1
|
Han X, Qin Y, Mei C, Jiao F, Khademolqorani S, Nooshin Banitaba S. Current trends and future perspectives of stroke management through integrating health care team and nanodrug delivery strategy. Front Cell Neurosci 2023; 17:1266660. [PMID: 38034591 PMCID: PMC10685387 DOI: 10.3389/fncel.2023.1266660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Stroke is accounted as the second-most mortality and adult disability factor in worldwide, while causes the bleeding promptly and lifetime consequences. The employed functional recovery after stroke is highly variable, allowing to deliver proper interventions to the right stroke patient at a specific time. Accordingly, the multidisciplinary nursing team, and the administrated drugs are major key-building-blocks to enhance stroke treatment efficiency. Regarding the healthcare team, adequate continuum of care have been declared as an integral part of the treatment process from the pre-hospital, in-hospital, to acute post-discharge phases. As a curative perspective, drugs administration is also vital in surviving at the early step and reducing the probability of disabilities in later. In this regard, nanotechnology-based medicinal strategy is exorbitantly burgeoning. In this review, we have highlighted the effectiveness of current clinical care considered by nursing teams to treat stroke. Also, the advancement of drugs through synthesis of miniaturized nanodrug formations relating stroke treatment is remarked. Finally, the remained challenges toward standardizing the healthcare team and minimizing the nanodrugs downsides are discussed. The findings ensure that future works on normalizing the healthcare nursing teams integrated with artificial intelligence technology, as well as advancing the operative nanodrugs can provide value-based stroke cares.
Collapse
Affiliation(s)
- Xuelu Han
- Nursing Clinic, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Yingxin Qin
- Department of Nursing, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Chunli Mei
- Nursing College, Beihua University, Jilin, China
| | - Feitong Jiao
- Nursing Training Center, School of Nursing, Jilin Medical University, Jilin, China
| | - Sanaz Khademolqorani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
| | - Seyedeh Nooshin Banitaba
- Emerald Experts Laboratory, Isfahan Science and Technology Town, Isfahan, Iran
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Zhang ZMY, Si QQ, Chen HS, Yang Y, Zhang M, Wu SW, Meng Y, Li ML, Lin QQ, Liebeskind DS, Huang YN, Xu WH. High-resolution magnetic resonance imaging of acute intracranial artery thrombus. Eur J Neurol 2023; 30:3172-3181. [PMID: 37452734 DOI: 10.1111/ene.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND PURPOSE The development of high-resolution magnetic resonance imaging (HR-MRI) has enabled submillimeter-level evaluation of intracranial artery plaque and luminal thrombus. We sought to investigate the value of HR-MRI in assessing the pathogenesis of acute intracranial artery thrombus. METHODS We examined the presence of intracranial thrombus on three-dimensional T1-weighted HR-MRI in acute ischemic stroke patients with intracranial artery occlusion on magnetic resonance angiography. We defined two thrombus-related HR-MRI features (peri-thrombus plaque and distal residual flow beyond the thrombus) and analyzed their association with potential embolic sources. RESULTS Luminal thrombus and a shrunken artery without luminal thrombus were detected in 162 (96.4%) and six (3.6%) of 168 patients with intracranial artery occlusion, respectively. Among 111 patients with culprit major artery thrombus, peri-thrombus plaques were observed in 46.8% and distal residual flow beyond the thrombus in 64.0%. Patients with peri-thrombus plaque had a higher prevalence of diabetes (44.2% vs. 25.4%; p = 0.037), a lower prevalence of potential sources of cardioembolism (0% vs. 16.9%; p = 0.002), and a nonsignificantly lower prevalence of potential embolic sources from extracranial arteries (9.6% vs. 20.3%; p = 0.186) than those without. Patients with distal residual flow beyond the thrombus had a lower prevalence of potential sources of cardioembolism (1.4% vs. 22.5%; p < 0.001) and smaller infarct volumes (5.0 [1.4-12.7] mL vs. 16.6 [2.4-94.6] mL; p = 0.012) than those without. CONCLUSIONS Our study showed that HR-MRI helps clarify the pathogenesis of acute intracranial artery thrombus. The presence of peri-thrombus plaque and distal residual flow beyond the thrombus favor the stroke mechanism of atherosclerosis rather than cardioembolism.
Collapse
Affiliation(s)
- Zong-Mu-Yu Zhang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian-Qian Si
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yi Yang
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Meng Zhang
- Department of Neurology, Army Medical Center of PLA, Beijing, China
| | - Shi-Wen Wu
- Department of Neurology and Radiology, General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Yao Meng
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian-Qian Lin
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - David S Liebeskind
- UCLA Department of Neurology, Neurovascular Imaging Research Core and UCLA Comprehensive Stroke Center, Los Angeles, California, USA
| | - Yi-Ning Huang
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei-Hai Xu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Zhuo Y, Fu B, Peng R, Ma C, Xie S, Qiu L. Aptamer-based expansion microscopy platform enables signal-amplified imaging of dendritic spines. Talanta 2023; 260:124541. [PMID: 37087946 DOI: 10.1016/j.talanta.2023.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Super-resolution imaging of dendritic spines (DS) can provide valuable information for mechanistic studies related to synaptic physiology and neural plasticity, but challenged by their small dimension (50-200 nm) below the spatial resolution of conventional optical microscopes. In this work, by combining the molecular recognition specificity of aptamer with high programmability of DNA nanotechnology, we developed an expansion microscopy (ExM) platform for imaging DS with enhanced spatial resolution and amplified signal output. Our results demonstrated that the aptamer probe could specifically bind to DS of primary hippocampal neurons. With physical expansion, the DS structure could be effectively enlarged by 4-5 folds, leading to the generation of more structural information. Meantime, the aptamer binding signal could be readily amplified by the introduction of DNA signal amplification strategy, overcoming the drawback of fluorescence dilution during the ExM treatment. This platform enabled evaluation of ischemia-induced early stroke based on the morphological change of DS, highlighting a promising avenue for studying nanoscale structures in biological systems.
Collapse
Affiliation(s)
- Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Bo Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Changbei Ma
- School of Life Sciences, Central South University, China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
4
|
Dilaveris PE, Antoniou CK, Caiani EG, Casado-Arroyo R, Climent AΜ, Cluitmans M, Cowie MR, Doehner W, Guerra F, Jensen MT, Kalarus Z, Locati ET, Platonov P, Simova I, Schnabel RB, Schuuring MJ, Tsivgoulis G, Lumens J. ESC Working Group on e-Cardiology Position Paper: accuracy and reliability of electrocardiogram monitoring in the detection of atrial fibrillation in cryptogenic stroke patients : In collaboration with the Council on Stroke, the European Heart Rhythm Association, and the Digital Health Committee. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2022; 3:341-358. [PMID: 36712155 PMCID: PMC9707962 DOI: 10.1093/ehjdh/ztac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of subclinical atrial fibrillation as a cause of cryptogenic stroke is unambiguously established. Long-term electrocardiogram (ECG) monitoring remains the sole method for determining its presence following a negative initial workup. This position paper of the European Society of Cardiology Working Group on e-Cardiology first presents the definition, epidemiology, and clinical impact of cryptogenic ischaemic stroke, as well as its aetiopathogenic association with occult atrial fibrillation. Then, classification methods for ischaemic stroke will be discussed, along with their value in providing meaningful guidance for further diagnostic efforts, given disappointing findings of studies based on the embolic stroke of unknown significance construct. Patient selection criteria for long-term ECG monitoring, crucial for determining pre-test probability of subclinical atrial fibrillation, will also be discussed. Subsequently, the two major classes of long-term ECG monitoring tools (non-invasive and invasive) will be presented, with a discussion of each method's pitfalls and related algorithms to improve diagnostic yield and accuracy. Although novel mobile health (mHealth) devices, including smartphones and smartwatches, have dramatically increased atrial fibrillation detection post ischaemic stroke, the latest evidence appears to favour implantable cardiac monitors as the modality of choice; however, the answer to whether they should constitute the initial diagnostic choice for all cryptogenic stroke patients remains elusive. Finally, institutional and organizational issues, such as reimbursement, responsibility for patient management, data ownership, and handling will be briefly touched upon, despite the fact that guidance remains scarce and widespread clinical application and experience are the most likely sources for definite answers.
Collapse
Affiliation(s)
- Polychronis E Dilaveris
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527 Athens, Greece
| | - Christos Konstantinos Antoniou
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527 Athens, Greece
- Electrophysiology and Pacing Laboratory, Athens Heart Centre, Athens Medical Center, Marousi, Attica, Greece
| | - Enrico G Caiani
- Politecnico di Milano, Department of Electronics, Information and Biomedical Engineering, Milan, Italy
- National Council of Research, Institute of Electronics, Information and Telecommunication Engineering, Milan, Italy
| | - Ruben Casado-Arroyo
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Andreu Μ Climent
- ITACA Institute, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Matthijs Cluitmans
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin R Cowie
- Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Wolfram Doehner
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Department of Cardiology (Virchow Klinikum), and Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, and German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Federico Guerra
- Cardiology and Arrhythmology Clinic, Marche Polytechnic University, University Hospital ‘Ospedali Riuniti Umberto I—Lancisi—Salesi’, Ancona, Italy
| | - Magnus T Jensen
- Department of Cardiology, Copenhagen University Hospital Amager & Hvidovre, Denmark
| | - Zbigniew Kalarus
- DMS in Zabrze, Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Emanuela Teresa Locati
- Arrhythmology & Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Pyotr Platonov
- Department of Cardiology, Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Iana Simova
- Cardiology Clinic, Heart and Brain Centre of Excellence—University Hospital, Medical University Pleven, Pleven, Bulgaria
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Centre Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK) partner site, Hamburg/Kiel/Lübeck, Germany
| | - Mark J Schuuring
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Georgios Tsivgoulis
- Second Department of Neurology, ‘Attikon’ University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Koudrina A, Chartrand C, Cron GO, O'Brien J, Tsai EC, DeRosa MC. Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi. Chem Commun (Camb) 2022; 58:2870-2873. [PMID: 35132974 DOI: 10.1039/d1cc03817f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Targeting of molecular constituents of thrombi with aptamer functionalized core-shell nanoparticles (CSN) allowed for high resolution clot delineation in T2-weighted magnetic resonance imaging. Meanwhile, the gold-coating demonstrated sufficient contrast capabilities in computed tomography (1697 HU μM-1). This targeted CSN formulation could allow for precise imaging of blood clots at low nanomolar concentrations.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| | - Celine Chartrand
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| | - Greg O Cron
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.,Faculty of Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada.,The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON K1H 8L6, Canada
| | | | - Eve C Tsai
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.,Faculty of Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada.,The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON K1H 8L6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
6
|
Kovilapu UB, Jain N, Mishra A, Malik V. Selecting the Appropriate First-Line Strategy Based on Hyperdense Vessel Sign in Acute Ischemic Stroke Increases First Pass Recanalization: A Tertiary Center Experience. Indian J Radiol Imaging 2022; 31:830-836. [PMID: 35136493 PMCID: PMC8817827 DOI: 10.1055/s-0041-1741095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background:
The data pertaining to selecting an optimal first-line strategy (stent retriever [SR] vs. contact aspiration [CA]) based on noncontrast computed tomography (NCCT) in cases of acute ischemic stroke consequent to large vessel occlusion (LVO) is lacking.
Aims:
This article studies the influence of hyperdense vessel sign (HVS) in selecting optimal first-line strategy, with intention of increasing first-pass recanalization (FPR).
Methods:
Upfront approach at our center is SR technique with rescue therapy (CA) adoption consequent to three failed SR attempts to achieve successful recanalization. Data of patients with acute LVO who underwent mechanical thrombectomy from June 2017 to May 2020 was retrospectively analyzed. Patients were classified into HVS (+) and HVS (−) cohort. Rate of successful recanalization (first pass, early, and final) and efficacy of rescue therapy was assessed between the two cohorts.
Results:
Of 52 patients included, 28 and 24 were assigned to the HVS (+) and HVS (−) cohort, respectively. FPR was observed in 50% of HVS (+) and 20.9% of HVS (−) (
p
= 0.029). Early recanalization was documented in 64.2% of HVS (+) and 37.5% of HVS (−) (
p
= 0.054). Rescue therapy need was higher in patients not demonstrating HVS (
p
= 0.062). Successful recanalization was achieved with rescue therapy in 50% of HVS (−) group.
Conclusion:
A higher FPR is achievable following individualized first-pass strategy (based on NCCT appearance of clot), instead of a generalized SR first-pass approach. This CT imaging-based strategy is a step closer to achieving primary angiographic goal of FPR.
Collapse
Affiliation(s)
- Uday Bhanu Kovilapu
- Interventional Radiologist at Department of Radiodiagnosis and Interventional Radiology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Narendra Jain
- Interventional Radiologist at Department of Radiodiagnosis and Interventional Radiology, Command Hospital, Chandi Mandir, Haryana, India
| | - Atul Mishra
- Interventional Radiologist at Department of Radiodiagnosis and Interventional Radiology, Army Hospital (R&R), New Delhi, India
| | - Virender Malik
- Interventional Radiologist at Department of Radiodiagnosis and Interventional Radiology, Army Institute of Cardiothoracic sciences (AICTS), affiliated to Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
7
|
LaGrange DD, Wanke I, Machi P, Bernava G, Vargas M, Botta D, Berberat J, Muster M, Platon A, Poletti PA, Lövblad KO. Multimodality Characterization of the Clot in Acute Stroke. Front Neurol 2022; 12:760148. [PMID: 34970209 PMCID: PMC8712945 DOI: 10.3389/fneur.2021.760148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Aim: Current treatment of occluded cerebral vessels can be done by a variety of endovascular techniques. Sometimes, the clot responds in varying degrees to the treatment chosen. The Ex vivo characterization of the clot occluding the arteries in acute ischemic stroke can help in understanding the underlying imaging features obtained from pre-treatment brain scans. For this reason, we explored the potential of microCT when combined with electron microscopy for clot characterization. Results were compared to the clinical CT findings. Methods: 16 patients (9 males, 8 females, age range 54–93 years) who were referred to our institution for acute stroke underwent dual-source CT. Results: Clinical CT clots were seen as either iso or hyperdense. This was corroborated with micro-CT, and electron microscopy can show the detailed composition. Conclusion: MicroCT values can be used as an indicator for red blood cells-rich composition of clots. Meaningful information regarding the clot composition and modalities of embedding along the stent retrievers can be obtained through a combination of microCT and electron microscopy.
Collapse
Affiliation(s)
- Daniela Dumitriu LaGrange
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| | - Isabel Wanke
- Division of Neuroradiology, Zentrum für Neuroradiologie, Klinik Hirslanden, Zurich, Switzerland.,Swiss Neuroradiology Institute, Zurich, Switzerland.,Division of Neuroradiology, Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Essen, Essen, Germany
| | - Paolo Machi
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| | - Gianmarco Bernava
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| | - Maria Vargas
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| | - Daniele Botta
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland
| | - Jatta Berberat
- Division of Neuroradiology, Zentrale Medizinische Dienste, Kantonsspital Aarau, Aarau, Switzerland
| | - Michel Muster
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| | - Alexandra Platon
- Division of Radiology, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland
| | | | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, Diagnostic Department, HUG Geneva University Hospitals, Genève, Switzerland
| |
Collapse
|
8
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Song SY, Dornbos D, Lan D, Jiao BL, Wan SL, Guo YB, Ding YC, Yang Q, Ji XM, Meng R. High-Resolution Magnetic Resonance Black Blood Thrombus Imaging and Serum D-Dimer in the Confirmation of Acute Cortical Vein Thrombosis. Front Neurol 2021; 12:680040. [PMID: 34234736 PMCID: PMC8255931 DOI: 10.3389/fneur.2021.680040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral cortical vein thrombosis (CCVT) is often misdiagnosed because of its non-specific diagnostic symptoms. Here, we analyzed a cohort of patients with CCVT in hopes of improving understandings and treatments of the disease. A total of 23 patients with CCVT (confirmed with high-resolution imaging), who had been diagnosed between 2017 and 2019, were enrolled in this cohort study. Baseline demographics, clinical manifestations, laboratory data, radiological findings, treatment, and outcomes were collected and analyzed. Fourteen females and nine males were enrolled (mean age: 32.7 ± 11.9 years), presenting in the acute (within 7 days, n = 9), subacute (8–30 days, n = 7), and chronic (over 1 month, n = 7) stages. Headaches (65.2%) and seizures (39.1%) were the most common symptoms. Abnormally elevated plasma D-dimers were observed in the majority of acute stage patients (87.5%). The diagnostic accuracy of contrast-enhanced magnetic resonance venography (CE-MRV) and high-resolution magnetic resonance black-blood thrombus imaging (HR-MRBTI) in detecting CCVT were 57.1 and 100.0%, respectively. All patients had good functional outcomes after 6-month of standard anticoagulation (mRS 0–1) treatment. However, four CCVT patients that had cases involving multiple veins showed symptom relief after batroxobin therapy (p = 0.030). HR-MRBTI may be a fast and accurate tool for non-invasive CCVT diagnosis. HR-MRBTI combined with D-dimer can also precisely identify the pathological stage of CCVT. Batroxobin may safely accelerate cortical venous recanalization in combination with anticoagulation. Follow-up studies with larger sample sizes are suggested to evaluate the safety and efficacy of batroxobin for treating CCVT.
Collapse
Affiliation(s)
- Si-Ying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - David Dornbos
- Department of Neurological Surgery, Semmes-Murphey Clinic and University of Tennessee Health Science Center, Memphis, TN, United States
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bao-Lian Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ling Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi-Bing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Chuan Ding
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Qi Yang
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xun-Ming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Tatebayashi K, Uchida K, Kageyama H, Imamura H, Ohara N, Sakai N, Tanaka K, Yamagami H, Matsumoto Y, Takeuchi M, Morimoto T, Yoshimura S. Differences in Acute Ischemic Stroke Management and Prognosis between Multiple Large-Vessel Occlusion and Single Large-Vessel Occlusion: Subanalysis of the RESCUE-Japan Registry 2. Cerebrovasc Dis 2021; 50:397-404. [PMID: 33756461 DOI: 10.1159/000514369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/02/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The management and prognosis of acute ischemic stroke due to multiple large-vessel occlusion (LVO) (MLVO) are not well scrutinized. We therefore aimed to elucidate the differences in patient characteristics and prognosis of MLVO and single LVO (SLVO). METHODS The Recovery by Endovascular Salvage for Cerebral Ultra-Acute Embolism Japan Registry 2 (RESCUE-Japan Registry 2) enrolled 2,420 consecutive patients with acute LVO who were admitted within 24 h of onset. We compared patient prognosis between MLVO and SLVO in the favorable outcome, defined as a modified Rankin Scale (mRS) score ≤2, and in mortality at 90 days by adjusting for confounders. Additionally, we stratified MLVO patients into tandem occlusion and different territories, according to the occlusion site information and also examined their characteristics. RESULTS Among the 2,399 patients registered, 124 (5.2%) had MLVO. Although there was no difference between the 2 groups in terms of hypertension as a risk factor, the mean arterial pressure on admission was significantly higher in MLVO (115 vs. 107 mm Hg, p = 0.004). MLVO in different territories was more likely to be cardioembolic (42.1 vs. 10.4%, p = 0.0002), while MLVO in tandem occlusion was more likely to be atherothrombotic (39.5 vs. 81.3%, p < 0.0001). Among MLVO, tandem occlusion had a significantly longer onset-to-door time than different territories (200 vs. 95 min, p = 0.02); accordingly, the tissue plasminogen activator administration was significantly less in tandem occlusion (22.4 vs. 47.9%, p = 0.003). However, interestingly, the endovascular thrombectomy (EVT) was performed significantly more in tandem occlusion (63.2 vs. 41.7%; adjusted odds ratio [aOR], 2.3; 95% confidence interval [CI], 1.1-5.0). The type of MLVO was the only and significant factor associated with EVT performance in multivariate analysis. The favorable outcomes were obtained less in MLVO than in SLVO (28.2 vs. 37.1%; aOR, 0.48; 95% CI, 0.30-0.76). The mortality rate was not significantly different between MLVO and SLVO (8.9 vs. 11.1%, p = 0.42). DISCUSSION/CONCLUSION The prognosis of MLVO was significantly worse than that of SLVO. In different territories, we might be able to consider more aggressive EVT interventions.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Kageyama
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirotoshi Imamura
- Comprehensive Stroke Center, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Ohara
- Comprehensive Stroke Center, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Nobuyuki Sakai
- Comprehensive Stroke Center, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Kanta Tanaka
- Division of Stroke Care Unit, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Yamagami
- Division of Stroke Care Unit, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Stroke Neurology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yasushi Matsumoto
- Department of Neuroendovascular Therapy, Kohnan Hospital, Sendai, Japan
| | | | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan,
| | | |
Collapse
|
11
|
Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9412-9424. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Objective: An important clinical question in the determination of the extent of thrombosis-related vascular conditions is the identification of blood clot location. Fibrin is a major molecular constituent of blood clots and can, therefore, be utilized in molecular imaging. In this proof-of-concept study, we sought to prepare a fibrin-targeting magnetic resonance imaging contrast agent, using a Gd(III)-loaded fibrinogen aptamer (FA) chelate conjugate (Gd(III)-NOTA-FA) (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), to endow the ability to specifically accumulate at the location of blood clots, thereby enhancing contrast capabilities. Methods: The binding affinity of FA for fibrin was confirmed by fluorescence microscopy and microscale thermophoresis. The preparation and effective loading of the chelate-aptamer conjugates were confirmed by mass spectrometry and a xylenol orange colorimetric test. Longitudinal and transverse relaxivities and the effects of target binding were assessed using T1- and T2-map sequences at 7 T. T1- and T2-weighted images were acquired after blood clots were treated with Gd(III)-NOTA-FA. Collagen was used as the protein control, while an unrelated aptamer sequence, FB139, was used as the aptamer control. Results: FA demonstrated a high affinity and selectivity toward the polymeric protein, with a Kd of 16.6 nM, confirming an avidity over fibrinogen. The longitudinal (r1) and transverse (r2) relaxivities of Gd(III)-NOTA-FA demonstrated that conjugation to the long aptamer strand shortened T1 relaxation times and increased T2 relaxation times (3.04 and 38.7 mM-1 s-1, respectively). These effects were amplified by binding to the fibrin target (1.73 and 46.5 mM-1 s-1, respectively). In vitro studies with thrombin-polymerized human blood (clots) in whole blood showed an unexpected enhancement of signal intensity (hyperintense) produced exclusively at the location of the clot during the T2-weighted scan, while the presence of fibrinogen within a whole blood pool resulted in T1 signal intensity enhancement throughout the pool. This is advantageous, as simply reversing the type of a scan from a typical T1-weighted to a T2-weighted would allow to selectively highlight the location of blood clots. Conclusions: Gd(III)-NOTA-FA can be used for molecular imaging of thrombi, through fibrin-targeted delivery of contrast to the location of blood clots in T2-weighted scans.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Joseph A Zurakowski
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Greg O Cron
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Radiology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suzan Chen
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Eve C Tsai
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Abstract
Thrombi retrieved from patients with acute ischemic stroke are highly heterogeneous. Recent data suggest that thrombus composition may impact on mechanical thrombectomy, the number of recanalization manoeuvres, resistance to retrieval, and on thrombolytic potential. Our aim was to summarize evidence describing the impact of thrombus composition on efficacy of mechanical thrombectomy and thrombolysis in patients with acute ischemic stroke. The scoping review methodology guided by the Joanna Briggs Institute, an adaption of the Arksey and O'Malley, was followed. Comprehensive searches were conducted in MEDLINE, EMBASE, SCOPUS, and Web of Science. Articles were classified into 4 key themes: (1) composition of stroke thrombi, (2) thrombus composition and mechanical thrombectomy, (3) thrombus composition and thrombolytic therapy, and (4) novel imaging and endovascular approaches. Our search identified 698 articles published from 1987 to June 2020. Additional articles were extracted from reference lists of the selected articles. Overall, 95 topic-specific articles identified for inclusion published in 40 different journals were included. Reports showed that thrombus composition in stroke was highly heterogeneous, containing fibrin, platelets, red blood cells, VWF (von Willebrand Factor), and neutrophil extracellular traps. Thrombi could roughly be divided into fibrin- and red blood cell-rich clots. Fibrin-rich clots were associated with increased recanalization manoeuvres, longer procedure time, and less favorable clinical outcomes compared with red blood cell-rich clots. Advances in detection or treatment of thrombi that take into account clot heterogeneity may be able to improve future endovascular and thrombolytic treatment of stroke.
Collapse
Affiliation(s)
- Precious Jolugbo
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| |
Collapse
|
13
|
Le Bihan T, Driver CHS, Ebenhan T, Le Bris N, Zeevaart JR, Tripier R. In Vivo Albumin-Binding of a C-Functionalized Cyclam Platform for 64 Cu-PET/CT Imaging in Breast Cancer Model. ChemMedChem 2020; 16:809-821. [PMID: 33191627 DOI: 10.1002/cmdc.202000800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/06/2022]
Abstract
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal , has been synthesized and studied for in vivo 64 Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal . The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64 Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64 Cu]Cu-GluCAB-2Mal and previous-generation [64 Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64 Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64 Cu]Cu-Glu-CAB-2Mal .
Collapse
Affiliation(s)
- Thomas Le Bihan
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| | - Cathryn H S Driver
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Thomas Ebenhan
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Nathalie Le Bris
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West, 0240, South Africa
| | - Raphaël Tripier
- UMR CNRS 6521 CEMCA, University of Brest, 6 avenue Le Gorgeu, CS93837, 29200, Brest, France
| |
Collapse
|
14
|
Thrombus Imaging Using 3D Printed Middle Cerebral Artery Model and Preclinical Imaging Techniques: Application to Thrombus Targeting and Thrombolytic Studies. Pharmaceutics 2020; 12:pharmaceutics12121207. [PMID: 33322710 PMCID: PMC7763938 DOI: 10.3390/pharmaceutics12121207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023] Open
Abstract
Diseases with the highest burden for society such as stroke, myocardial infarction, pulmonary embolism, and others are due to blood clots. Preclinical and clinical techniques to study blood clots are important tools for translational research of new diagnostic and therapeutic modalities that target blood clots. In this study, we employed a three-dimensional (3D) printed middle cerebral artery model to image clots under flow conditions using preclinical imaging techniques including fluorescent whole-body imaging, magnetic resonance imaging (MRI), and computed X-ray microtomography (microCT). Both liposome-based, fibrin-targeted, and non-targeted contrast agents were proven to provide a sufficient signal for clot imaging within the model under flow conditions. The application of the model for clot targeting studies and thrombolytic studies using preclinical imaging techniques is shown here. For the first time, a novel method of thrombus labeling utilizing barium sulphate (Micropaque®) is presented here as an example of successfully employed contrast agents for in vitro experiments evaluating the time-course of thrombolysis and thus the efficacy of a thrombolytic drug, recombinant tissue plasminogen activator (rtPA). Finally, the proof-of-concept of in vivo clot imaging in a middle cerebral artery occlusion (MCAO) rat model using barium sulphate-labelled clots is presented, confirming the great potential of such an approach to make experiments comparable between in vitro and in vivo models, finally leading to a reduction in animals needed.
Collapse
|
15
|
Adrover JM, Pellico J, Fernández-Barahona I, Martín-Salamanca S, Ruiz-Cabello J, Hidalgo A, Herranz F. Thrombo-tag, an in vivo formed nanotracer for the detection of thrombi in mice by fast pre-targeted molecular imaging. NANOSCALE 2020; 12:22978-22987. [PMID: 33053000 DOI: 10.1039/d0nr04538a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Radioisotope-labelled nanoparticles permit novel applications in molecular imaging, while recent developments in imaging have enabled direct visualization of biological processes. While this holds true for pathological processes that are stable in time, such as cancer, imaging approaches are limited for phenomena that take place in the range of minutes, such as thrombotic events. Here, we take advantage of bioorthogonal chemistry to demonstrate the concept of nanoparticle-based fast pre-targeted imaging. Using a newly designed nanoparticle that targets platelets we show the applicability of this approach developing thrombo-tag, an in vivo produced nanoparticle that labels thrombi. We show that thrombo-tag allows specific labelling of platelets that accumulate in the injured pulmonary vasculature, or that aggregate in brains of mice suffering thrombotic processes. The fast kinetics and high specificity features of thrombo-tag may critically expand the application of molecular imaging to the most prevalent and debilitating diseases in the clinics.
Collapse
Affiliation(s)
- José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mönch S, Boeckh-Behrens T, Berndt M, Maegerlein C, Wunderlich S, Zimmer C, Friedrich B. Angiographic Baseline Proximal Thrombus Appearance of M1/M2 Occlusions in Mechanical Thrombectomy. Clin Neuroradiol 2019; 31:189-196. [PMID: 31807811 DOI: 10.1007/s00062-019-00863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Analyzing stroke thrombi has proven to be valuable in prognostication and risk stratification of stroke etiology, reperfusion success and outcomes. The aim of this study was to test if the baseline appearance of the proximal thrombus on digital subtraction angiography (DSA) can predict these parameters in acute ischemic stroke patients treated with mechanical thrombectomy. METHODS The appearance of the most proximal part of the thrombus was determined based on DSA. Thrombus perviousness, density, and histology were measured beforehand as described previously. Baseline, technical, and outcome variables were compared using the χ2-test, analysis of variance and the Kruskal-Wallis test. RESULTS A total of 144 stroke patients with M1 and M2 occlusions could be included in this present study. Of the patients 60.4% had a cutoff, 27.1% a tapered, and 12.5% a meniscus/tram-track appearance of the thrombus on baseline DSA. The number of maneuvers was higher in the cutoff cohort (P = 0.003). Age (P = 0.777), female sex (P = 0.936), administration of intravenous thrombolysis (P = 0.364), percentage of M1 occlusions (P = 0.194), Alberta Stroke Program early computed tomography score (ASPECTS, P = 0.256), usage of balloon guide catheters (P = 0.367), general anesthesia (P = 0.184), procedure time (P = 0.214) and symptom onset to groin puncture time (P = 0.114) did not significantly differ. Alongside a lower National Institutes of Health scale (NIHSS) score on admission (P = 0.085), good functional outcome was favorable for the meniscus/tram-track cohort (P = 0.030). Stroke etiology according to the trial of Org 10172 in acute stroke treatment (TOAST) criteria as well as thrombus perviousness, density, and histology showed no association with the thrombus appearance. CONCLUSION Baseline cut off thrombus appearance predicts a higher number of thrombectomy maneuvers. In day to day practice this may prepare the neurointerventionalist for a more challenging endovascular procedure ahead. Stroke etiology, clinical outcomes and thrombus-specific characteristics did not show any associations with the thrombus appearance.
Collapse
Affiliation(s)
- Sebastian Mönch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Tobias Boeckh-Behrens
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maria Berndt
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Christian Maegerlein
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Benjamin Friedrich
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
17
|
Rusch R, Trentmann J, Hummitzsch L, Rusch M, Aludin S, Haneya A, Albrecht M, Schäfer JP, Puehler T, Cremer J, Berndt R. Feasibility of a circulation model for the assessment of endovascular recanalization procedures and periprocedural thromboembolism in-vitro. Sci Rep 2019; 9:17356. [PMID: 31757980 PMCID: PMC6874641 DOI: 10.1038/s41598-019-53607-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
Aim of this study was to establish a simple and highly reproducible physiological circulation model to investigate endovascular device performance. The developed circulation model included a pneumatically driven pulsatile pump to generate a flow rate of 2.7 L/min at 70 beats per minute. Sections from the superficial femoral arteries were used in order to simulate device/tissue interaction and a filter was integrated to analyze periinterventional thromboembolism of white, red and mixed thrombi. The working fluid (3 L) was a crystalloid solution constantly tempered at 36.5 °C. To evaluate the model, aspiration thrombectomy, stent-implantation and thrombectomy with the Fogarty catheter were performed. Usability of the model was measured by the System Usability Scale (SUS) – Score. Histological specimens were prepared and analyzed postinterventional to quantify tissue/device interaction. Moreover, micro- and macroembolism were evaluated for each thrombus entity and each device. Results were tested for normality using the D’Agostino-Pearson test. Statistical comparisons of two groups were performed using the Student’s t-test. All devices were able to remove the occlusions after a maximum of 2 attempts. First-pass-recanalization was not fully achieved for aspiration thrombectomy of mixed thrombi (90.6%), aspiration thrombectomy of red thrombi (84.4%) and stent-implantation in occlusions of red thrombi (92.2%). Most micro- and macroembolism were observed using the Fogarty catheter and after stent-implantation in occlusions of white thrombi. Histological examinations revealed a significant reduction of the vascular layers suggesting vascular damage after use of the Fogarty catheter (327.3 ± 3.5 μm vs. 440.6 ± 3.9 μm; p = 0.026). Analysis of SUS rendered a mean SUS-Score of 80.4 which corresponds to an excellent user acceptability of the model. In conclusion, we describe a stable, easy to handle and reproducible physiological circulation model for the simulation of endovascular thrombectomy including device performance and thromboembolism.
Collapse
Affiliation(s)
- René Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany.
| | - Jens Trentmann
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Melanie Rusch
- Department of Orthopedics and Trauma Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Schekeb Aludin
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Assad Haneya
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jost Philipp Schäfer
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Thomas Puehler
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Yu Y, Yu M, Liu J, Ding N, Huang J, Wan D, Zhao Y, Ma Z. In vivo monitoring of thrombosis in mice by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900105. [PMID: 31339664 DOI: 10.1002/jbio.201900105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study is to establish a novel method for continuously monitoring thrombus progression with various outcome measures and to assess the efficacy of antithrombotic drugs in murine thrombosis model in mice. In the study, thrombus was induced in the femoral vein of mice by FeCl3 and monitored over time by spectral-domain optical coherence tomography (OCT). Three-dimensional images of thrombi with or without heparin as an antithrombotic agent were obtained from OCT angiography. In addition, several parameters of thrombi were analyzed and compared between control and anticoagulant groups. By using OCT, we were able to trace thrombus generation in the same mouse in real time. We found that in our model heparin reduced thrombus size by ~60% and thrombus cross-sectional area by 50%. OCT results also show that both time to thrombus size (>0.02mm3 ) and time to occlusion (>30%) were significantly reduced after heparin addition. This study demonstrates that OCT reliably monitors thrombus generation and progression from various aspects including thrombus size. This enables us to measure the kinetic of thrombosis more accurately, and effectively evaluate the efficacy and activities of antithrombotic drugs. This model may represent a useful tool in antithrombotic drug discoveries in preclinical studies.
Collapse
Affiliation(s)
- Yao Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Menghan Yu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Jian Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Ning Ding
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Jiangmei Huang
- Department of Pathology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dong Wan
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhenhe Ma
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
19
|
Christiansen SD, Liu J, Boffa MB, Drangova M. Simultaneous R 2* and quantitative susceptibility mapping measurement enables differentiation of thrombus hematocrit and age: an in vitro study at 3 T. J Neurointerv Surg 2019; 11:1155-1161. [PMID: 31088940 DOI: 10.1136/neurintsurg-2019-014802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/03/2022]
Abstract
BACKGROUND The efficacy of acute ischemic stroke treatment is affected by thrombus composition and age, yet no diagnostic method capable of quantitative thrombus characterization currently exists. This in vitro study evaluates the use of R2* , quantitative susceptibility mapping (QSM), and proton density fat fraction (FF) maps derived from a single gradient echo (GRE) MRI acquisition for characterizing clot of various hematocrit, as well as added calcified and lipidic components, throughout aging. METHODS Two thrombus phantoms containing porcine clots (10-60% hematocrit, one with added calcium or lard) were scanned serially throughout 6 days of aging. Three-dimensional multi-echo GRE imaging was used to generate R2* , QSM, and FF maps, from which mean values for all clots at every time point were obtained. Receiver operating characteristic analysis was used to derive thresholds differentiating acute from chronic clot, and measured R2* and QSM were tested for their ability to estimate clot hematocrit. RESULTS R2* and QSM varied minimally over the first 6 hours of aging (acute), and QSM was found to linearly relate to clot hematocrit. Beyond 6 hours (chronic), R2* and QSM increased considerably over time and hematocrit could be estimated from the R2* /QSM ratio. R2* and QSM thresholds of 22 s-1 and 0.165 ppm differentiated acute from chronic clots with a sensitivity/specificity of 100%/100% and 85%/92%, respectively. QSM and FF maps definitively distinguished calcium and lipid, respectively, from clots of any hematocrit and age. CONCLUSIONS R2* , QSM, and FF from a single multi-echo GRE scan discriminated hematocrit and age, and distinguished calcification and lipid withinin vitro clot.
Collapse
Affiliation(s)
- Spencer D Christiansen
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Junmin Liu
- Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Maria Drangova
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Bang OY, Kim BM, Seo WK, Jeon P. Endovascular Therapy for Acute Ischemic Stroke of Intracranial Atherosclerotic Origin-Neuroimaging Perspectives. Front Neurol 2019; 10:269. [PMID: 30949124 PMCID: PMC6435574 DOI: 10.3389/fneur.2019.00269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Large vessel occlusion (LVO) due to intracranial atherosclerosis (ICAS) is a common cause of acute ischemic stroke (AIS) in Asians. Endovascular therapy (EVT) has been established as the mainstay of treatment in patients with AIS and LVO. However, only a few patients of Asian descent with ICAS-related LVO (ICAS-LVO) were included in recent randomized controlled trials of EVT for AIS. Therefore, the findings of these trials cannot be directly applied to Asian patients with ICAS-LVO. In embolic LVO due to thrombus from the heart or a more proximal vessel, rapid, and complete recanalization can be achieved in more than 70-80% of patients, and it is important to exclude patients with large cores. In contrast, patients with ICAS-LVO usually have favorable hemodynamic profiles (good collateral status, small core, and less severe perfusion deficit), but poor response to EVT (more rescue treatments and longer procedure times are required for successful recanalization due to higher rates of reocclusion). Patients with ICAS-LVO may have different anatomic (plaque, angioarchitecture), hemodynamic (collateral status), and pathophysiologic (thrombus composition) features on neuroimaging compared to patients with embolic LVO. In this review, we discuss these neuroimaging features, their clinical implications with respect to determination of EVT responses, and the need for development of specific EVT devices and procedures for patients with ICAS-LVO.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Moon Kim
- Department of Radiology, Severance Hospital Stroke Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Pyoung Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Zhong Y, Zhang Y, Xu J, Zhou J, Liu J, Ye M, Zhang L, Qiao B, Wang ZG, Ran HT, Guo D. Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Nanoparticles for Thrombolysis without Vascular Damage: A Synergistic Nonpharmaceutical Strategy. ACS NANO 2019; 13:3387-3403. [PMID: 30855938 DOI: 10.1021/acsnano.8b09277] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multimodal molecular imaging has shown promise as a complementary approach to thrombus detection. However, the simultaneous noninvasive detection and lysis of thrombi for cardiovascular diseases remain challenging. Herein, a perfluorohexane (PFH)-based biocompatible nanostructure was fabricated, namely, as-prepared Fe3O4-poly(lactic- co-glycolic acid)-PFH-CREKA nanoparticles (NPs), which combine phase transition (PT) thrombolysis capabilities with properties conducive to multimodal imaging. This well-developed PT agent responded effectively to low-intensity focused ultrasound (LIFU) by triggering the vaporization of liquid PFH to achieve thrombolysis. The presence of the CREKA peptide, which binds to the fibrin of the thrombus, allows targeted imaging and efficacious thrombolysis. Then, we found that, compared with thrombolysis using a non-phase-transition agent, PT thrombolysis can produce a robust decrease in the thrombus burden regardless of the acoustic power density of LIFU. In particular, the reduced energy for LIFU-responsive PT during the lysis process guarantees the superior safety of PT thrombolysis. After injecting the NPs intravenously, we demonstrated that this lysis process can be monitored with ultrasound and photoacoustic imaging in vivo to evaluate its efficacy. Therefore, this nonpharmaceutical strategy departs from routine methods and reveals the potential use of PT thrombolysis as an effective and noninvasive alternative to current thrombolytic therapy.
Collapse
Affiliation(s)
- Yixin Zhong
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Yu Zhang
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Jie Xu
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Jun Zhou
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Jia Liu
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Man Ye
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Bin Qiao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Zhi-Gang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Hai-Tao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| | - Dajing Guo
- Department of Radiology , Second Affiliated Hospital of Chongqing Medical University , No. 74 Linjiang Road , Yuzhong District, Chongqing , 400010 , People's Republic of China
| |
Collapse
|
22
|
Yusof NNM, McCann A, Little PJ, Ta HT. Non-invasive imaging techniques for the differentiation of acute and chronic thrombosis. Thromb Res 2019; 177:161-171. [PMID: 30921535 DOI: 10.1016/j.thromres.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Thrombosis is the localized clotting of blood that can occur in both the arterial and venous circulation. It is a key factor in the pathogenesis of acute coronary syndrome, myocardial infarction and stroke and the primary cause of deep vein thrombosis and pulmonary embolism. Rapid and accurate diagnosis of thrombotic episodes is crucial in reducing the morbidity and potential mortality associated with arterial and venous thrombotic disorders by allowing early targeted therapeutic interventions. From a clinical perspective the ability to accurately assess the age and composition of thrombus is highly desirable given that anticoagulation and, in particular, fibrinolytic therapies are more effective in treating acute rather than chronic thrombosis. While there are no imaging tests used in routine clinical practice that can reliably determine the age of thrombus and differentiate between acute and chronic thrombosis there are several emerging non-invasive techniques that can provide an indication of the age of a thrombus depending on its location in the body. Examples of techniques developed for venous thrombosis include Doppler imaging with venous duplex ultrasonography, ultrasound B-mode imaging integrated with IER (intrinsic mode functions-based echogenicity ratio), elastography, scintigraphy imaging with 99mTc-recombinant tissue plasminogen activator (99mTc-rt-PA), and magnetic resonance direct thrombus imaging (MDRTI). Magnetic resonance imaging (MRI) has been used to noninvasively detect and differentiate acute and chronic arterial and venous thrombosis. These methods have limitations that need further investigation to enable cost-effective and clinically relevant treatment practices to be established in the future. This review will discuss the difference between acute and chronic thrombosis and the role of non-invasive imaging techniques in discriminating between the two.
Collapse
Affiliation(s)
- Nur Nazifah Mohd Yusof
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Andrew McCann
- Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Hang T Ta
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Woolloongabba, Queensland 4102, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
23
|
Le Bihan T, Navarro AS, Le Bris N, Le Saëc P, Gouard S, Haddad F, Gestin JF, Chérel M, Faivre-Chauvet A, Tripier R. Synthesis of C-functionalized TE1PA and comparison with its analogues. An example of bioconjugation on 9E7.4 mAb for multiple myeloma 64Cu-PET imaging. Org Biomol Chem 2019; 16:4261-4271. [PMID: 29701218 DOI: 10.1039/c8ob00499d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In view of the excellent copper(ii) and 64-copper(ii) complexation of a TE1PA ligand, a monopicolinate cyclam, in both aqueous medium and in vivo, we looked for a way to make it bifunctional, while maintaining its chelating properties. Overcoming the already known drawback of grafting via its carboxyl group, which is essential to the overall properties of the ligand, a TE1PA bifunctional derivative bearing an additional isothiocyanate coupling function on a carbon atom of the macrocyclic ring was synthesized. This led to an architecture that is comparable to that of other commercially available bifunctional copper(ii) chelators such as p-SCN-Bn-DOTA already used in clinical trials for 64Cu-immuno-PET imaging. The C-functionalization of TE1PA on one carbon atom in the β-N position of the cyclam backbone was successfully achieved by adapting our patented methodology to the huge challenge, allowing the regiospecific mono-N-functionalization of the unsymmetrical ligand. The obtained ligand p-SCN-Bn-TE1PA was coupled to a 9E7.4 murine antibody (mAb), an IgG2a anti CD-138 for multiple myeloma (MM) targeting. The conjugation efficiency was assessed by looking at the 64Cu radiolabeling and the radiopharmaceutical 64Cu-9E7.4-p-SCN-Bn-TE1PA immunoreactivity, and in particular by comparing with 9E7.4-p-SCN-Bn-NOTA and 9E7.4-p-SCN-Bn-DOTA obtained from commercial and presumably highly efficient chelators NOTA and DOTA, respectively. The results are quite clear, showing that p-SCN-Bn-TE1PA has a coupling rate 5 times higher and an immunoreactivity 1.5 to 2 times greater than those of its two competitors. p-SCN-Bn-TE1PA also outperforms TE1PA conjugated via its carboxylic function on the same antibody. The first 64Cu-immuno-PET preclinical study in a syngeneic model of MM was performed, confirming the good in vivo properties of 64Cu-9E7.4-p-SCN-Bn-TE1PA for PET imaging, considering the high clearance even after 24 h and the particularly important tumor-to-liver ratio that was increasing at 48 h.
Collapse
Affiliation(s)
- Thomas Le Bihan
- Université de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chae SY, Kwon TW, Jin S, Kwon SU, Sung C, Oh SJ, Lee SJ, Oh JS, Han Y, Cho YP, Lee N, Kim JY, Koglin N, Berndt M, Stephens AW, Moon DH. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res 2019; 9:3. [PMID: 30617563 PMCID: PMC6323046 DOI: 10.1186/s13550-018-0471-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 18F-GP1 is a novel positron emission tomography (PET) tracer that targets glycoprotein IIb/IIIa receptors on activated platelets. The study objective was to explore the feasibility of directly imaging acute arterial thrombosis (AAT) with 18F-GP1 PET/computed tomography (PET/CT) and to quantitatively assess 18F-GP1 uptake. Safety, biodistribution, pharmacokinetics and metabolism were also evaluated. METHODS Adult patients who had signs or symptoms of AAT or had recently undergone arterial intervention or surgery within 14 days prior to 18F-GP1 PET/CT were eligible for inclusion. The AAT focus was demonstrated by conventional imaging within the 5 days prior to 18F-GP1 administration. Whole-body dynamic 18F-GP1 PET/CT images were acquired for up to 140 min after injection of 250 MBq of 18F-GP1. Venous plasma samples were analysed to determine 18F-GP1 clearance and metabolite formation. RESULTS Among the ten eligible patients assessed, underlying diseases were abdominal aortic aneurysm with endovascular repair (n = 6), bypass surgery and stent placement (n = 1), endarterectomy (n = 1), arterial dissection (n = 1) and acute cerebral infarction (n = 1). 18F-GP1 administration and PET/CT procedures were well tolerated, with no drug-related adverse events. All patients showed high initial 18F-GP1 uptake in the spleen, kidney and blood pool, followed by rapid clearance. Unmetabolised plasma 18F-GP1 levels peaked at 4 min post-injection and decreased over time until 120 min. The overall image quality was sufficient for diagnosis in all patients and AAT foci were detected in all participants. The 18F-GP1 uptake in AAT foci remained constant from 7 min after injection and began to separate from the blood pool after 20 min. The median standardised uptake value of AAT was 5.0 (range 2.4-7.9) at 120 min post-injection. The median ratio of standardised uptake value of AAT foci to the mean blood pool activity was 3.4 (range 2.0-6.3) at 120 min. CONCLUSIONS 18F-GP1 is a safe and promising novel PET tracer for imaging AAT with a favourable biodistribution and pharmacokinetic profile. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02864810 , Registered August 3, 2016.
Collapse
Affiliation(s)
- Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Tae-Won Kwon
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jin
- Department of Nuclear Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Youngjin Han
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, Guri Hospital of Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Norman Koglin
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Mathias Berndt
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Andrew W Stephens
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
25
|
Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of responsive hydrogels and their enhancement with novel moieties have improved our understanding of functional materials. Hydrogels coupled with inorganic nanoparticles have been sought for novel types of responsive materials, but the efficient routes for the formation and the responsivity of complexed materials remain for further investigation. Here, we report that responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles (microgels) are tunable by varying composition of co-monomer and crosslinker as well as by their complexation with magnetic nanoparticles in aqueous dispersions. Our results show that the hydrodynamic diameter and thermoresponsivity of microgels are closely related with the composition of anionic co-monomer, AAc and crosslinker, N,N′-Methylenebisacrylamide (BIS). As a composition of hydrogels, the higher AAc increases the swelling size of the microgels and the volume phase transition temperature (VPTT), but the higher BIS decreases the size with no apparent effect on the VPTT. When the anionic microgels are complexed with amine-modified magnetic nanoparticles (aMNP) via electrostatic interaction, the microgels decrease in diameter at 25 °C and shift the volume phase transition temperature (VPTT) to a higher temperature. Hysteresis on the thermoresponsive behavior of microgels is also measured to validate the utility of aMNP-microgel complexation. These results suggest a simple, yet valuable route for development of advanced responsive microgels, which hints at the formation of soft nanomaterials enhanced by inorganic nanoparticles.
Collapse
|
26
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
27
|
Bourcier R, Mazighi M, Labreuche J, Fahed R, Blanc R, Gory B, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, Consoli A, Piotin M, Lapergue B. Susceptibility Vessel Sign in the ASTER Trial: Higher Recanalization Rate and More Favourable Clinical Outcome after First Line Stent Retriever Compared to Contact Aspiration. J Stroke 2018; 20:268-276. [PMID: 29886714 PMCID: PMC6007297 DOI: 10.5853/jos.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose In the Aspiration vs. Stent Retriever for Successful Revascularization (ASTER) trial, which evaluated contact aspiration (CA) versus stent retriever (SR) use as first-line technique, the impact of the susceptibility vessel sign (SVS) on magnetic resonance imaging (MRI) was studied to determine its influence on trial results.
Methods We included patients having undergone CA or SR for M1 or M2 occlusions, who were screened by MRI with T2* gradient recalled echo. Occlusions were classified as SVS (+) or SVS (–) in each randomization arm. Modified thrombolysis in cerebral infarction (mTICI) 2b, 2c, or 3 revascularization rates were recorded and clinical outcomes assessed by the overall distribution of modified Rankin scale (mRS) at 90 days.
Results Among the 202 patients included, 143 patients were SVS (+) (70.8%; 95% confidence interval [CI], 64.5% to 77.1%). Overall, there was no difference in angiographic and clinical outcomes according to SVS status. However, compared to SR, CA achieved a lower mTICI 2c/3 rate in SVS (+) patients (risk ratio [RR] for CA vs. SR, 0.60; 95% CI, 0.51 to 0.71) but not in SVS (–) (RR, 1.11; 95% CI, 0.69 to 1.77; P for interaction=0.018). A significant heterogeneity in favor of superiority of first-line SR strategy in SVS (+) patients was also found regarding the overall mRS distribution (common odds ratio for CA vs. SR, 0.40 vs. 1.32; 95% CI, 0.21 to 0.74 in SVS (+) vs. 95% CI, 0.51 to 3.35 in SVS (–); P for interaction=0.038).
Conclusions As a first line strategy, SR achieved higher recanalization rates and a more favourable clinical outcome at 3 months compared to CA when MRI shows SVS within the thrombus.
Collapse
Affiliation(s)
- Romain Bourcier
- Department of Diagnostic and Interventional Neuroradiology, Guillaume et René Laennec University Hospital, Nantes, France
| | - Mickael Mazighi
- Department of Diagnostic and Interventional Neuroradiology, Rothschild Foundation, Paris, France
| | - Julien Labreuche
- Department of Biostatistics, University Lille, CHRU Lille, Lille, France
| | - Robert Fahed
- Department of Diagnostic and Interventional Neuroradiology, Rothschild Foundation, Paris, France
| | - Raphael Blanc
- Department of Diagnostic and Interventional Neuroradiology, Rothschild Foundation, Paris, France
| | - Benjamin Gory
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Nancy, Nancy, France
| | - Alain Duhamel
- Department of Biostatistics, University Lille, CHRU Lille, Lille, France
| | - Gaultier Marnat
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bordeaux, Bordeaux, France
| | - Suzana Saleme
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Limoges, Limoges, France
| | - Vincent Costalat
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Montpellier, Montpellier, France
| | - Serge Bracard
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Nancy, Nancy, France
| | - Hubert Desal
- Department of Diagnostic and Interventional Neuroradiology, Guillaume et René Laennec University Hospital, Nantes, France
| | - Arturo Consoli
- Department of Stroke Center and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
| | - Michel Piotin
- Department of Diagnostic and Interventional Neuroradiology, Rothschild Foundation, Paris, France
| | - Bertrand Lapergue
- Department of Stroke Center and Diagnostic and Interventional Neuroradiology, University of Versailles and Saint Quentin en Yvelines, Foch Hospital, Suresnes, France
| | | |
Collapse
|
28
|
Polito V, La Piana R, Del Pilar Cortes M, Tampieri D. Assessment of clot length with multiphase CT angiography in patients with acute ischemic stroke. Neuroradiol J 2017; 30:593-599. [PMID: 29068254 DOI: 10.1177/1971400917736928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Existing stroke literature demonstrates that rapid recanalization of vessels improves long-term prognosis after acute ischemic stroke. However, further optimization of the speed of the thrombectomy procedure, used to recanalize a blocked vessel, is limited by our minimal knowledge of the clot dimensions pre-procedure. Knowing the clot dimensions would allow planning of the thrombectomy procedure with the appropriate size and length of stent retriever, and determination of the correct site of the stent deployment ensuring total coverage of the clot by the stent retriever. Methods We performed a feasibility study to assess if multiphase computed tomography angiography (mCTA) can be used to estimate clot length by comparing CTA imaging data with imaging data obtained from conventional digital subtraction angiography (DSA). A retrospective chart review was performed of patients with clots in the proximal middle cerebral artery and adequate collateral circulation, who underwent both mCTA and DSA. Results Clot length was not significantly different on 3D mCTA versus mCTA MIPs, nor was it significantly different on MIP mCTA versus DSA. Pathological evidence also supported our ability to measure clot length on mCTA. Conclusions We suggest that mCTA is a reliable and valid measure of clot length in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Vanessa Polito
- Department of Neuroradiology, 55981 Montreal Neurological Hospital and Institute , McGill University, Montreal, Quebec, Canada
| | - Roberta La Piana
- Department of Neuroradiology, 55981 Montreal Neurological Hospital and Institute , McGill University, Montreal, Quebec, Canada
| | - Maria Del Pilar Cortes
- Department of Neuroradiology, 55981 Montreal Neurological Hospital and Institute , McGill University, Montreal, Quebec, Canada
| | - Donatella Tampieri
- Department of Neuroradiology, 55981 Montreal Neurological Hospital and Institute , McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Lee JS, Hong JM, Kim JS. Diagnostic and Therapeutic Strategies for Acute Intracranial Atherosclerosis-related Occlusions. J Stroke 2017; 19:143-151. [PMID: 28592778 PMCID: PMC5466291 DOI: 10.5853/jos.2017.00626] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/16/2022] Open
Abstract
Intracranial atherosclerosis-related occlusion (ICAS-O) is frequently encountered at the time of endovascular revascularization treatment (ERT), especially in Asian countries. However, because baseline angiographic findings are similar between ICAS-O and embolism-related occlusion (EMB-O), it is difficult to differentiate the etiologies before the ERT procedure. Moreover, despite successful randomized trials on ERT, results from studies examining the optimal treatment protocol in ICAS-O patients remain unclear. In this review, we describe the clinical and imaging factors that may possibly differentiate ICAS-O from EMB-O. We will also discuss some current hurdles for treating ICAS-O in the hyperacute period and suggest the optimal ERT strategy for ICAS-O patients.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, Korea
| |
Collapse
|
30
|
Borggrefe J, Kottlors J, Mirza M, Neuhaus VF, Abdullayev N, Maus V, Kabbasch C, Maintz D, Mpotsaris A. Differentiation of Clot Composition Using Conventional and Dual-Energy Computed Tomography. Clin Neuroradiol 2017; 28:515-522. [PMID: 28536753 DOI: 10.1007/s00062-017-0599-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE In unenhanced computed tomography (CT) of acute ischemic stroke, the density of occluding clots is associated with the content of red blood cells and successful recanalization with stent thrombectomy. However, no CT marker for fibrin content is established. In order to improve clot diagnostics, we conducted an in vitro study to investigate thrombus composition of histologically defined ovine blood clots with unenhanced and contrast-enhanced CT using spectral detector CT (SDCT). METHODS Ovine blood clot types containing defined amounts of red blood cells (RBC; pure fibrin clots: RBC 0% ± 0, fibrin 100% ± 0), mixed clots (RBC 35.1% ± 4.11, fibrin 79.2% ± 5.6) and red clots (RBC 99.05% ± 1.14, fibrin 0.95% ± 1.14) were scanned in a SDCT (IQon®, Philips, Amsterdam, The Netherlands) (a) in a tube containing saline, (b) 5 min and (c) 3 days after exposure to a 1:50 dilution of iohexol (Accupaque-350®, GE-Healthcare, Boston, MA, USA). The attenuation of the clots was measured in Hounsfield units (HU) in conventional CT datasets as well as virtual noncontrast reconstructions (VNC) of nonenhanced and contrast-enhanced SDCT in a blinded and randomized fashion. Statistical analysis was conducted with ANOVA, Spearman's correlation, linear and multivariable regression models. RESULTS In unenhanced scans, clots differed in density with linear interrelation (fibrin 23.6 ± 1.1, mixed 34.9 ± 1.6, red 46.7 ± 1.6, mean HU ± SD). The blood clots did not show any overlap of density in the native scans and VNC at different time points (p < 0.0001 for each setting and clot type). However, they could not be differentiated after initial contrast exposure (fibrin 108.5 ± 7.8, mixed 105.3 ± 3.5, red 104.8 ± 3.8, mean HU ± SD). After prolonged exposure, the fibrin rich clots showed a significant increase of density due to further uptake of contrast medium (fibrin 163.6 ± 3.6, mixed 138.3 ± 4.1, red 109.6 ± 5.4, mean HU ± SD). In multivariable models, native CT density and contrast enhancement were independent variables associated with thrombus type (p < 0.01 each). CONCLUSION The fibrin content in blood clots is strongly associated with contrast uptake. As previously shown, the density of the clot formations in native CT scans is dependent on the RBC. Our data show that CT density and relative enhancement of clots are independent determinants of clot composition. Using both variables in the CT workup of acute ischemic stroke has the potential to have a decisive impact on patient stratification for treatment.
Collapse
Affiliation(s)
- Jan Borggrefe
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany.
| | - Jonathan Kottlors
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - Mahmood Mirza
- Clinical Science, Neuravi Ltd, llybrit Business Park, H91 K5YD, Galway, Ireland
| | - Victor-Frederic Neuhaus
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - Nuran Abdullayev
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - Volker Maus
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - Christoph Kabbasch
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - David Maintz
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| | - Anastasios Mpotsaris
- Institut für Diagnostische und Interventionelle Radiologie, Uniklinik Köln, Kerpener Str. 62, 60937, Cologne, Germany
| |
Collapse
|
31
|
Kim DE, Kim JY, Schellingerhout D, Ryu JH, Lee SK, Jeon S, Lee JS, Kim J, Jang HJ, Park JE, Kim EJ, Kwon IC, Ahn CH, Nahrendorf M, Kim K. Quantitative Imaging of Cerebral Thromboemboli In Vivo. Stroke 2017; 48:1376-1385. [DOI: 10.1161/strokeaha.117.016511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023]
Abstract
Background and Purpose—
Quantitative imaging for the noninvasive assessment of thrombolysis is needed to advance basic and clinical thrombosis-related research and tailor tissue-type plasminogen activator (tPA) treatment for stroke patients. We quantified the evolution of cerebral thromboemboli using fibrin-targeted glycol chitosan–coated gold nanoparticles and microcomputed tomography, with/without tPA therapy.
Methods—
We injected thrombi into the distal internal carotid artery in mice (n=50). Fifty-five minutes later, we injected fibrin-targeted glycol chitosan–coated gold nanoparticles, and 5 minutes after that, we treated animals with tPA or not (25 mg/kg). We acquired serial microcomputed tomography images for 24 hours posttreatment.
Results—
Thrombus burden at baseline was 784×10
3
±59×10
3
μm
2
for the tPA group (n=42) and 655×10
3
±103×10
3
μm
2
for the saline group (n=8;
P
=0.37). Thrombus shrinkage began at 0.5 to 1 hour after tPA therapy, with a maximum initial rate of change at 4603±957 μm
2
/min. The rate of change lowered to ≈61% level of the initial in hours 1 to 2, followed by ≈29% and ≈1% in hours 2 to 3 and 3 to 24, respectively. Thus, 85% of total thrombolysis over 24 hours (≈500 μm
2
, equivalent to 64% of the baseline thrombus burden) occurred within the first 3 hours of treatment. Thrombus burden at 24 hours could be predicted at around 1.5 to 2 hours. Saline treatment was not associated with significant changes in the thrombus burden. Infarct size was smaller in the tPA group versus saline group (18.1±2.3 versus 45.8±3.3 mm
2
;
P
<0.01). Infarct size correlated to final thrombus burden (
r
=0.71;
P
<0.01). Time to thrombolysis, completeness of thrombolysis, and tPA therapy were independent predictors of infarct size.
Conclusions—
Thromboembolic burden and the efficacy of tPA therapy can be assessed serially, noninvasively, and quantitatively using high-resolution microcomputed tomography and a fibrin-binding nanoparticle imaging agent.
Collapse
Affiliation(s)
- Dong-Eog Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jeong-Yeon Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Dawid Schellingerhout
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ju Hee Ryu
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Su-Kyoung Lee
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Sangmin Jeon
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ji Sung Lee
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jiwon Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Hee Jeong Jang
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Jung E. Park
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Eo Jin Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Ick Chan Kwon
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Cheol-Hee Ahn
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Matthias Nahrendorf
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| | - Kwangmeyung Kim
- From Molecular Imaging and Neurovascular Research Laboratory, Departments of Neurology (D.-E.K., J.-Y.K., S.-K.L., J.K., H.J.J., J.E.P.) and Pathology (E.J.K.), Dongguk University College of Medicine, Goyang, South Korea; Biomedical Research Center, Korea Institute of Science and Technology, Seoul, South Korea (J.H.R., S.J., I.C.K., K.K.); Departments of Diagnostic Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston (D.S.); Clinical Research Center, Asan
| |
Collapse
|
32
|
Heo JH, Kim K, Yoo J, Kim YD, Nam HS, Kim EY. Computed Tomography-Based Thrombus Imaging for the Prediction of Recanalization after Reperfusion Therapy in Stroke. J Stroke 2017; 19:40-49. [PMID: 28178411 PMCID: PMC5307933 DOI: 10.5853/jos.2016.01522] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/11/2017] [Indexed: 01/24/2023] Open
Abstract
The prediction of successful recanalization following thrombolytic or endovascular treatment may be helpful to determine the strategy of recanalization treatment in acute stroke. Thrombus can be detected using noncontrast computed tomography (CT) as a hyperdense artery sign or blooming artifact on a T2*-weighted gradient-recalled image. The detection of thrombus using CT depends on slice thickness. Thrombus burden can be determined in terms of the length, volume, and clot burden score. The thrombus size can be quantitatively measured on thin-section CT or CT angiography/magnetic resonance angiography. The determination of thrombus size may be predictive of successful recanalization/non-recanalization after intravenous thrombolysis and endovascular treatment. However, cut-offs of thrombus size for predicting recanalization/non-recanalization are different among studies, due to different methods of measurements. Thus, a standardized method to measure the thrombus is necessary for thrombus imaging to be useful and reliable in clinical practice. Software-based measurements may provide a reliable and accurate assessment. The measurement should be easy and rapid to be more widely used in practice, which could be achieved by improvement of the user interface. In addition to prediction of recanalization, sequential measurements of thrombus volume before and after the treatment may also be useful to determine the efficacy of new thrombolytic drugs. This manuscript reviews the diagnosis of thrombus, prediction of recanalization using thrombus imaging, and practical considerations for the measurement of thrombus burden and density on CT.
Collapse
Affiliation(s)
- Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeonsub Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Joonsang Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Eung Yeop Kim
- Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|