34992525 PMCID: PMC8724785 DOI: 10.3389/fnagi.2021.756537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Clinical and basic research suggests that exercise is a safe behavioral intervention and is effective for improving cognitive function in cerebrovascular diseases, including subcortical ischemic vascular dementia (SIVD). However, most of the basic research uses young animals to assess the effects of exercise, although SIVD is an age-related disease. In this study, therefore, we used middle-aged mice to examine how treadmill exercise changes the cognitive function of SIVD mice. As a mouse model of SIVD, prolonged cerebral hypoperfusion was induced in 8-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into two groups: a group that received 6-week treadmill exercise and a sedentary group for observation. After subjecting the mice to multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to only be effective in ameliorating cognitive decline in the Y-maze test. We previously demonstrated that the same regimen of treadmill exercise was effective in young hypoperfused-SIVD mice for all three cognitive tests. Therefore, our study may indicate that treadmill exercise during cerebral hypoperfusion has only limited effects on cognitive function in aging populations.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Keita Kinoshita
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Christiane D Wrann
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
13
|
Liu M, Wang Y, Zhang H, Yang Q, Shi F, Zhou Y, Shen D. OUP accepted manuscript. Cereb Cortex 2022; 32:4641-4656. [PMID: 35136966 PMCID: PMC9627024 DOI: 10.1093/cercor/bhab507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022] Open
Abstract
Subcortical ischemic vascular disease could induce subcortical vascular cognitive impairments (SVCIs), such as amnestic mild cognitive impairment (aMCI) and non-amnestic MCI (naMCI), or sometimes no cognitive impairment (NCI). Previous SVCI studies focused on focal structural lesions such as lacunes and microbleeds, while the functional connectivity networks (FCNs) from functional magnetic resonance imaging are drawing increasing attentions. Considering remarkable variations in structural lesion sizes, we expect that seeking abnormalities in the multiscale hierarchy of brain FCNs could be more informative to differentiate SVCI patients with varied outcomes (NCI, aMCI, and naMCI). Driven by this hypothesis, we first build FCNs based on the atlases at multiple spatial scales for group comparisons and found distributed FCN differences across different spatial scales. We then verify that combining multiscale features in a prediction model could improve differentiation accuracy among NCI, aMCI, and naMCI. Furthermore, we propose a graph convolutional network to integrate the naturally emerged multiscale features based on the brain network hierarchy, which significantly outperforms all other competing methods. In addition, the predictive features derived from our method consistently emphasize the limbic network in identifying aMCI across the different scales. The proposed analysis provides a better understanding of SVCI and may benefit its clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Han Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Qing Yang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yan Zhou
- Address correspondence to Dinggang Shen, School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China. . Yan Zhou, Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Dinggang Shen
- Address correspondence to Dinggang Shen, School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China. . Yan Zhou, Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
14
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Spektor E, Fietze I, Poluektov MG. Periodic Limb Movements Syndrome in Patients With Cerebral Small Vessel Disease: Protocol for a Prospective Observational Study. Front Neurol 2021; 12:700151. [PMID: 34646228 PMCID: PMC8503532 DOI: 10.3389/fneur.2021.700151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Cerebrovascular diseases are the leading cause of cognitive decline and dementia. Therefore, the investigation of the potential ways to slow down the disease progression is an important research field. Periodic limb movements in sleep (PLMS) are known to be associated with transient changes in heart rate and blood pressure. These changes might influence the course of cerebral small vessel disease (cSVD). Nevertheless, the clinical significance of PLMS, particularly its influence on cardiovascular diseases course, is still controversial and underinvestigated. Methods/design: Patients from 60 to 75 years old diagnosed with cSVD will undergo nocturnal polysomnography. Subjects with apnea/hypopnea index under 5 will be enrolled. Sleep quality and daytime functioning will be assessed at baseline with self-reported questionnaires. Brain MRI and cognitive assessment will be performed at baseline and in the 2-year follow-up. Progression of cSVD markers and cognitive dysfunction will be compared between patients with PLMS index (PLMI) equal to or more than 15 movements per hour of sleep and controls (PLMI <15/h). Discussion: The negative role of PLMS in cSVD progression and related cognitive decline is expected. We suppose that patients with PLMS tend to worsen in cognitive performance more rapidly than age-, gender-, and comorbidity-matched controls. We also expect them to have more rapid white matter hyperintensities and other cSVD marker progression. The limitations of the study protocol are the short follow-up period, the absence of a treatment group, and inability to make a conclusion about causality.
Collapse
Affiliation(s)
- Ekaterina Spektor
- Department of Sleep Medicine, Chair of Neurology and Neurosurgery, University Clinical Hospital No. 3, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ingo Fietze
- Center of Sleep Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,The Fourth People's hospital of Guangyuan, Guangyuan City, China.,The Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail G Poluektov
- Department of Sleep Medicine, Chair of Neurology and Neurosurgery, University Clinical Hospital No. 3, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Zhuang XM, Kuo LW, Lin SY, Yang JJ, Tu MC, Hsu YH. Prospective Memory and Regional Functional Connectivity in Subcortical Ischemic Vascular Disease. Front Aging Neurosci 2021; 13:686040. [PMID: 34489671 PMCID: PMC8417716 DOI: 10.3389/fnagi.2021.686040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Patients with subcortical ischemic vascular disease (SIVD) often have prominent frontal dysfunction. However, it remains unclear how SIVD affects prospective memory (PM), which strongly relies on the frontoparietal network. The present study aimed to investigate PM performance in patients with early stage SIVD as compared to those with Alzheimer's disease (AD) and to older adults with normal cognition, and to explore the neural correlates of PM deficits. Method: Patients with very-mild to mild dementia due to SIVD or AD and normal controls (NC) aged above 60 years were recruited. Seventy-three participants (20 SIVD, 22 AD, and 31 NC) underwent structural magnetic resonance imaging (MRI), cognitive screening tests, and a computerized PM test. Sixty-five of these participants (19 SIVD, 20 AD, and 26 NC) also received resting-state functional MRI. Results: The group with SIVD had significantly fewer PM hits than the control group on both time-based and non-focal event-based PM tasks. Among patients in the very early stage, only those with SIVD but not AD performed significantly worse than the controls. Correlational analyses showed that non-focal event-based PM in SIVD was positively correlated with regional homogeneity in bilateral superior and middle frontal gyri, while time-based PM was not significantly associated with regional homogeneity in any of the regions of interest within the dorsal frontoparietal regions. Conclusions: The findings of this study highlight the vulnerability of non-focal event-based PM to the disruption of regional functional connectivity in bilateral superior and middle frontal gyri in patients with SIVD.
Collapse
Affiliation(s)
- Xuan-Miao Zhuang
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Yen Lin
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Jir-Jei Yang
- Department of Medical Imaging, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
17
|
Babiloni C, Arakaki X, Bonanni L, Bujan A, Carrillo MC, Del Percio C, Edelmayer RM, Egan G, Elahh FM, Evans A, Ferri R, Frisoni GB, Güntekin B, Hainsworth A, Hampel H, Jelic V, Jeong J, Kim DK, Kramberger M, Kumar S, Lizio R, Nobili F, Noce G, Puce A, Ritter P, Smit DJA, Soricelli A, Teipel S, Tucci F, Sachdev P, Valdes-Sosa M, Valdes-Sosa P, Vergallo A, Yener G. EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiol Aging 2021; 103:78-97. [PMID: 33845399 DOI: 10.1016/j.neurobiolaging.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Vascular contribution to cognitive impairment (VCI) and dementia is related to etiologies that may affect the neurophysiological mechanisms regulating brain arousal and generating electroencephalographic (EEG) activity. A multidisciplinary expert panel reviewed the clinical literature and reached consensus about the EEG measures consistently found as abnormal in VCI patients with dementia. As compared to cognitively unimpaired individuals, those VCI patients showed (1) smaller amplitude of resting state alpha (8-12 Hz) rhythms dominant in posterior regions; (2) widespread increases in amplitude of delta (< 4 Hz) and theta (4-8 Hz) rhythms; and (3) delayed N200/P300 peak latencies in averaged event-related potentials, especially during the detection of auditory rare target stimuli requiring participants' responses in "oddball" paradigms. The expert panel formulated the following recommendations: (1) the above EEG measures are not specific for VCI and should not be used for its diagnosis; (2) they may be considered as "neural synchronization" biomarkers to enlighten the relationships between features of the VCI-related cerebrovascular lesions and abnormalities in neurophysiological brain mechanisms; and (3) they may be tested in future clinical trials as prognostic biomarkers and endpoints of interventions aimed at normalizing background brain excitability and vigilance in wakefulness.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESI, University G D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ana Bujan
- Psychological Neuroscience Lab, School of Psychology, University of Minho, Portugal
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Gary Egan
- Foundation Director of the Monash Biomedical Imaging (MBI) research facilities, Monash University, Clayton, Australia
| | - Fanny M Elahh
- Memory and Aging Center, University of California, San Francisco
| | - Alan Evans
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland; Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; REMER, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Atticus Hainsworth
- University of London St George's Molecular and Clinical Sciences Research Institute, London, UK
| | - Harald Hampel
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | - Vesna Jelic
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jaeseung Jeong
- Department of Bio and Brain Engineering/Program of Brain and Cognitive Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doh Kwan Kim
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Milica Kramberger
- Center for cognitive and movement disorders, Department of neurology, University Medical Center Ljubljana, Slovenia
| | - Sanjeev Kumar
- Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Flavio Nobili
- Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI)
| | | | - Aina Puce
- Department of Psychological and Brain Sciences at Indiana University in Bloomington, Indiana, USA
| | - Petra Ritter
- Brain Simulation Section, Department of Neurology, Charité Universitätsmedizin and Berlin Institute of Health, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Dirk J A Smit
- Department of Psychiatry Academisch Medisch Centrum Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | | | - Pedro Valdes-Sosa
- Cuban Neuroscience Center, Havana, Cuba; Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Andrea Vergallo
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | - Görsev Yener
- Izmir Biomedicine and Genome Center. Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
18
|
Ponirakis G, Elsotouhy A, Al Hamad H, Vattoth S, Petropoulos IN, Khan A, Gad H, Al-Khayat F, Chandran M, Ramadan M, Elorrabi M, Gadelseed M, Tosino R, Gawhale PV, Alobaidi M, Khan S, Manikoth P, Abdelrahim YHM, Thodi N, Almuhannadi H, Al-Mohannadi S, AlMarri F, Qazi M, Own A, Mahfoud ZR, Shuaib A, Malik RA. Association of Cerebral Ischemia With Corneal Nerve Loss and Brain Atrophy in MCI and Dementia. Front Neurosci 2021; 15:690896. [PMID: 34234643 PMCID: PMC8257078 DOI: 10.3389/fnins.2021.690896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction This study assessed the association of cerebral ischemia with neurodegeneration in mild cognitive impairment (MCI) and dementia. Methods Subjects with MCI, dementia and controls underwent assessment of cognitive function, severity of brain ischemia, MRI brain volumetry and corneal confocal microscopy. Results Of 63 subjects with MCI (n = 44) and dementia (n = 19), 11 had no ischemia, 32 had subcortical ischemia and 20 had both subcortical and cortical ischemia. Brain volume and corneal nerve measures were comparable between subjects with subcortical ischemia and no ischemia. However, subjects with subcortical and cortical ischemia had a lower hippocampal volume (P < 0.01), corneal nerve fiber length (P < 0.05) and larger ventricular volume (P < 0.05) compared to those with subcortical ischemia and lower corneal nerve fiber density (P < 0.05) compared to those without ischemia. Discussion Cerebral ischemia was associated with cognitive impairment, brain atrophy and corneal nerve loss in MCI and dementia.
Collapse
Affiliation(s)
- Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ahmed Elsotouhy
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Surjith Vattoth
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Fatima Al-Khayat
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Marwa Elorrabi
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Masharig Gadelseed
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rhia Tosino
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Priya V Gawhale
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maryam Alobaidi
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Pravija Manikoth
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Yasmin H M Abdelrahim
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Noushad Thodi
- Magnetic Resonance Imaging Unit, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hamad Almuhannadi
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Salma Al-Mohannadi
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Fatema AlMarri
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Murtaza Qazi
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ahmed Own
- Neuroradiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ziyad R Mahfoud
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ashfaq Shuaib
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Institute of Cardiovascular Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Mdawar B, Abi Faraj C, Khani M, Shamseddeen W. Episode of mixed mood with psychotic features secondary to Binswanger disease: a case report with a literature review. BMJ Case Rep 2021; 14:14/3/e238957. [PMID: 33664028 PMCID: PMC7934766 DOI: 10.1136/bcr-2020-238957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neurodegenerative and mood disorders in the geriatric population might exhibit interchangeable cognitive and behavioural symptoms. This overlap in presentation might raise a diagnostic challenge for psychiatrists evaluating elderly patients who are presenting with such symptoms. Additionally, there is limited data published about early psychiatric manifestations of neurodegenerative disorders in the elderly. We report a case of a 71-year-old with a history of refractory depressive disorder and multiple cardiovascular risk factors presenting with verbalisation of suicidal and homicidal intent as well as mixed mood and psychotic symptoms. The patient was diagnosed with Binswanger's disease (BD). We also provide a literature review of challenging early psychiatric presentations of neurocognitive disorders and a summary of similar cases to help facilitate diagnosis of BD cases in future.
Collapse
Affiliation(s)
- Bernadette Mdawar
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Munir Khani
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Huang L, Chen X, Sun W, Chen H, Ye Q, Yang D, Li M, Luo C, Ma J, Shao P, Xu H, Zhang B, Zhu X, Xu Y. Early Segmental White Matter Fascicle Microstructural Damage Predicts the Corresponding Cognitive Domain Impairment in Cerebral Small Vessel Disease Patients by Automated Fiber Quantification. Front Aging Neurosci 2021; 12:598242. [PMID: 33505302 PMCID: PMC7829360 DOI: 10.3389/fnagi.2020.598242] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To characterize earlier damage pattern of white matter (WM) microstructure in cerebral small vessel disease (CSVD) and its relationship with cognitive domain dysfunction. Methods: A total of 144 CSVD patients and 100 healthy controls who underwent neuropsychological measurements and diffusion tensor imaging (DTI) examination were recruited. Cognitive function, emotion, and gait were assessed in each participant. The automated fiber quantification (AFQ) technique was used to extract different fiber properties between groups, and partial correlation and general linear regression analyses were performed to assess the relationship between position-specific WM microstructure and cognitive function. Results: Specific segments in the association fibers, commissural WM regions of interest (ROIs), and projection fibers were damaged in the CSVD group [P < 0.05, family-wise error (FWE) correction], and these damaged segments showed interhemispheric symmetry. In addition, the damage to specific tract profiles [including the posteromedial component of the right cingulum cingulate (CC), the occipital lobe portion of the callosum forceps major, the posterior portion of the left superior longitudinal fasciculus (SLF), and the bilateral anterior thalamic radiation (ATR)] was related to the dysfunction in specific cognitive domains. Among these tracts, we found the ATR to be the key set of tracts whose profiles were most associated with cognitive dysfunction. The left ATR was a specific fiber bundle associated with episode memory and language function, whereas the fractional anisotropy (FA) values of the intermediate component of the right ATR were negatively correlated with executive function and gait evaluation. It should be noted that the abovementioned relationships could not survive the Bonferroni correction (p < 0.05/27), so we chose more liberal uncorrected statistical thresholds. Conclusions: Damage to the WM fiber bundles showed extensive interhemispheric symmetry and was limited to particular segments in CSVD patients. Disruption of strategically located fibers was associated with different cognitive deficits, especially the bilateral ATR.
Collapse
Affiliation(s)
- Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Xin Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Wenshan Sun
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurological Medical Center, Nanjing, China
| |
Collapse
|
21
|
Combining Cognitive Markers to Identify Individuals at Increased Dementia Risk: Influence of Modifying Factors and Time to Diagnosis. J Int Neuropsychol Soc 2020; 26:785-797. [PMID: 32207675 DOI: 10.1017/s1355617720000272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We investigated the extent to which combining cognitive markers increases the predictive value for future dementia, when compared to individual markers. Furthermore, we examined whether predictivity of markers differed depending on a range of modifying factors and time to diagnosis. METHOD Neuropsychological assessment was performed for 2357 participants (60+ years) without dementia from the population-based Swedish National Study on Aging and Care in Kungsholmen. In the main sample analyses, the outcome was dementia at 6 years. In the time-to-diagnosis analyses, a subsample of 407 participants underwent cognitive testing 12, 6, and 3 years before diagnosis, with dementia diagnosis at the 12-year follow-up. RESULTS Category fluency was the strongest individual predictor of dementia 6 years before diagnosis [area under the curve (AUC) = .903]. The final model included tests of verbal fluency, episodic memory, and perceptual speed (AUC = .913); these three domains were found to be the most predictive across a range of different subgroups. Twelve years before diagnosis, pattern comparison (perceptual speed) was the strongest individual predictor (AUC = .686). However, models 12 years before diagnosis did not show significantly increased predictivity above that of the covariates. CONCLUSIONS This study shows that combining markers from different cognitive domains leads to increased accuracy in predicting future dementia 6 years later. Markers from the verbal fluency, episodic memory, and perceptual speed domains consistently showed high predictivity across subgroups stratified by age, sex, education, apolipoprotein E ϵ4 status, and dementia type. Predictivity increased closer to diagnosis and showed highest accuracy up to 6 years before a dementia diagnosis. (JINS, 2020, 00, 1-13).
Collapse
|
22
|
Chen Q, Wang Y, Qiu Y, Wu X, Zhou Y, Zhai G. A Deep Learning-Based Model for Classification of Different Subtypes of Subcortical Vascular Cognitive Impairment With FLAIR. Front Neurosci 2020; 14:557. [PMID: 32625048 PMCID: PMC7315844 DOI: 10.3389/fnins.2020.00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Deep learning methods have shown their great capability of extracting high-level features from image and have been used for effective medical imaging classification recently. However, training samples of medical images are restricted by the amount of patients as well as medical ethics issues, making it hard to train the neural networks. In this paper, we propose a novel end-to-end three-dimensional (3D) attention-based residual neural network (ResNet) architecture to classify different subtypes of subcortical vascular cognitive impairment (SVCI) with single-shot T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence. Our aim is to develop a convolutional neural network to provide a convenient and effective way to assist doctors in the diagnosis and early treatment of the different subtypes of SVCI. The experiment data in this paper are collected from 242 patients from the Neurology Department of Renji Hospital, including 78 amnestic mild cognitive impairment (a-MCI), 70 nonamnestic MCI (na-MCI), and 94 no cognitive impairment (NCI). The accuracy of our proposed model has reached 98.6% on a training set and 97.3% on a validation set. The test accuracy on an untrained testing set reaches 93.8% with robustness. Our proposed method can provide a convenient and effective way to assist doctors in the diagnosis and early treatment.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Cassiani-Miranda CA, Chen X. Neurocognitive disorder due to neurosyphilis: a case report. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2020; 49:202-207. [PMID: 32888665 DOI: 10.1016/j.rcp.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/17/2018] [Accepted: 10/16/2018] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Neurosyphilis is a chronic infectious disease caused by Treponema pallidum that can cause a great variety of neuropsychiatric signs and symptoms, which complicates its diagnosis. CASE DESCRIPTION This case occurred in a 40-year-old man who consulted the Emergency Department because of a convulsion (de novo) which was related to a chronic condition of cognitive impairment and psychosis. The appropriate studies were performed for the diagnosis of neurosyphilis and the recommended treatment was initiated. The patient presented clinical improvement and was discharged. DISCUSSION Positive VDRL serology results and imaging findings of marked cortical atrophy conducted to consider a late-stage parenchymatous neurosyphilis with serious cognitive impairment and associated psychosis. Treatment with crystalline penicillin was formulated, which reduced the intensity of the patient's symptoms; however, the patient's lack of interest to attend the check-ups significantly reduces his chances of an adequate recovery. CONCLUSIONS Neurosyphilis must be suspected in patients with clinically evident neurological or psychiatric symptoms. Analysis of VDRL serology and neuroimaging studies are important as an initial evaluation of the patient and must be complemented with cognitive tests or mental examination to determine the state of cognitive impairment.
Collapse
Affiliation(s)
| | - Xueyi Chen
- Semillero de Investigación en Psiquiatría de Enlace-Grupo de Investigación en Neuropsiquiatría, Universidad Autónoma de Bucaramanga (UNAB), Bucaramanga, Colombia
| |
Collapse
|
24
|
Jordan F, Quinn TJ, McGuinness B, Passmore P, Kelly JP, Tudur Smith C, Murphy K, Devane D. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia. Cochrane Database Syst Rev 2020; 4:CD011459. [PMID: 32352165 PMCID: PMC7192366 DOI: 10.1002/14651858.cd011459.pub2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dementia is a worldwide concern. Its global prevalence is increasing. At present, there is no medication licensed to prevent or delay the onset of dementia. Inflammation has been suggested as a key factor in dementia pathogenesis. Therefore, medications with anti-inflammatory properties could be beneficial for dementia prevention. OBJECTIVES To evaluate the effectiveness and adverse effects of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) for the primary or secondary prevention of dementia. SEARCH METHODS We searched ALOIS, the specialised register of the Cochrane Dementia and Cognitive Improvement Group up to 9 January 2020. ALOIS contains records of clinical trials identified from monthly searches of several major healthcare databases, trial registries and grey literature sources. We ran additional searches across MEDLINE (OvidSP), Embase (OvidSP) and six other databases to ensure that the searches were as comprehensive and up-to-date as possible. We also reviewed citations of reference lists of included studies. SELECTION CRITERIA We searched for randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing aspirin or other NSAIDs with placebo for the primary or secondary prevention of dementia. We included trials with cognitively healthy participants (primary prevention) or participants with mild cognitive impairment (MCI) or cognitive complaints (secondary prevention). DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the strength of evidence for each outcome using the GRADE approach. MAIN RESULTS We included four RCTs with 23,187 participants. Because of the diversity of these trials, we did not combine data to give summary estimates, but presented a narrative description of the evidence. We identified one trial (19,114 participants) comparing low-dose aspirin (100 mg once daily) to placebo. Participants were aged 70 years or older with no history of dementia, cardiovascular disease or physical disability. Interim analysis indicated no significant treatment effect and the trial was terminated slightly early after a median of 4.7 years' follow-up. There was no evidence of a difference in incidence of dementia between aspirin and placebo groups (risk ratio (RR) 0.98, 95% CI 0.83 to 1.15; high-certainty evidence). Participants allocated aspirin had higher rates of major bleeding (RR 1.37, 95% CI 1.17 to 1.60, high-certainty evidence) and slightly higher mortality (RR 1.14, 95% CI 1.01 to 1.28; high-certainty evidence). There was no evidence of a difference in activities of daily living between groups (RR 0.84, 95% CI 0.70 to 1.02; high-certainty evidence). We identified three trials comparing non-aspirin NSAIDs to placebo. All three trials were terminated early due to adverse events associated with NSAIDs reported in other trials. One trial (2528 participants) investigated the cyclo-oxygenase-2 (COX-2) inhibitor celecoxib (200 mg twice daily) and the non-selective NSAID naproxen (220 mg twice daily) for preventing dementia in cognitively healthy older adults with a family history of Alzheimer's disease (AD). Median follow-up was 734 days. Combining both NSAID treatment arms, there was no evidence of a difference in the incidence of AD between participants allocated NSAIDs and those allocated placebo (RR 1.91, 95% CI 0.89 to 4.10; moderate-certainty evidence). There was also no evidence of a difference in rates of myocardial infarction (RR 1.21, 95% CI 0.61 to 2.40), stroke (RR 1.82, 95% CI 0.76 to 4.37) or mortality (RR 1.37, 95% CI 0.78 to 2.43) between treatment groups (all moderate-certainty evidence). One trial (88 participants) assessed the effectiveness of celecoxib (200 mg or 400 mg daily) in delaying cognitive decline in participants aged 40 to 81 years with mild age-related memory loss but normal memory performance scores. Mean duration of follow-up was 17.6 months in the celecoxib group and 18.1 months in the placebo group. There was no evidence of a difference between groups in test scores in any of six cognitive domains. Participants allocated celecoxib experienced more gastrointestinal adverse events than those allocated placebo (RR 2.66, 95% CI 1.05 to 6.75; low-certainty evidence). One trial (1457 participants) assessed the effectiveness of the COX-2 inhibitor rofecoxib (25 mg once daily) in delaying or preventing a diagnosis of AD in participants with MCI. Median duration of study participation was 115 weeks in the rofecoxib group and 130 weeks in the placebo group. There was a higher incidence of AD in the rofecoxib than the placebo group (RR 1.32, 95% CI 1.01 to 1.72; moderate-certainty evidence). There was no evidence of a difference between groups in cardiovascular adverse events (RR 1.07, 95% CI 0.68 to 1.66; moderate-certainty evidence) or mortality (RR 1.62, 95% CI 0.85 to 3.05; moderate-certainty evidence). Participants allocated rofecoxib had more upper gastrointestinal adverse events (RR 3.53, 95% CI 1.17 to 10.68; moderate-certainty evidence). Reported annual mean difference scores showed no evidence of a difference between groups in activities of daily living (year 1: no data available; year 2: 0.0, 95% CI -0.1 to 0.2; year 3: 0.1, 95% CI -0.1 to 0.3; year 4: 0.1, 95% CI -0.1 to 0.4; moderate-certainty evidence). AUTHORS' CONCLUSIONS There is no evidence to support the use of low-dose aspirin or other NSAIDs of any class (celecoxib, rofecoxib or naproxen) for the prevention of dementia, but there was evidence of harm. Although there were limitations in the available evidence, it seems unlikely that there is any need for further trials of low-dose aspirin for dementia prevention. If future studies of NSAIDs for dementia prevention are planned, they will need to be cognisant of the safety concerns arising from the existing studies.
Collapse
Affiliation(s)
- Fionnuala Jordan
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - John P Kelly
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Kathy Murphy
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Ölmestig J, Marlet IR, Hansen RH, Rehman S, Krawcyk RS, Rostrup E, Lambertsen KL, Kruuse C. Tadalafil may improve cerebral perfusion in small-vessel occlusion stroke-a pilot study. Brain Commun 2020; 2:fcaa020. [PMID: 33033800 PMCID: PMC7530832 DOI: 10.1093/braincomms/fcaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/29/2023] Open
Abstract
New treatments for cerebral small-vessel disease are needed to reduce the risk of small-vessel occlusion stroke and vascular cognitive impairment. We investigated an approach targeted to the signalling molecule cyclic guanosine monophosphate, using the phosphodiesterase 5 inhibitor tadalafil, to explore if it improves cerebral blood flow and endothelial function in patients with cerebral small-vessel disease and stroke. In a randomized, double-blinded, placebo-controlled, cross-over pilot trial (NCT02801032), we included patients who had a previous (>6 months) small-vessel occlusion stroke. They received a single dose of either 20 mg tadalafil or placebo on 2 separate days at least 1 week apart. We measured the following: baseline MRI for lesion load, repeated measurements of blood flow velocity in the middle cerebral artery by transcranial Doppler, blood oxygen saturation in the cortical microvasculature by near-infrared spectroscopy, peripheral endothelial response by EndoPAT and endothelial-specific blood biomarkers. Twenty patients with cerebral small-vessel disease stroke (3 women, 17 men), mean age 67.1 ± 9.6, were included. The baseline mean values ± standard deviations were as follows: blood flow velocity in the middle cerebral artery, 57.4 ± 10.8 cm/s; blood oxygen saturation in the cortical microvasculature, 67.0 ± 8.2%; systolic blood pressure, 145.8 ± 19.5 mmHg; and diastolic blood pressure, 81.3 ± 9.1 mmHg. We found that tadalafil significantly increased blood oxygen saturation in the cortical microvasculature at 180 min post-administration with a mean difference of 1.57 ± 3.02%. However, we saw no significant differences in transcranial Doppler measurements over time. Tadalafil had no effects on peripheral endothelial function assessed by EndoPAT and endothelial biomarker results conflicted. Our findings suggest that tadalafil may improve vascular parameters in patients with cerebral small-vessel disease stroke, although the effect size was small. Increased oxygenation of cerebral microvasculature during tadalafil treatment indicated improved perfusion in the cerebral microvasculature, theoretically presenting an attractive new therapeutic target in cerebral small-vessel disease. Future studies of the effect of long-term tadalafil treatment on cerebrovascular reactivity and endothelial function are needed to evaluate general microvascular changes and effects in cerebral small-vessel disease and stroke.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Ida R Marlet
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Rasmus H Hansen
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Shazia Rehman
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Rikke Steen Krawcyk
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Department of Physiotherapy and Occupational Therapy, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Capital Region Psychiatry, Glostrup 2600, Denmark
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Neurology, Odense University Hospital, Odense 5000, Denmark.,BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Institute for Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
26
|
Li HL, Ding H, Yin XZ, Chen ZH, Tang B, Sun JY, Hu XH, Lv X, Kang ST, Fan YS, Wu T, Zhao SF, Xiao B, Zhang MQ. Comparison of high-resolution synchrotron-radiation-based phase-contrast imaging and absorption-contrast imaging for evaluating microstructure of vascular networks in rat brain: from 2D to 3D views. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:2024-2032. [PMID: 31721747 DOI: 10.1107/s1600577519011688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Conventional imaging methods such as magnetic resonance imaging, computed tomography and digital subtraction angiography have limited temporospatial resolutions and shortcomings like invasive angiography, potential allergy to contrast agents, and image deformation, that restrict their application in high-resolution visualization of the structure of microvessels. In this study, through comparing synchrotron radiation (SR) absorption-contrast imaging to absorption phase-contrast imaging, it was found that SR-based phase-contrast imaging could provide more detailed ultra-high-pixel images of microvascular networks than absorption phase-contrast imaging. Simultaneously, SR-based phase-contrast imaging was used to perform high-quality, multi-dimensional and multi-scale imaging of rat brain angioarchitecture. With the aid of image post-processing, high-pixel-size two-dimensional virtual slices can be obtained without sectioning. The distribution of blood supply is in accordance with the results of traditional tissue staining. Three-dimensional anatomical maps of cerebral angioarchitecture can also be acquired. Functional partitions of regions of interest are reproduced in the reconstructed rat cerebral vascular networks. Imaging analysis of the same sample can also be displayed simultaneously in two- and three-dimensional views, which provides abundant anatomical information together with parenchyma and vessels. In conclusion, SR-based phase-contrast imaging holds great promise for visualizing microstructure of microvascular networks in two- and three-dimensional perspectives during the development of neurovascular diseases.
Collapse
Affiliation(s)
- Hong Lei Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xian Zhen Yin
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuo Hui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jing Yan Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xin Hang Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xinyi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shun Tong Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yi Shu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Song Feng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Meng Qi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
27
|
Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Transl Stroke Res 2019; 11:496-502. [PMID: 31606888 DOI: 10.1007/s12975-019-00734-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence suggests that patients with subcortical ischemic vascular dementia (SIVD) perform better at cognitive tests after exercise. However, the underlying mechanism for this effect is largely unknown. Here, we examined how treadmill exercise changes the cognitive function and white matter cellular pathology in a mouse model of SIVD. Prolonged cerebral hypoperfusion was induced in 2-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into a group that received 6-week treadmill exercise and a sedentary group for observation. In multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to ameliorate cognitive decline in the hypoperfused SIVD mice. In addition, immunohistological analyses confirmed that there was a larger population of oligodendrocyte precursor cells in the subventricular zone of exercised versus sedentary mice. Although further investigations are needed to confirm a causal link between these findings, our study establishes a model and cellular foundation for investigating the mechanisms through which exercise preserves cognitive function in SIVD.
Collapse
|
28
|
Wang Y, Tu D, Du J, Han X, Sun Y, Xu Q, Zhai G, Zhou Y. Classification of Subcortical Vascular Cognitive Impairment Using Single MRI Sequence and Deep Learning Convolutional Neural Networks. Front Neurosci 2019; 13:627. [PMID: 31275106 PMCID: PMC6593093 DOI: 10.3389/fnins.2019.00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Deep learning has great potential for imaging classification by extracting low to high-level features. Our aim was to train a convolutional neural network (CNN) with single T2-weighted FLAIR sequence to classify different cognitive performances in patients with subcortical ischemic vascular disease (SIVD). In total, 217 patients with SIVD [including 52 with vascular dementia (VaD), 82 with vascular mild cognitive impairment (VaMCI), and 83 with non-cognitive impairment (NCI)] and 46 matched healthy controls (HCs) underwent MRI scans and neuropsychological assessments. 2D and 3D CNNs were trained to classify VaD, VaMCI, NCI, and HCs based on FLAIR data. For 3D-based model, the loss curves of the training set approached 0.017 after about 20 epochs, while the curves of the testing set maintained at about 0.114. The accuracy of training set and testing set reached 99.7 and 96.9% after about 30 and 35 epochs, respectively. However, the accuracy of the 2D-based model was only around 70%, which performed significantly worse than 3D-based model. This experiment suggests that deep learning is a powerful and convenient method to classify different cognitive performances in SIVD by extracting the shift and scale invariant features of neuroimaging data with single FLAIR sequence. 3D-CNN is superior to 2D-CNN which involves clinical evaluation with MRI multiplanar reformation or volume scanning.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Tu
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Du
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Sun HY, Qu QM. Hypermethylation of ERа-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients. QJM 2019; 112:351-354. [PMID: 30690641 DOI: 10.1093/qjmed/hcz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the methylation status in promoter region of estrogen receptor alpha (ERа)-A gene and its relation with plasma homocysteine (Hcy) level and cognitive impairment in white matter hyperintensity (WMH) patients. PATIENTS AND METHODS 210 patients aged 65 and older were selected. The methylation status of CpG islands in ERа-A gene promoter was analyzed by nested methylation-specific PCR. Serum Hcy and estradiol levels were measured by enzyme-linked immunosorbent assay. Cognitive function were evaluated using minimum mental state examination, the montreal cognitive assessment, Stroop color-word test, symbol digit modalities, trail making test B and instrumental activities of daily living (IADL). The severity of WMH was evaluated with the Fazekas scale by brain magnetic resonance imaging. RESULTS We found a significant association between the severity of WMH and CpG island methylation of ERа-A gene (P < 0.05). Multiple regression analysis showed that serum Hcy level, methylation of ERа-A gene and WMH severity were significant determining factors for cognitive impairment (P < 0.05). The spearman rank correlation analysis showed a significant correlation of methylation of ERа-A gene with serum Hcy level, WMH severity, cognitive function and IADL status (P < 0.05). CONCLUSION Methylation of ERа-A gene promoter has a high frequency in WMH patients with cognitive impairment and is correlated with high plasma Hcy level.
Collapse
Affiliation(s)
- H-Y Sun
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Q-M Qu
- Department of Neurology, the First Affiliated Hospital, Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
30
|
Wu X, Ge X, Du J, Wang Y, Sun Y, Han X, Ding W, Cao M, Xu Q, Zhou Y. Characterizing the Penumbras of White Matter Hyperintensities and Their Associations With Cognitive Function in Patients With Subcortical Vascular Mild Cognitive Impairment. Front Neurol 2019; 10:348. [PMID: 31031687 PMCID: PMC6474292 DOI: 10.3389/fneur.2019.00348] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Normal-appearing white matter (NAWM) surrounding white matter hyperintensities (WMHs), frequently known as the WMH penumbra, is associated with subtle white matter injury and has a high risk for future conversion to WMHs. The goal of this study was to define WMH penumbras and to further explore whether the diffusion and perfusion parameters of these penumbras could better reflect cognitive function alterations than WMHs in subjects with subcortical vascular mild cognitive impairment (svMCI). Seventy-three svMCI subjects underwent neuropsychological assessments and 3T MRI scans, including diffusion tensor imaging (DTI) and arterial spin labeling (ASL). To determine the extent of cerebral blood flow (CBF) and DTI penumbras. A NAWM layer mask was generated for periventricular WMHs (PVWMHs) and deep WMHs (DWMHs) separately. Mean values of CBF, fractional anisotropy (FA), mean diffusivity (MD) within the WMHs and their corresponding NAWM layer masks were computed and compared using paired t-tests. Pearson's partial correlations were used to assess the relations of the mean CBF, FA, and MD values within the corresponding penumbras with composite z-scores of global cognition and four cognitive domains controlling for age, sex, and education. For both PVWMHs and DWMHs, the CBF penumbras were wider than the DTI penumbras. Only the mean FA value of the PVWMH-FA penumbra was correlated with the composite z-scores of global cognition before correction (r = 0.268, p = 0.024), but that correlation did not survive after correcting the p-value for multiple comparisons. Our findings showed extensive white matter perfusion disturbances including white matter tissue, both with and without microstructural alterations. The imaging parameters investigated, however, did not correlate to cognition.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Ge
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Du
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengqiu Cao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Lee ES, Yoon JH, Choi J, Andika FR, Lee T, Jeong Y. A mouse model of subcortical vascular dementia reflecting degeneration of cerebral white matter and microcirculation. J Cereb Blood Flow Metab 2019; 39:44-57. [PMID: 29053032 PMCID: PMC6311665 DOI: 10.1177/0271678x17736963] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
Subcortical vascular dementia(SVaD) is associated with white matter damage, lacunar infarction, and degeneration of cerebral microcirculation. Currently available mouse models can mimic only partial aspects of human SVaD features. Here, we combined bilateral common carotid artery stenosis (BCAS) with a hyperlipidaemia model in order to develop a mouse model of SVaD; 10- to 12-week-old apolipoprotein E (ApoE)-deficient or wild-type C57BL/6J mice were subjected to sham operation or chronic cerebral hypoperfusion with BCAS using micro-coils. Behavioural performance (locomotion, spatial working memory, and recognition memory), histopathological findings (white matter damage, microinfarctions, astrogliosis), and cerebral microcirculation (microvascular density and blood-brain barrier (BBB) integrity) were investigated. ApoE-deficient mice subjected to BCAS showed impaired locomotion, spatial working memory, and recognition memory. They also showed white matter damage, multiple microinfarctions, astrogliosis, reduction in microvascular density, and BBB breakdown. The combination of chronic cerebral hypoperfusion and ApoE deficiency induced cognitive decline and cerebrovascular pathology, including white matter damage, multiple microinfarctions, and degeneration of cerebral microcirculation. Together, these features are all compatible with those of patients with SVaD. Thus, the proposed animal model is plausible for investigating SVaD pathophysiology and for application in preclinical drug studies.
Collapse
Affiliation(s)
- Eek-Sung Lee
- Graduate School of Medical Science and
Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon,
Republic of Korea
- KI for Health Science and Technology,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
- Department of Neurology, Soonchunhyang
University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Jin-Hui Yoon
- KI for Health Science and Technology,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
- Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
| | - Jiye Choi
- KI for Health Science and Technology,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
- Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
| | - Faris R Andika
- Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
| | - Taekwan Lee
- Laboratory Animal Center,
Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of
Korea
| | - Yong Jeong
- KI for Health Science and Technology,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
- Department of Bio and Brain Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of
Korea
| |
Collapse
|
32
|
Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer's Disease Phenotype. Int J Mol Sci 2018; 19:E4002. [PMID: 30545070 PMCID: PMC6320958 DOI: 10.3390/ijms19124002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, ongoing interest in ischemic brain injury research has provided data showing that ischemic episodes are involved in the development of Alzheimer's disease-like neuropathology. Brain ischemia is the second naturally occurring neuropathology, such as Alzheimer's disease, which causes the death of neurons in the CA1 region of the hippocampus. In addition, brain ischemia was considered the most effective predictor of the development of full-blown dementia of Alzheimer's disease phenotype with a debilitating effect on the patient. Recent knowledge on the activation of Alzheimer's disease-related genes and proteins-e.g., amyloid protein precursor and tau protein-as well as brain ischemia and Alzheimer's disease neuropathology indicate that similar processes contribute to neuronal death and disintegration of brain tissue in both disorders. Although brain ischemia is one of the main causes of death in the world, there is no effective therapy to improve the structural and functional outcomes of this disorder. In this review, we consider the promising role of the protective action of curcumin after ischemic brain injury. Studies of the pharmacological properties of curcumin after brain ischemia have shown that curcumin has several therapeutic properties that include anti-excitotoxic, anti-oxidant, anti-apoptotic, anti-hyperhomocysteinemia and anti-inflammatory effects, mitochondrial protection, as well as increasing neuronal lifespan and promoting neurogenesis. In addition, curcumin also exerts anti-amyloidogenic effects and affects the brain's tau protein. These results suggest that curcumin may be able to serve as a potential preventive and therapeutic agent in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
| |
Collapse
|
33
|
Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. Int J Mol Sci 2018; 19:ijms19061743. [PMID: 29895784 PMCID: PMC6032201 DOI: 10.3390/ijms19061743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Even in adult brains, restorative mechanisms are still retained to maintain the microenvironment. Under the pathological conditions of central nervous system (CNS) diseases, several immature cells in the brain would be activated as a compensative response. As the concept of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative process. White matter damage and oligodendrocyte loss are representative characteristics for many neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination. Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly unknown and understudied, accumulated evidence now suggests that support from neighboring cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases, focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
Collapse
|
34
|
Rapoport MJ, Zucchero Sarracini C, Kiss A, Lee L, Byszewski A, Seitz DP, Vrkljan B, Molnar F, Herrmann N, Tang-Wai DF, Frank C, Henry B, Pimlott N, Masellis M, Naglie G. Computer-Based Driving in Dementia Decision Tool With Mail Support: Cluster Randomized Controlled Trial. J Med Internet Res 2018; 20:e194. [PMID: 29802093 PMCID: PMC5993977 DOI: 10.2196/jmir.9126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background Physicians often find significant challenges in assessing automobile driving in persons with mild cognitive impairment and mild dementia and deciding when to report to transportation administrators. Care must be taken to balance the safety of patients and other road users with potential negative effects of issuing such reports. Objective The aim of this study was to assess whether a computer-based Driving in Dementia Decision Tool (DD-DT) increased appropriate reporting of patients with mild dementia or mild cognitive impairment to transportation administrators. Methods The study used a parallel-group cluster nonblinded randomized controlled trial design to test a multifaceted knowledge translation intervention. The intervention included a computer-based decision support system activated by the physician-user, which provides a recommendation about whether to report patients with mild dementia or mild cognitive impairment to transportation administrators, based on an algorithm derived from earlier work. The intervention also included a mailed educational package and Web-based specialized reporting forms. Specialists and family physicians with expertise in dementia or care of the elderly were stratified by sex and randomized to either use the DD-DT or a control version of the tool that required identical data input as the intervention group, but instead generated a generic reminder about the reporting legislation in Ontario, Canada. The trial ran from September 9, 2014 to January 29, 2016, and the primary outcome was the number of reports made to the transportation administrators concordant with the algorithm. Results A total of 69 participating physicians were randomized, and 36 of these used the DD-DT; 20 of the 35 randomized to the intervention group used DD-DT with 114 patients, and 16 of the 34 randomized to the control group used it with 103 patients. The proportion of all assessed patients reported to the transportation administrators concordant with recommendation did not differ between the intervention and the control groups (50% vs 49%; Z=−0.19, P=.85). Two variables predicted algorithm-based reporting—caregiver concern (odds ratio [OR]=5.8, 95% CI 2.5-13.6, P<.001) and abnormal clock drawing (OR 6.1, 95% CI 3.1-11.8, P<.001). Conclusions On the basis of this quantitative analysis, in-office abnormal clock drawing and expressions of concern about driving from caregivers substantially influenced physicians to report patients with mild dementia or mild cognitive impairment to transportation administrators, but the DD-DT tool itself did not increase such reports among these expert physicians. Trial Registration ClinicalTrials.gov NCT02036099; https://clinicaltrials.gov/ct2/show/NCT02036099 (Archived by WebCite at http://www.webcitation.org/6zGMF1ky8)
Collapse
Affiliation(s)
- Mark J Rapoport
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Linda Lee
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Byszewski
- Division of Geriatric Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Division of Geriatric Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dallas P Seitz
- Seniors Mental Health Program, Providence Care, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Brenda Vrkljan
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Frank Molnar
- Division of Geriatric Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Division of Geriatric Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - David F Tang-Wai
- Memory Clinic, University Health Network, Toronto, ON, Canada.,Division of Neurology, Division of Geriatric Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher Frank
- Specialized Geriatric Services, Providence Care, Kingston, ON, Canada.,Division of Geriatric Medicine, Queen's University, Kingston, ON, Canada
| | - Blair Henry
- Clinical Ethics Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas Pimlott
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.,Department of Family and Community Medicine, Women's College Hospital, Toronto, ON, Canada
| | - Mario Masellis
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Gary Naglie
- Department of Medicine, Baycrest Health Sciences, Toronto, ON, Canada.,Division of Geriatric Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Rhodes E, Lamar M, Libon DJ, Giovannetti T. Memory for Serial Order in Alzheimer’s Disease and Vascular Dementia: A Competitive Queuing Analysis. Arch Clin Neuropsychol 2018; 34:2-13. [DOI: 10.1093/arclin/acy013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objective
Competitive Queuing (CQ) models of memory for serial order comprise two layers: parallel planning where target items are activated and competitive choice where serial order is specified. The application of CQ models regarding healthy and pathological aging has received little attention.
Method
Participants included patients with Alzheimer’s disease (AD; n = 26), vascular dementia (VaD; n = 29), and healthy controls (HC; n = 35). Memory for serial order in the visual domain was assessed using the Object Span Task, where participants briefly viewed then drew a sequence of four figures. Percent correct and total errors (omissions, intrusions, repetitions, transpositions) were computed for each serial position.
Results
Significant primacy effects were detected in each group. AD and VaD participants were less accurate and showed more omission and between-trial repetition errors than HC (HC < AD = VaD, p < .05). VaD participants produced more transposition and intrusion errors than the AD and HC groups (HC < AD < VaD, p < .05). A group × position interaction was significant for omissions (p < .05), with AD and VaD participants producing more omissions in later serial positions (SP1 < SP2 < SP3 < SP4, all p values < .05).
Conclusions
Analysis of accuracy and errors by serial position identified unique patterns of performance across groups that suggest involvement of distinct layers of response activation and selection. Serial order difficulties in AD may be due to weakened activation of task items affecting later serial positions, whereas poor performance in VaD may be due to weakened activation plus interference from extraneous stimuli at all serial positions.
Collapse
Affiliation(s)
- Emma Rhodes
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 S. Paulina St., Chicago, IL 60613, USA
- Department of Medicine, Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL 60613, USA
| | - David J Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Stratford, NJ 08043, USA
- Department of Psychology, Rowan University, Stratford, NJ 08043, USA
| | - Tania Giovannetti
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
36
|
Rapoport MJ, Chee JN, Carr DB, Molnar F, Naglie G, Dow J, Marottoli R, Mitchell S, Tant M, Herrmann N, Lanctôt KL, Taylor JP, Donaghy PC, Classen S, O'Neill D. An International Approach to Enhancing a National Guideline on Driving and Dementia. Curr Psychiatry Rep 2018. [PMID: 29527643 DOI: 10.1007/s11920-018-0879-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW The purpose of this study was to update a national guideline on assessing drivers with dementia, addressing limitations of previous versions which included a lack of developmental rigor and stakeholder involvement. METHODS An international multidisciplinary team reviewed 104 different recommendations from 12 previous guidelines on assessing drivers with dementia in light of a recent review of the literature. Revised guideline recommendations were drafted by consensus. A preliminary draft was sent to specialist physician and occupational therapy groups for feedback, using an a priori definition of 90% agreement as consensus. RECENT FINDINGS The research team drafted 23 guideline recommendations, and responses were received from 145 stakeholders. No recommendation was endorsed by less than 80% of respondents, and 14 (61%) of the recommendations were endorsed by more than 90%.The recommendations are presented in the manuscript. The revised guideline incorporates the perspectives of consensus of an expert group as well as front-line clinicians who regularly assess drivers with dementia. The majority of the recommendations were based on evidence at the level of expert opinion, revealing gaps in the evidence and future directions for research.
Collapse
Affiliation(s)
- Mark J Rapoport
- Sunnybrook Health Sciences Centre, FG37-2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
- University of Toronto, Toronto, ON, Canada.
| | - Justin N Chee
- Sunnybrook Health Sciences Centre, FG37-2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- University of Toronto, Toronto, ON, Canada
| | - David B Carr
- Washington University St. Louis, St. Louis, MO, USA
| | - Frank Molnar
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- The Bruyere Research Institute, Ottawa, ON, Canada
| | - Gary Naglie
- University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Toronto, ON, Canada
| | - Jamie Dow
- Société de l'assurance automobile du Québec, Québec City, QC, Canada
| | | | - Sara Mitchell
- Sunnybrook Health Sciences Centre, FG37-2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Mark Tant
- Belgian Road Safety Institute, Brussels, Belgium
| | - Nathan Herrmann
- Sunnybrook Health Sciences Centre, FG37-2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Krista L Lanctôt
- Sunnybrook Health Sciences Centre, FG37-2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
37
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
38
|
Hsu YH, Huang CF, Lo CP, Wang TL, Yang CC, Tu MC. Frontal Assessment Battery as a Useful Tool to Differentiate Mild Cognitive Impairment due to Subcortical Ischemic Vascular Disease from Alzheimer Disease. Dement Geriatr Cogn Disord 2018; 42:331-341. [PMID: 27866203 DOI: 10.1159/000452762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prominent executive dysfunction can differentiate vascular dementia from Alzheimer disease (AD). However, it is unclear whether the Frontal Assessment Battery (FAB) screening tool can differentiate subcortical ischemic vascular disease (SIVD) from AD at the pre-dementia stage. In addition, the neural correlates of FAB performance have yet to be clarified. METHODS Patients with mild cognitive impairment (MCI) due to SIVD (MCI-V), MCI due to AD (MCI-A), and demographically matched controls completed the Mini-Mental State Examination, Taiwanese FAB (TFAB), Category Fluency, and Chinese Version of the Verbal Learning Test, and underwent magnetic resonance imaging. White matter hyperintensities were rated according to the Scheltens scale. RESULTS TFAB total scale and its Orthographical Fluency subtest were the only measures that could differentiate MCI-V from MCI-A. Discriminative analysis showed that Orthographical Fluency scores successfully identified 73.2% of the cases with MCI-V, with 85.0% sensitivity. Orthographical Fluency scores were specifically associated with lesion load within frontal periventricular, frontal deep white matter, and basal ganglia regions. CONCLUSION The TFAB, and especially its 1-min Orthographical Fluency subtest, is a useful screening procedure to differentiate MCI due to SIVD from MCI due to AD. The discriminative ability is probably due to frontosubcortical white matter pathologies disproportionately involved in the two disease entities.
Collapse
Affiliation(s)
- Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Dementia is a syndrome seen most commonly in older people and characterized by a decline in cognitive performance which impacts on the person's ability to function. There are approximately 47 million people worldwide with dementia and there are 10 million new cases every year. It is a major cause of disability and dependence and impacts on the physical, psychologic, and social well-being of families and carers. Alzheimer's disease is the most common form of dementia. Gait and balance impairments are common in people with dementia and contribute to the significantly elevated risk of falls. Older people with dementia are at increased risk of injury, institutionalization, hospitalization, morbidity, and death after a fall. There is preliminary evidence, predominantly from relatively small studies, that falls and disability can be prevented in this population. However, more good-quality research is needed, both to provide some certainty around the existing evidence base as well as to explore alternate approaches to prevention, including combined cognitive-motor training and cognitive pharmacotherapy.
Collapse
Affiliation(s)
- Morag E Taylor
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia; Prince of Wales Clinical School, Medicine, University of New South Wales, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Jacqueline C T Close
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia; Prince of Wales Clinical School, Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Barha CK, Hsiung GYR, Best JR, Davis JC, Eng JJ, Jacova C, Lee PE, Munkacsy M, Cheung W, Liu-Ambrose T. Sex Difference in Aerobic Exercise Efficacy to Improve Cognition in Older Adults with Vascular Cognitive Impairment: Secondary Analysis of a Randomized Controlled Trial. J Alzheimers Dis 2017; 60:1397-1410. [DOI: 10.3233/jad-170221] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cindy K. Barha
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Ging-Yuek R. Hsiung
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - John R. Best
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Jennifer C. Davis
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Janice J. Eng
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
| | - Claudia Jacova
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Philip E. Lee
- Vancouver Coastal Health Research Institute and University of British ColumbiaHospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | | | - Winnie Cheung
- Centre for Hip Health and Mobility, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
| |
Collapse
|
41
|
Choi JY, Kim BG. Toll-like Receptor 2: A Novel Therapeutic Target for Ischemic White Matter Injury and Oligodendrocyte Death. Exp Neurobiol 2017; 26:186-194. [PMID: 28912641 PMCID: PMC5597549 DOI: 10.5607/en.2017.26.4.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Despite paramount clinical significance of white matter stroke, there is a paucity of researches on the pathomechanism of ischemic white matter damage and accompanying oligodendrocyte (OL) death. Therefore, a large gap exists between clinical needs and laboratory researches in this disease entity. Recent works have started to elucidate cellular and molecular basis of white matter injury under ischemic stress. In this paper, we briefly introduce white matter stroke from a clinical point of view and review pathophysiology of ischemic white matter injury characterized by OL death and demyelination. We present a series of evidence that Toll-like receptor 2 (TLR2), one of the membranous pattern recognition receptors, plays a cell-autonomous protective role in ischemic OL death and ensuing demyelination. Moreover, we also discuss our recent findings that its endogenous ligand, high-mobility group box 1 (HMGB1), is released from dying OLs and exerts autocrine trophic effects on OLs and myelin sheath under ischemic condition. We propose that modulation of TLR2 and its endogenous ligand HMGB1 can be a novel therapeutic target for ischemic white matter disease.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Neurology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain science, Ajou University School of Medicine, Suwon 16499, Korea
| | - Byung Gon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
42
|
Li M, Meng Y, Wang M, Yang S, Wu H, Zhao B, Wang G. Cerebral gray matter volume reduction in subcortical vascular mild cognitive impairment patients and subcortical vascular dementia patients, and its relation with cognitive deficits. Brain Behav 2017; 7:e00745. [PMID: 28828207 PMCID: PMC5561307 DOI: 10.1002/brb3.745] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/19/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Subcortical vascular mild cognitive impairment (svMCI) is the predementia stage of subcortical vascular dementia (SVaD). The aim of this research is to explore and compare cerebral gray matter (GM) volume reduction in svMCI patients and SVaD patients, and to investigate the relationship between cerebral GM volume reduction and cognitive deficits. METHODS Thirty one svMCI patients, 29 SVaD patients, and 31 healthy controls were recruited in our research. They conducted neuropsychological tests and brain structural magnetic resonance imaging (MRI) examination. To detect cerebral GM volume reduction in svMCI patients and SVaD patients, we used statistical parametric mapping 8-voxel-based morphometry 8 (SPM8-VBM8) method to analyze MRI data. To detect the relationship between cerebral GM volume reduction and cognitive deficits, multiple linear regression analysis was used. RESULTS Compared with healthy controls, svMCI patients showed cerebral GM volume reduction in hippocampus and parahippocampal gyrus, insula and superior temporal gyrus. Compared with healthy controls, SVaD patients exhibited more atrophy which encompasses all of these areas plus anterior and middle cingulate, inferior temporal gyrus, orbitofrontal cortex, and superior frontal gyrus. In svMCI patients, cerebral GM volume reduction correlated with memory loss, attention dysfunction, and language dysfunction; in SVaD patients, besides those cognitive deficits, cerebral GM volume reduction correlated with more cognitive impairments, including executive dysfunction, neuropsychiatric symptom, and depression. CONCLUSIONS Our findings prove that both svMCI patients and SVaD patients exhibit cerebral GM volume reduction and there may exist a hierarchy between svMCI and SVaD, and cerebral GM volume reduction in both svMCI patients and SVaD patients correlates with cognitive deficits, which can help us understand the mechanism of cognitive impairments in svMCI patients and SVaD patients, and diagnose SVaD at its early stage.
Collapse
Affiliation(s)
- Maoyu Li
- Department of Neurology Shandong Provincial Hospital Affiliated to Shandong University Jinan Shandong China
| | - Yao Meng
- Department of Neurology Shandong Provincial Hospital Affiliated to Shandong University Jinan Shandong China
| | - Minzhong Wang
- Department of Neurology Shandong Provincial Hospital Affiliated to Shandong University Jinan Shandong China
| | - Shuang Yang
- Department of Magnetic Resonance Imaging Shandong Medical Imaging Research Institute Affiliated to Shandong University Jinan Shandong China
| | - Hui Wu
- Department of Neurology Shandong Provincial Hospital Affiliated to Shandong University Jinan Shandong China
| | - Bin Zhao
- Department of Magnetic Resonance Imaging Shandong Medical Imaging Research Institute Affiliated to Shandong University Jinan Shandong China
| | - Guangbin Wang
- Department of Magnetic Resonance Imaging Shandong Medical Imaging Research Institute Affiliated to Shandong University Jinan Shandong China
| |
Collapse
|
43
|
Chen JL, Duan WJ, Luo S, Li S, Ma XH, Hou BN, Cheng SY, Fang SH, Wang Q, Huang SQ, Chen YB. Ferulic acid attenuates brain microvascular endothelial cells damage caused by oxygen-glucose deprivation via punctate-mitochondria-dependent mitophagy. Brain Res 2017; 1666:17-26. [DOI: 10.1016/j.brainres.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/19/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022]
|
44
|
Moretti R, Caruso P, Dal Ben M, Conti C, Gazzin S, Tiribelli C. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Front Aging Neurosci 2017; 9:169. [PMID: 28611659 PMCID: PMC5447683 DOI: 10.3389/fnagi.2017.00169] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 01/09/2023] Open
Abstract
Dementia is a worldwide health problem which affects millions of patients; Alzheimer's disease (AD) and subcortical vascular dementia (sVAD) are the two most frequent forms of its presentation. As no definite therapeutic options have been discovered, different risk factors for cognitive impairment have been searched for potential therapies. This report focuses on the possible evidence that vitamin D deficiency and hyper-homocysteinemia can be considered as two important factors for the development or the progression of neurodegenerative or vascular pathologies. To this end, we assessed: the difference in vascular risk factors and vitamin D-OH25 levels among groups of sVAD, AD, and healthy age-matched controls; the association of folate, B12, homocysteine, and vitamin D with sVAD/AD and whether a deficiency of vitamin D and an increment in homocysteine levels may be related to neurodegenerative or vessel damages. The commonly-considered vascular risk factors were collected in 543 patients and compared with those obtained from a healthy old volunteer population. ANOVA group comparison showed that vitamin D deficiency was present in demented cases, as well as low levels of folate and high levels of homocysteine, more pronounced in sVAD cases. The statistical models we employed, with regression models built, and adjustments for biochemical, demographic and neuropsychiatric scores, confirmed the association between the three measures (folate decrease, hyperhomocysteinemia and vitamin D decrease) and dementia, more pronounced in sVAD than in AD.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy
| | - Paola Caruso
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy
| | - Matteo Dal Ben
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy.,Italian Liver Foundation, Centro Studi FegatoTrieste, Italy
| | - Corrado Conti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of TriesteTrieste, Italy
| | - Silvia Gazzin
- Italian Liver Foundation, Centro Studi FegatoTrieste, Italy
| | | |
Collapse
|
45
|
Xue Y, Qu Z, Fu J, Zhen J, Wang W, Cai Y, Wang W. The protective effect of astaxanthin on learning and memory deficits and oxidative stress in a mouse model of repeated cerebral ischemia/reperfusion. Brain Res Bull 2017; 131:221-228. [PMID: 28479214 DOI: 10.1016/j.brainresbull.2017.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/18/2023]
|
46
|
|
47
|
Sun Y, Cao W, Ding W, Wang Y, Han X, Zhou Y, Xu Q, Zhang Y, Xu J. Cerebral Blood Flow Alterations as Assessed by 3D ASL in Cognitive Impairment in Patients with Subcortical Vascular Cognitive Impairment: A Marker for Disease Severity. Front Aging Neurosci 2016; 8:211. [PMID: 27630562 PMCID: PMC5005930 DOI: 10.3389/fnagi.2016.00211] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/22/2016] [Indexed: 01/14/2023] Open
Abstract
Abnormal reductions in cortical cerebral blood flow (CBF) have been identified in subcortical vascular cognitive impairment (SVCI). However, little is known about the pattern of CBF reduction in relation with the degree of cognitive impairment. CBF measured with three-dimensional (3D) Arterial Spin Labeling (ASL) perfusion magnetic resonance imaging (MRI) helps detect functional changes in subjects with SVCI. We aimed to compare CBF maps in subcortical ischemic vascular disease (SIVD) subjects with and without cognitive impairment and to detect the relationship of the regions of CBF reduction in the brain with the degree of cognitive impairment according to the z-score. A total of 53 subjects with SVCI and 23 matched SIVD subjects without cognitive impairment (controls), underwent a whole-brain 3D ASL MRI in the resting state. Regional CBF (rCBF) was compared voxel wise by using an analysis of variance design in a statistical parametric mapping program, with patient age and sex as covariates. Correlations were calculated between the rCBF value in the whole brain and the z-score in the 53 subjects with SVCI. Compared with the control subjects, SVCI group demonstrated diffuse decreased CBF in the brain. Significant positive correlations were determined in the rCBF values in the left hippocampus, left superior temporal pole gyrus, right superior frontal orbital lobe, right medial frontal orbital lobe, right middle temporal lobe, left thalamus and right insula with the z-scores in SVCI group. The noninvasively quantified resting CBF demonstrated altered CBF distributions in the SVCI brain. The deficit brain perfusions in the temporal and frontal lobe, hippocampus, thalamus and insula was related to the degree of cognitive impairment. Its relationship to cognition indicates the clinical relevance of this functional marker. Thus, our results provide further evidence for the mechanisms underlying the cognitive deficit in patients with SVCI.
Collapse
Affiliation(s)
- Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Wenwei Cao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Qun Xu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yong Zhang
- GE Applied Science Laboratory, GE Healthcare Shanghai, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
48
|
Corriveau RA, Bosetti F, Emr M, Gladman JT, Koenig JI, Moy CS, Pahigiannis K, Waddy SP, Koroshetz W. The Science of Vascular Contributions to Cognitive Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the Cerebrovascular Biology of Cognitive Decline. Cell Mol Neurobiol 2016; 36:281-8. [PMID: 27095366 DOI: 10.1007/s10571-016-0334-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/22/2016] [Indexed: 01/17/2023]
Abstract
The World Health Organization reports that 47.5 million people are affected by dementia worldwide. With aging populations and 7.7 million new cases each year, the burden of illness due to dementia approaches crisis proportions. Despite significant advances in our understanding of the biology of Alzheimer's disease (AD), the leading dementia diagnosis, the actual causes of dementia in affected individuals are unknown except for rare fully penetrant genetic forms. Evidence from epidemiology and pathology studies indicates that damage to the vascular system is associated with an increased risk of many types of dementia. Both Alzheimer's pathology and cerebrovascular disease increase with age. How AD affects small blood vessel function and how vascular dysfunction contributes to the molecular pathology of Alzheimer's are areas of intense research. The science of vascular contributions to cognitive impairment and dementia (VCID) integrates diverse aspects of biology and incorporates the roles of multiple cell types that support the function of neural tissue. Because of the proven ability to prevent and treat cardiovascular disease and hypertension with population benefits for heart and stroke outcomes, it is proposed that understanding and targeting the biological mechanisms of VCID can have a similarly positive impact on public health.
Collapse
Affiliation(s)
- Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA.
| | - Francesca Bosetti
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Marian Emr
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Jordan T Gladman
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Claudia S Moy
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Katherine Pahigiannis
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Salina P Waddy
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), 6001 Executive Blvd, Bethesda, MD, 20892-9525, USA
| |
Collapse
|
49
|
Heo JH, Park MH, Lee JH. Effect of Korean Red Ginseng on Cognitive Function and Quantitative EEG in Patients with Alzheimer's Disease: A Preliminary Study. J Altern Complement Med 2016; 22:280-5. [PMID: 26974484 DOI: 10.1089/acm.2015.0265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Korean red ginseng (KRG) has a nootropic effect. This study assessed the efficacy of KRG on cognitive function and quantitative electroencephalography (EEG) in patients with Alzheimer's disease (AD). METHODS Fourteen patients with AD (mean age, 74.93 years; 11 women and 3 men) were recruited and treated with KRG (4.5 g per day) for 12 weeks. Cognitive function was assessed by the Korean Mini-Mental State Examination (K-MMSE) and the Frontal Assessment Battery (FAB). EEG performed before and after treatment were analyzed with quantitative spectral analysis. RESULTS The FAB score improved significantly after 12 weeks of treatment. In the relative power spectrum analysis performed according to responsiveness, alpha power increased significantly in the right temporal area of the responders. The increments of relative alpha power in the right temporal, parietal, and occipital areas were significantly higher in the responders than the nonresponders. CONCLUSIONS This study indicates the efficacy of KRG on frontal lobe function in AD, related to increasing relative alpha power.
Collapse
Affiliation(s)
- Jae-Hyeok Heo
- Department of Neurology, Seoul Medical Center , Seoul, South Korea
| | - Min-Ho Park
- Department of Neurology, Seoul Medical Center , Seoul, South Korea
| | - Jeong-Heon Lee
- Department of Neurology, Seoul Medical Center , Seoul, South Korea
| |
Collapse
|
50
|
Choi BR, Kim DH, Back DB, Kang CH, Moon WJ, Han JS, Choi DH, Kwon KJ, Shin CY, Kim BR, Lee J, Han SH, Kim HY. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion. Stroke 2016; 47:542-7. [DOI: 10.1161/strokeaha.115.011679] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Bo-Ryoung Choi
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Dong-Hee Kim
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Dong Bin Back
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chung Hwan Kang
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jung-Soo Han
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Dong-Hee Choi
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyoung Ja Kwon
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Chan Young Shin
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Bo-Ram Kim
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongmin Lee
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seol-Heui Han
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hahn Young Kim
- From the Department of Neurology (B.-R.C., D.B.B., K.J.K., S.-H.H., H.Y.K.), Department of Biological Sciences (B.-R.C., D.-H.K., J.-S.H.), Department of Radiology (C.H.K., W.-J.M.), Department of Medicine (D.-H.C.), Department of Pharmacology (C.Y.S.), and Department of Rehabilitation Medicine (B.-R.K., J.L.), Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|