1
|
Valentin BC, Philippe ON, Henry MM, Salvius BA, Suzanne MK, Kasali FM, Baptiste LSJ. Ethnomedical Knowledge of Plants Used in Nonconventional Medicine for Wound Healing in Lubumbashi, Haut-Katanga Province, DR Congo. ScientificWorldJournal 2024; 2024:4049263. [PMID: 39376217 PMCID: PMC11458279 DOI: 10.1155/2024/4049263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
Medicinal plants used for wound healing in Lubumbashi have yet to be discovered. Inventory or profile of their taxa has yet to be established. The present study was carried out to survey the plants used in traditional medicine in Lubumbashi to treat wounds and to define their ethnomedical characteristics. The study was conducted between March 2021 and August 2022, using semistructured interview surveys of households (n = 2730), herbalists (n = 48), and traditional practitioners: TPs (n = 128).The 2,906 interviewed (sex ratio M/F = 0.9; mean age: 56 ± 3 years; and experience: 17 ± 4 years) provided information on 166 taxa, 130 used against chronic wounds, among which Securidaca longepedunculata was the top cited. Most of these taxa are shrubs (33%), belonging to 48 botanical families dominated by the Fabaceae (16%). They are indicated in 70 other pathologies. From these 166 taxa, 198 healing recipes are obtained, 11 combining more than one plant. In all these recipes, the leaf (>36%) is the most used part, and the poultice (>36%) is the most popular form of use. Twelve taxa are cited for the first time as medicinal plants, of which Agelanthus zizyphifolius has the highest consensus and Erigeron sumatrensis has the highest usual value. For the various plants used to treat wounds, some of which are specific to the region, further studies should focus on validating this traditional use.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Okusa Ndjolo Philippe
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Manya Mboni Henry
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology, Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Masengu Kabeya Suzanne
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Félicien Mushagalusa Kasali
- Department of Pharmacy, College of Health Sciences, Université Officielle de Bukavu (UOB), PO. Box: 570, Bukavu, Commune of Kadutu, Av. Karhale, Democratic Republic of the Congo
| | - Lumbu Simbi Jean Baptiste
- Department of Chemistry, Faculty of Sciences, University of Lubumbashi (UNILU), 1 Maternity Av., Commune of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| |
Collapse
|
2
|
Maroyi A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1255. [PMID: 36986943 PMCID: PMC10051751 DOI: 10.3390/plants12061255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe's Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe's Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies.
Collapse
Affiliation(s)
- Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
3
|
Sibanda S, Shoko R, Chishaya K, Chimwanda P, Nyoni S, Ndlovu J. Antimicrobial effect of Brachystegia boehmii extracts and their green synthesised silver zero-valent derivatives on burn wound infectious bacteria. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sipho Sibanda
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Kudzayi Chishaya
- Medical Laboratory Science-Medical Microbiology, Kariba District Hospital, Kariba, Zimbabwe
| | - Peter Chimwanda
- Department of Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Stephen Nyoni
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
4
|
da Silva AW, Ferreira MKA, Pereira LR, Rebouças EL, Coutinho MR, Dos J, Lima R, Guedes MIF, Bandeira PN, Magalhães FEA, Menezes JESAD, Marinho MM, Teixeira AMR, Salles Trevisan MT, Dos Santos HS, Marinho ES. Combretum lanceolatum extract reverses anxiety and seizure behavior in adult zebrafish through GABAergic neurotransmission: an in vivo and in silico study. J Biomol Struct Dyn 2022; 40:9801-9814. [PMID: 34121622 DOI: 10.1080/07391102.2021.1935322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Combretaceae are reported in the literature for presenting neuroprotective and anxiolytic effects in animal models. Combretum lanceolatum Pohl. has few scientific reports on its pharmacological effects. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of the ethanol extract from the leaves of C. lanceolatum Pohl. (EtFoCl) and its possible mechanism of GABAergic action in adult zebrafish. EtFoCl was subjected to determination of the total phenol concentration, identification of phytochemical flavonoids by HPLC and in vitro antioxidant activity test, open field test and 96-hour acute toxicity in zebrafish. Anxiolytic doses were tested for pentylenetetrazole-induced seizures in adult zebrafish. To study the mechanisms of action, molecular docking simulations were performed between the main phytochemicals and the GABAA receptor (anxiolytic activity) and carbonic anhydrase II (anticonvulsant). The non-toxic doses that caused motor impairment were assessed in acute and chronic anxiety using the light and dark test. EtFoCl had altered the animals' locomotion, presenting an effect similar to the anxiolytic and anticonvulsant. These effects were prevented with flumazenil (GABAA antagonist). The phytochemicals homoorientin and quercetin-3-O-galactoside coupling in a region close to that of the inhibitor diazepam (GABAA receptor). Regarding the anticonvulsant mechanism, Homoorientina and Isovitexina were identified as the most favorable for the complex form with the carbonic anhydrase enzyme. C. lanceolatum has pharmacological potential for the treatment of acute and chronic anxiety and seizures, which can be partially explained by an interaction with the GABAA receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Antonio Wlisses da Silva
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil.,Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil
| | - Maria Kueirislene A Ferreira
- Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil
| | - Lucas Ramos Pereira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuela L Rebouças
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil.,Itaperi Campus, Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Health Sciences Center (CCS), Fortaleza, Ceará, Brazil
| | - Marnielle Rodrigues Coutinho
- Itaperi Campus, Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Health Sciences Center (CCS), Fortaleza, Ceará, Brazil
| | | | - Reis Lima
- Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Itaperi Campus, Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Health Sciences Center (CCS), Fortaleza, Ceará, Brazil
| | - Paulo N Bandeira
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Francisco Ernani A Magalhães
- Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil.,Itaperi Campus, Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Health Sciences Center (CCS), Fortaleza, Ceará, Brazil.,Department of Chemistry, Laboratory of Natural Products Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - Jane Eire S A de Menezes
- Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil
| | - Marcia Machado Marinho
- Faculty of Education, Science and Letters of Iguatu, State University of Ceará, Iguatu, Ceara, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil.,Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | | - Hélcio S Dos Santos
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil.,Itaperi Campus, Laboratory of Natural Products Chemistry - LQPN-S, State University of Ceará, Science and Technology Center (CCT), Fortaleza, Ceará, Brazil.,Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, Ceará, Brasil
| |
Collapse
|
5
|
Nyagumbo E, Pote W, Shopo B, Nyirenda T, Chagonda I, Mapaya RJ, Maunganidze F, Mavengere WN, Mawere C, Mutasa I, Kademeteme E, Maroyi A, Taderera T, Bhebhe M. Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 128:103232. [PMID: 36161239 PMCID: PMC9489988 DOI: 10.1016/j.pce.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Respiratory diseases have in the recent past become a health concern globally. More than 523 million cases of coronavirus disease (COVID19), a recent respiratory diseases have been reported, leaving more than 6 million deaths worldwide since the start of the pandemic. In Zimbabwe, respiratory infections have largely been managed using traditional (herbal) medicines, due to their low cost and ease of accessibility. This review highlights the plants' toxicological and pharmacological evaluation studies explored. It seeks to document plants that have been traditionally used in Zimbabwe to treat respiratory ailments within and beyond the past four decades. Extensive literature review based on published papers and abstracts retrieved from the online bibliographic databases, books, book chapters, scientific reports and theses available at Universities in Zimbabwe, were used in this study. From the study, there were at least 58 plant families comprising 160 medicinal plants widely distributed throughout the country. The Fabaceae family had the highest number of medicinal plant species, with a total of 21 species. A total of 12 respiratory ailments were reportedly treatable using the identified plants. From a total of 160 plants, colds were reportedly treatable with 56, pneumonia 53, coughs 34, chest pain and related conditions 29, asthma 25, tuberculosis and spots in lungs 22, unspecified respiratory conditions 20, influenza 13, bronchial problems 12, dyspnoea 7, sore throat and infections 5 and sinus clearing 1 plant. The study identified potential medicinal plants that can be utilised in future to manage respiratory infections.
Collapse
Affiliation(s)
- Elliot Nyagumbo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William Pote
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Bridgett Shopo
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| | - Trust Nyirenda
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Ignatius Chagonda
- Department of Agriculture Practice, Faculty of Agriculture, Midlands State University, Gweru, Zimbabwe
| | - Ruvimbo J Mapaya
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Fabian Maunganidze
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William N Mavengere
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Cephas Mawere
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Ian Mutasa
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Emmanuel Kademeteme
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Tafadzwa Taderera
- Department of Biomedical Sciences, Physiology Unit, University of Zimbabwe, P.O. Box MP167, Mt Pleasant, Harare, Zimbabwe
| | - Michael Bhebhe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| |
Collapse
|
6
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|
7
|
Odorico D, Nicosia E, Datizua C, Langa C, Raiva R, Souane J, Nhalungo S, Banze A, Caetano B, Nhauando V, Ragú H, Jr MM, Caminho J, Mutemba L, Matusse E, Osborne J, Wursten B, Burrows J, Cianciullo S, Malatesta L, Attorre F. An updated checklist of Mozambique's vascular plants. PHYTOKEYS 2022; 189:61-80. [PMID: 35136361 PMCID: PMC8816833 DOI: 10.3897/phytokeys.189.75321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
An updated checklist of Mozambique's vascular plants is presented. It was compiled referring to several information sources such as existing literature, relevant online databases and herbaria collections. The checklist includes 7,099 taxa (5,957 species, 605 subspecies, 537 varieties), belonging to 226 families and 1,746 genera. There are 6,804 angiosperms, 257 pteridophytes, and 38 gymnosperms. A total of 6,171 taxa are native to Mozambique, while 602 are introduced and the remaining 326 taxa were considered as uncertain status. The endemism level for Mozambique's flora was assessed at 9.59%, including 278 strict-endemic taxa and 403 near-endemic. 58.2% of taxa are herbaceous, while shrubs and trees account respectively for 26.5% and 9.2% of the taxa. The checklist also includes ferns (3.6%), lianas (1.7%), subshrubs (0.5%) and cycads (0.3%). Fabaceae, Poaceae and Asteraceae are the three most represented families, with 891, 543 and 428 taxa, respectively. The extinction risk of 1,667 taxa is included, with 158 taxa listed as Vulnerable, 119 as Endangered and as 24 Critically Endangered. The geographical distribution, known vernacular names and plants traditional uses are also recorded.
Collapse
Affiliation(s)
- Délcio Odorico
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Enrico Nicosia
- Department of Environmental Biology, Sapienza - University of Rome, Piazzale Aldo Moro 5, 00185, Roma, Italia University of Rome Roma Italy
| | - Castigo Datizua
- Mozambique Agricultural Research Institute, Av. FPLM 2698, P.O. Box 3658, Mavalane, Maputo, Mozambique Mozambique Agricultural Research Institute Maputo Mozambique
| | - Clayton Langa
- Mozambique Agricultural Research Institute, Av. FPLM 2698, P.O. Box 3658, Mavalane, Maputo, Mozambique Mozambique Agricultural Research Institute Maputo Mozambique
| | - Raquel Raiva
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Joelma Souane
- Mozambique Agricultural Research Institute, Av. FPLM 2698, P.O. Box 3658, Mavalane, Maputo, Mozambique Mozambique Agricultural Research Institute Maputo Mozambique
| | - Sofia Nhalungo
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Aurélio Banze
- Mozambique Agricultural Research Institute, Av. FPLM 2698, P.O. Box 3658, Mavalane, Maputo, Mozambique Mozambique Agricultural Research Institute Maputo Mozambique
| | - Belkiss Caetano
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Vânia Nhauando
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Hélio Ragú
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Mário Machunguene Jr
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Jónata Caminho
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Leonel Mutemba
- Department of Biological Sciences, Eduardo Mondlane University, Av. Julius Nyerere 3534, P.O. Box 257, Maputo, Mozambique Eduardo Mondlane University Maputo Mozambique
| | - Efigénio Matusse
- Wildlife Conservation Society, Rua Faustino Vanombe 61, P.O. Box 421, Maputo, Mozambique Wildlife Conservation Society Maputo Mozambique
| | - Jo Osborne
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK Royal Botanic Gardens Richmond United Kingdom
| | - Bart Wursten
- Meise Botanic Garden Herbarium, Nieuwelaan 38, Meise 1860, Belgium Meise Botanic Garden Herbarium Meise Belgium
| | - John Burrows
- Buffelskloof Nature Reserve and Herbarium, P.O. Box 710, Lyndenburg, Mpumalanga Province, South Africa Buffelskloof Nature Reserve and Herbarium Lyndenburg South Africa
| | - Silvio Cianciullo
- Department of Environmental Biology, Sapienza - University of Rome, Piazzale Aldo Moro 5, 00185, Roma, Italia University of Rome Roma Italy
| | - Luca Malatesta
- Department of Environmental Biology, Sapienza - University of Rome, Piazzale Aldo Moro 5, 00185, Roma, Italia University of Rome Roma Italy
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza - University of Rome, Piazzale Aldo Moro 5, 00185, Roma, Italia University of Rome Roma Italy
| |
Collapse
|
8
|
Jinga P, Palagi J. Dry and wet miombo woodlands of south-central Africa respond differently to climate change. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:372. [PMID: 32417982 DOI: 10.1007/s10661-020-08342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
It is important to understand how species distributions will shift under climate change. While much focus has been on species tracking temperature changes in the northern hemisphere, changing precipitation patterns in tropical regions have received less attention. The aim of the study was to estimate the current distribution of wet and dry miombo woodlands of sub-Saharan Africa and to predict their distributions under different climate change scenarios. A maximum entropy method (Maxent) was used to estimate the distributions and for projections. Occurrence records of dominant tree species in each woodland were used for modeling, together with altitude, soil characteristics, and climate variables as the environmental variables. Modeling was done under all four representative concentration pathways (RCPs) and three general circulation models. Three dominant tree species were used in models of dry miombo while seven were used for wet miombo. Models estimated dry miombo to cover almost the entire known distribution of miombo woodlands while wet miombo were estimated to predominate in parts of Angola, southern Democratic Republic of Congo, Malawi, Tanzania, Zambia, and Zimbabwe. Future climate scenarios predict a drier climate in sub-Saharan Africa, and as a result, the range of dry miombo will expand. Dry miombo were predicted to expand by up to 17.3% in 2050 and 22.7% in 2070. In contrast, wet miombo were predicted to contract by up to - 28.6% in 2050 and - 41.6% in 2070. A warming climate is conducive for the proliferation of dry miombo tree species but unfavorable for wet miombo tree species.
Collapse
Affiliation(s)
- Percy Jinga
- Biological Sciences Department, Bindura University of Science Education, Private Bag, 1020, Bindura, Zimbabwe.
| | - Jason Palagi
- Biological Sciences Department, Sewanee: The University of the South, 735 University Avenue, Sewanee, TN, 37383, USA
| |
Collapse
|
9
|
Rodrigues AM, Ribeiro-Barros AI, António C. Experimental Design and Sample Preparation in Forest Tree Metabolomics. Metabolites 2019; 9:E285. [PMID: 31766588 PMCID: PMC6950530 DOI: 10.3390/metabo9120285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Appropriate experimental design and sample preparation are key steps in metabolomics experiments, highly influencing the biological interpretation of the results. The sample preparation workflow for plant metabolomics studies includes several steps before metabolite extraction and analysis. These include the optimization of laboratory procedures, which should be optimized for different plants and tissues. This is particularly the case for trees, whose tissues are complex matrices to work with due to the presence of several interferents, such as oleoresins, cellulose. A good experimental design, tree tissue harvest conditions, and sample preparation are crucial to ensure consistency and reproducibility of the metadata among datasets. In this review, we discuss the main challenges when setting up a forest tree metabolomics experiment for mass spectrometry (MS)-based analysis covering all technical aspects from the biological question formulation and experimental design to sample processing and metabolite extraction and data acquisition. We also highlight the importance of forest tree metadata standardization in metabolomics studies.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
- Plant Stress and Biodiversity Laboratory, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa (ISA/ULisboa), 1349-017 Lisboa, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (A.I.R.-B.)
| |
Collapse
|
10
|
Maquia I, Catarino S, Pena AR, Brito DRA, Ribeiro NS, Romeiras MM, Ribeiro-Barros AI. Diversification of African Tree Legumes in Miombo-Mopane Woodlands. PLANTS (BASEL, SWITZERLAND) 2019; 8:E182. [PMID: 31226765 PMCID: PMC6631767 DOI: 10.3390/plants8060182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023]
Abstract
The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areas.
Collapse
Affiliation(s)
- Ivete Maquia
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- Biotechnology Center, Eduardo Mondlane University, Av. de Moçambique Km 1.5, Maputo 1109, Mozambique.
| | - Silvia Catarino
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- Forest Research Center (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Ana R Pena
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Denise R A Brito
- Biotechnology Center, Eduardo Mondlane University, Av. de Moçambique Km 1.5, Maputo 1109, Mozambique.
| | - Natasha S Ribeiro
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Campus1, P.O. Box 257, Maputo 1102, Mozambique.
| | - Maria M Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Ana I Ribeiro-Barros
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Monte de Caparica, Portugal.
| |
Collapse
|